Language (for logic):
- symbols
 - letters
 - connectives
 - parentheses
- wffs, formulas
 $p \rightarrow (q \land r)$
 $p \rightarrow (\neg (q \lor r))$

\neg-table ("meaning")

Reasoning:

Inference

Need a notion of "follows from" or "logical consequence"

Rules of inference

Examples

1. $p \rightarrow q$
 p
 \underline{q}
 "modus ponens"
 M_P

2. $p \rightarrow q$
 $\neg q$
 $\neg p$
 "modus tollens"
 M_T
Def: A rule of \(\text{if its conclusion is true (T) in every } \)
\(\text{truth row in which } \) all its premises are \(\text{T} \).

Example:

\((P \rightarrow \varphi) \)
\(\varphi \rightarrow R \)
\(P \rightarrow R \)

"Trans it with valid!!"
A

Am

No letters

in this

belief

could be

refuted

by any

witness.

\(\alpha \rightarrow \beta \)

\(\beta \rightarrow \beta \)

The left \(Q \rightarrow P \)

called the

converse of

\(P \rightarrow Q \)
A proof (from given axioms)

can be an argument

is a sequence of

rules

(W₁, W₂, W₃, \ldots, Wₙ)

where each wi either

is an axiom or

a derived rule.

As contrapositive.

\((\neg Q \rightarrow \neg P)\)

\((P \rightarrow \neg Q)\)

\(\equiv\)