CMSC 430
Introduction to Compilers
Fall 2012

Type Systems
What is a Type System?

• A *type system* is some mechanism for distinguishing good programs from bad
 - Good programs = well typed
 - Bad programs = ill-typed or not typable

• Examples:
 - 0 + 1 // well typed
 - false 0 // ill-typed: can’t apply a boolean
 - 1 + (if true then 0 else false) // ill-typed: can’t add boolean to integer
 - Notice that the type system may be *conservative* — it may report programs as erroneous if they could run without type errors
A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”

– Benjamin Pierce, *Types and Programming Languages*
The Plan

• Start with lambda calculus (yay!)
• Add types to it
 ▪ Simply-typed lambda calculus
• Prove type soundness
 ▪ So we know what our types mean
 ▪ We’ll learn about structural induction here
• Discuss issues of types in real languages
 ▪ E.g., null, array bounds checks, etc
• Explain type inference
• Add subtyping (for OO) to all of the above
Lambda calculus

• We’ll use lambda calculus are a “core language” to explain type systems
 ▪ Has essential features (functions)
 ▪ No overlapping constructs
 ▪ And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

• We will add features to lambda calculus as we go on
Simply-Typed Lambda Calculus

- \(e ::= n \mid x \mid \lambda x: t. e \mid e \ e \)
 - Functions include the type of their argument
 - We’ve added integers, so we can have (obvious) type errs
 - We don’t really need this, but it will come in handy

- \(t ::= \text{int} \mid t \to t \)
 - \(t_1 \to t_2 \) is a the type of a function that, given an argument of type \(t_1 \), returns a result of type \(t_2 \)
 - \(t_1 \) is the domain, and \(t_2 \) is the range
Type Judgments

- Our type system will prove *judgments* of the form
 - $A \vdash e : t$
 - “In type environment A, expression e has type t”
Type Environments

- A *type environment* is a map from variables to types (a kind of symbol table)
 - is the empty type environment
 - A closed term e is *well-typed* if $\vdash e : t$ for some t
 - We’ll abbreviate this as $\vdash e : t$
 - $x:t, A$ is just like A, except x now has type t
 - The type of x in $x:t, A$ is t
 - The type of $z \neq x$ in $x:t, A$ in the type of z in A
- When we see a variable in a program, we look in the type environment to find its type
Type Rules

<table>
<thead>
<tr>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\text{x} \in \text{dom}(A)}{A \vdash x : A(x)}$</td>
</tr>
<tr>
<td>$\frac{A \vdash n : \text{int}}{A \vdash \text{n}}$</td>
</tr>
<tr>
<td>$\frac{x : t, A \vdash e : t'}{A \vdash \lambda x : t . e : t \rightarrow t'}$</td>
</tr>
<tr>
<td>$\frac{A \vdash e_1 : t \rightarrow t', A \vdash e_2 : t}{A \vdash e_1 \ e_2 : t'}$</td>
</tr>
<tr>
<td>$\frac{A \vdash e_1 : t', A \vdash e_2 : t}{A \vdash e_1 \ e_2 : t'}$</td>
</tr>
</tbody>
</table>
Example

\[A = - : \text{int} \to \text{int} \]

\[- \epsilon \text{dom}(A) \]

\[A \vdash - : \text{int} \to \text{int} \quad A \vdash 3 : \text{int} \]

\[A \vdash - 3 : \text{int} \]
Another Example

\[A = + : \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[B = x : \text{int}, A \]

\[
\begin{align*}
+ & \in \text{dom}(B) \quad \text{and} \quad x & \in \text{dom}(B) \\
B & \vdash + : \text{i} \rightarrow \text{i} \rightarrow \text{i} \\
B & \vdash x : \text{i} \\
B & \vdash + x : \text{int} \rightarrow \text{int} \\
B & \vdash 3 : \text{int} \\
B & \vdash + x 3 : \text{int} \\
A & \vdash (\lambda x: \text{int}.+ x 3) : \text{int} \rightarrow \text{int} \\
A & \vdash 4 : \text{int} \\
A & \vdash (\lambda x: \text{int}.+ x 3) 4 : \text{int}
\end{align*}
\]

We’d usually use infix \(x + 3 \)
An Algorithm for Type Checking

- Our type rules are deterministic
 - For each syntactic form, only one possible rule

- They define a natural type checking algorithm
 - \(\text{TypeCheck} : \text{type env} \times \text{expression} \rightarrow \text{type} \)

\[
\begin{align*}
\text{TypeCheck}(A, n) &= \text{int} \\
\text{TypeCheck}(A, x) &= \text{if } x \text{ in } \text{dom}(A) \text{ then } A(x) \text{ else fail} \\
\text{TypeCheck}(A, \lambda x : t . e) &= \text{TypeCheck}((A, x : t), e) \\
\text{TypeCheck}(A, e_1 e_2) &= \\
\quad \text{let } t_1 = \text{TypeCheck}(A, e_1) \text{ in} \\
\quad \text{let } t_2 = \text{TypeCheck}(A, e_2) \text{ in} \\
\quad \text{if } \text{dom}(t_1) = t_2 \text{ then } \text{range}(t_1) \text{ else fail}
\end{align*}
\]
Semantics

• Here is a small-step, call-by-value semantics
 ▪ If an expression can’t be evaluated any more and is not a value, then it is stuck

\[
(\lambda x.e_1) \, v_2 \rightarrow e_1[v_2\backslash x]
\]

\[
e_1 \rightarrow e_1'
\]

\[
e_1 \, e_2 \rightarrow e_1' \, e_2
\]

\[
e_2 \rightarrow e_2'
\]

\[
v_1 \, e_2 \rightarrow v_1 \, e_2'
\]

\[
e ::= v \mid x \mid e \, e
\]

\[
v ::= n \mid \lambda x: t. e \quad \text{values} \quad \text{– not evaluated}
\]
• Suppose $\vdash e : t$. Then either e is a value, or there exists e' such that $e \rightarrow e'$

• Proof by induction on e

 ▪ Base cases $n, \lambda x.e$ – these are values, so we’re done

 ▪ Base case x – can’t happen (empty type environment)

 ▪ Inductive case $e_1 e_2$ – If e_1 is not a value, then by induction we can evaluate it, so we’re done, and similarly for e_2. Otherwise both e_1 and e_2 are values. Inspection of the type rules shows that e_1 must have a function type, and therefore must be a lambda since it’s a value. Therefore we can make progress.
Preservation

• If \(\vdash e : t \) and \(e \rightarrow e' \) then \(\vdash e' : t \)

• Proof by induction on \(e \rightarrow e' \)
 - Induction (easier than the base case!). Expression \(e \) must have the form \(e_1 e_2 \).
 - Assume \(\vdash e_1 e_2 : t \) and \(e_1 e_2 \rightarrow e' \). Then we have \(\vdash e_1 : t' \rightarrow t \) and \(\vdash e_2 : t' \).
 - Then there are three cases.
 - If \(e_1 \rightarrow e_1' \), then by induction \(\vdash e_1 : t' \rightarrow t \), so \(e_1' e_2 \) has type \(t \)
 - If reduction inside \(e_2 \), similar
Preservation, cont’d

• Otherwise \((\lambda x.e) v \rightarrow e[v/x]\). Then we have

\[x : t' \vdash e : t \]

Thus we have

\[\vdash \lambda x.e : t' \rightarrow t \]

- Thus we have
 - \(x : t' \vdash e : t \)
 - \(\cdot \vdash v : t' \)

Then by the substitution lemma (not shown) we have

- \(\cdot \vdash e[v/x] : t \)

- And so we have preservation
Substitution Lemma

• If $A \vdash v : t$ and $x : t, A \vdash e : t'$, then $A \vdash e[v/x] : t'$

• Proof: Induction on the structure of e

• For lazy semantics, we’d prove
 - If $A \vdash e_1 : t$ and $x : t, A \vdash e : t'$, then $A \vdash e[e_1/x] : t'$
Soundness

- So we have
 - Progress: Suppose $\vdash e : t$. Then either e is a value, or there exists e' such that $e \rightarrow e'$
 - Preservation: If $\vdash e : t$ and $e \rightarrow e'$ then $\vdash e' : t$
- Putting these together, we get soundness
 - If $\vdash e : t$ then either there exists a value v such that $e \rightarrow^* v$, or e diverges (doesn’t terminate).
- What does this mean?
 - Evaluation getting stuck is bad, so
 - “Well-typed programs don’t go wrong”
Consequences of Soundness

• Progress—anything that can go wrong “locally” at run time should be forbidden in the type system
 ▪ E.g., can’t “call” an int as if it were a function
 ▪ To check this, identify all places where the semantics get stuck, and cross-reference with type rules

• Preservation—running a program can’t change types
 ▪ E.g., after beta reduction, types still the same
 ▪ To check this, ensure that for each possible way the semantics can take a step, types are preserved

• These problems greatly influence the way type systems are designed
Conditionals

e ::= ... | true | false | if e then e else e

\[\begin{align*}
A & \vdash \text{true} : \text{bool} \\
A & \vdash \text{false} : \text{bool} \\
A & \vdash \text{e1} : \text{bool} \quad A & \vdash \text{e2} : \text{t} \quad A & \vdash \text{e3} : \text{t} \\
A & \vdash \text{if e1 then e2 else e3} : \text{t}
\end{align*} \]
Conditionals (op sem)

\[e ::= \ldots \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \]

- if true then \(e_2\) else \(e_3\) \(\rightarrow e_2\)
- if false then \(e_2\) else \(e_3\) \(\rightarrow e_3\)
- \(e_1 \rightarrow e_1'\)
 - if \(e_1\) then \(e_2\) else \(e_3\) \(\rightarrow\)
 - if \(e_1'\) then \(e_2\) else \(e_3\)

Notice how need to satisfy progress and preservation influences type system, and interplay between operational semantics and types
Product Types (Tuples)

e ::= ... | (e, e) | fst e | snd e

\[A \vdash el : t \quad A \vdash e2 : t' \]
\[\frac{}{A \vdash (el,e2) : t \times t'} \]

\[A \vdash e : t \times t' \]
\[\frac{}{A \vdash \text{fst } e : t} \]

\[A \vdash e : t \times t' \]
\[\frac{}{A \vdash \text{snd } e : t'} \]

• Or, maybe, just add functions
 - \(\text{pair} : t \rightarrow t' \rightarrow t \times t'\)
 - \(\text{fst} : t \times t' \rightarrow t\)
 - \(\text{snd} : t \times t' \rightarrow t'\)
Sum Types (Tagged Unions)

e ::= ... | inL_{t2} \ e | inR_{t1} \ e
 | (case \ e \ of \ x1: t1 \ → \ e1 \ | \ x2: t2 \ → \ e2)

A \vdash e : t1 \\
A \vdash \text{inL}_{t2} \ e : t1 + t2 \\
A \vdash \text{inR}_{t1} \ e : t1 + t2

A \vdash e : t1 + t2 \\
x1 : t1, A \vdash e1 : t \quad x2 : t2, A \vdash e2 : t

A \vdash (\text{case } e \text{ of } x1 : t1 \ → \ e1 \ | \ x2 : t2 \ → \ e2) : t
Self Application and Types

• Self application is not checkable in our system

\[
x : ?, A \vdash x : t \rightarrow t' \quad x : ?, A \vdash x : t
\]
\[
x : ?, A \vdash xx : ...
\]
\[
A \vdash \lambda x : ?.xx : ...
\]

- It would require a type \(t \) such that \(t = t \rightarrow t' \)
 - (We'll see this next, but so far...)

• The simply-typed lambda calculus is strongly normalizing

 ▪ Every program has a normal form
 ▪ I.e., every program halts!
Recursive Types

- We can type self application if we have a type to represent the solution to equations like \(t = t \rightarrow t' \)
 - We define the type \(\mu \alpha.t \) to be the solution to the (recursive) equation \(\alpha = t \)
 - Example: \(\mu \alpha.\text{int} \rightarrow \alpha \)
Discussion

• In the pure lambda calculus, every term is typable with recursive types
 ▪ (Pure = variables, functions, applications only)

• Most languages have some kind of “recursive” type
 ▪ E.g., for data structures like lists, tree, etc.

• However, usually two recursive types that define the same structure but use a different name are considered different
 ▪ E.g., in C, struct foo { int x; struct foo *next; } is different from struct bar { int x; struct bar *next; }
Subtyping

• The Liskov Substitution Principle (paraphrased):

 Let q(x) be a property provable about objects x of type T. If S is a subtype of T, then q(y) should be provable for objects y of type S.

• In other words

 If S is a subtype of T, then an S can be used anywhere a T is expected

• Common used in object-oriented programming
 - Subclasses can be used where superclasses expected
 - This is a kind of polymorphism
Kinds of Polymorphism

- Parametric polymorphism
 - Generics in Java, `a` types in OCaml
- Another popular form is subtype polymorphism
 - As in OO programming
 - These two can be combined (c.f. Java)
- Some languages also have *ad-hoc polymorphism*
 - E.g., + operator that works on ints and floats
 - E.g., overloading in Java
We now have both floating point numbers and integers

We want to be able to implicitly use an integer wherever a floating point number is expected

Warning: This is a bad design! Don’t do this in real life
Subtyping

- We’ll write $t_1 \leq t_2$ if t_1 is a subtype of t_2
- Define subtyping by more inference rules
- Base case

```
int \leq \text{float}
```

 - (notice reverse is not allowed)
- What about function types?

```
???

\frac{??}{t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'}
```
Replacing “f x” by “g x”

• Suppose $f : t_1 \rightarrow t_1'$ and $g : t_2 \rightarrow t_2'$
• When is $t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'$?

• Return type:
 ▪ We are expecting t_1' (f’s return type)
 ▪ So we can return at most t_1'
 ▪ So need $t_1' \leq t_2'$

• Examples
 ▪ If we’re expecting float, can return int or float
 ▪ If we’re expecting int, can only return int
Replacing “f x” by “g x”

• Suppose \(f : t_1 \rightarrow t_1' \) and \(g : t_2 \rightarrow t_2' \)

• When is \(t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2' \)?

• Argument type:
 - We are supposed to accept expecting \(t_1 \) (f’s arg type)
 - So we must accept \(\textit{at least} t_1 \)
 - So need \(t_2 \leq t_1 \)

• Examples
 - A function that accepts an \(\text{int} \) can be replaced by one that accepts \(\text{int} \), or one that accepts \(\text{float} \)
 - A function that accepts a \(\text{float} \) can only be replaced by one that accepts \(\text{float} \)
Subtyping on Function Types

\[
t_2 \leq t_1 \quad t_1' \leq t_2'
\]

\[
t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'
\]

• We say that arrow is
 - \textit{Covariant} in the range (subtyping dir the same)
 - \textit{Contravariant} in the domain (subtyping dir flips)

• Some languages have gotten this wrong
 - Eiffel allows covariant parameter types
Similar Pattern for Pre/Post-conds

- class A { int f(int x) { ... } }
- class B extends A { int f(int x) { ... } }

- A.f — precondition Pre_A, postcondition Post_A
- B.f — precondition Pre_B, postcondition Post_B
- Relationship among \{Pre,Post\}_{A,B}?
 - Post_A ⇒ Post_B
 - Pre_B ⇒ Pre_A

- Example:
 - Pre_A = (x > 42), Post_A = (ret > 42)
 - Pre_B = (x > 0), Post_B = (ret > 100)
Type Rules, with Subtyping

\[
\begin{align*}
A \vdash n : \text{int} & \quad A \vdash f : \text{float} \\
\text{x} \in \text{dom}(A) & \quad \text{x} : t, A \vdash e : t' \\
A \vdash x : A(x) & \quad A \vdash \lambda x : t. e : t \rightarrow t' \\
A \vdash e_1 : t_1 \rightarrow t'_1 & \quad A \vdash e_2 : t_2 \\
t_2 \leq t_1 & \quad A \vdash e_1 \ e_2 : t'_1
\end{align*}
\]
Soundness

• Progress and preservation still hold
 ▪ Slight tweak: as evaluation proceeds, expression’s type may “decrease” in the subtyping sense
 ▪ Example:
 - (if true then n else f) : float
 - But after taking one step, will have type \text{int} \leq \text{float}

• Proof: exercise for the reader
Subtyping, again

\[
\begin{align*}
A \vdash n : \text{int} & \quad A \vdash f : \text{float} \\
A \vdash x \in \text{dom}(A) & \quad x : t, A \vdash e : t' \\
A \vdash x : A(x) & \quad A \vdash \lambda x : t. e : t \rightarrow t'
\end{align*}
\]

\[
\begin{align*}
A \vdash e_1 : t_1 \rightarrow t_1' & \quad A \vdash e_2 : t_2 \\
A \vdash e_1 e_2 : t_1' & \quad A \vdash e : t \\
t \leq t' & \quad A \vdash e : t'
\end{align*}
\]
Subtyping, again (cont’d)

- Rule with subtyping is called *subsumption*
 - Very clearly captures subtyping property
- But system is no longer *syntax driven*
 - Given an expression e, there are two rules that apply to e
 (“regular” type rule, and subsumption rule)
- Can prove that the two systems are equivalent
 - Exercise left to the reader
Lambda Calc with Updatable Refs

• $e ::= \ldots | \text{ref } e | !e | e := e$

 ▪ ML-style updatable references
 - $\text{ref } e$ — allocate memory and set its contents to e; return pointer
 - $!e$ — dereference pointer and return contents
 - $e1 := e2$ — update contents pointed to by $e1$ with $e2$

• $t ::= \ldots | t \text{ ref}$

 ▪ A $t \text{ ref}$ is a pointer to contents of type t
Type Rules for Refs

\[
\begin{align*}
&D ≐ e : t \\
&\quad \frac{}{A \vdash \text{ref } e : t \text{ ref}} \\
&D ≐ \text{ref } e : t \text{ ref} \\
&D ≐ e : t \text{ ref} \\
&D ≐ e : t \\
&D ≐ \text{ref } e : t \text{ ref} \\
&D ≐ e : t \text{ ref} \\
&\quad \frac{}{A \vdash !e : t} \\
&D ≐ e : t \text{ ref} \\
&D ≐ e : t \\
&D ≐ e : t \text{ ref} \\
&D ≐ e : t \text{ ref} \\
&\frac{A \vdash e_1 : t_1 \text{ ref} \quad A \vdash e_2 : t_2 \quad t_2 \leq t_1}{A \vdash e_1 := e_2 : t_1}
\end{align*}
\]
Subtyping Refs

• The wrong rule for subtyping refs is

\[t_1 \leq t_2 \]

\[\frac{}{t_1 \text{ ref} \leq t_2 \text{ ref}} \]

• Counterexample

```
let x = ref 3 in   (* x : int ref *)
let y = x in      (* y : float ref *)
y := 3.14         (* oops! !x is now a float *)
```
Aliasing

• We have multiple names for the same memory location
 ▪ But they have different types
 ▪ This we can **write** into the same memory at different types
Solution #1: Java’s Approach

- Java uses this subtyping rule
 - If S is a subclass of T, then S[] is a subclass of T[]

- Counterexample:
 - Foo[] a = new Foo[5];
 - Object[] b = a;
 - b[0] = new Object(); // forbidden at runtime
 - a[0].foo(); // …so this can’t happen
Solution #2: Purely Static

• Reason from rules for functions
 - A reference is like an object with two methods:
 • get : unit \rightarrow t
 • set : t \rightarrow unit
 - Notice that t occurs both co- and contravariantly
 - Thus it is non-variant

• The right rule:

$$t_1 \leq t_2 \quad t_2 \leq t_1 \quad \text{or} \quad t_1 = t_2$$

$$t_1 \text{ ref } \leq t_2 \text{ ref} \quad \text{or} \quad t_1 \text{ ref } \leq t_2 \text{ ref}$$
Type Inference

• Let’s consider the simply typed lambda calculus with integers
 - \(e ::= n \mid x \mid \lambda x : t . e \mid e \ e \)

• *Type inference*: Given a bare term (with no type annotations), can we reconstruct a valid typing for it, or show that it has no valid typing?
Problem: Consider the rule for functions

\[x: t, A \vdash e : t' \]

\[A \vdash \lambda x: t. e : t \to t' \]

Without type annotations, where do we get \(t \)?

- We’ll use *type variables* to stand for as-yet-unknown types

 \[t ::= \alpha \mid \text{int} \mid t \to t \]

- We’ll generate *equality constraints* \(t = t \) among the types and type variables

 - And then we’ll solve the constraints to compute a typing
Type Inference Rules

- \(A \vdash n : \text{int} \)

- \(A \vdash x : A(x) \) if \(x \in \text{dom}(A) \)

- \(x : \alpha, A \vdash e : t' \) if \(\alpha \) is fresh

- \(A \vdash \lambda x.e : \alpha \rightarrow t' \)

- \(A \vdash e_1 \) if \(e_1 : t_1 \)

- \(A \vdash e_2 : t_2 \)

- \(t_1 = t_2 \rightarrow \beta \) if \(\beta \) is fresh

- \(A \vdash e_1 \ e_2 : \beta \)

- "Generated" constraint
Example

\[
\begin{align*}
\text{x:}\alpha, \ A \vdash \text{x:}\alpha \\
\hline
A \vdash (\lambda x.x) : \alpha \rightarrow \alpha & \quad A \vdash 3 : \text{int} & \quad \alpha \rightarrow \alpha = \text{int} \rightarrow \beta \\
A \vdash (\lambda x.x) \ 3 : \beta
\end{align*}
\]

- We collect all constraints appearing in the derivation into some set \(C \) to be solved
- Here, \(C \) contains just \(\alpha \rightarrow \alpha = \text{int} \rightarrow \beta \)
 - Solution: \(\alpha = \text{int} = \beta \)
- Thus this program is typable, and we can derive a typing by replacing \(\alpha \) and \(\beta \) by \(\text{int} \) in the proof tree
Solving Equality Constraints

• We can solve the equality constraints using the following rewrite rules, which reduce a larger set of constraints to a smaller set

 - $C \cup \{\text{int=int}\} \Rightarrow C$
 - $C \cup \{\alpha=t\} \Rightarrow C[t/\alpha]$
 - $C \cup \{t=\alpha\} \Rightarrow C[t/\alpha]$
 - $C \cup \{t1\rightarrow t2=t1'\rightarrow t2'\} \Rightarrow C \cup \{t1=t1'\} \cup \{t2=t2'\}$
 - $C \cup \{\text{int=t1\rightarrow t2}\} \Rightarrow \text{unsatisfiable}$
 - $C \cup \{t1\rightarrow t2=\text{int}\} \Rightarrow \text{unsatisfiable}$
Termination

• We can prove that the constraint solving algorithm terminates.

• For each rewriting rule, either
 ▪ We reduce the size of the constraint set
 ▪ We reduce the number of “arrow” constructors in the constraint set

• As a result, the constraint always gets “smaller” and eventually becomes empty
 ▪ A similar argument is made for strong normalization in the simply-typed lambda calculus
Occurs Check

- We don’t have recursive types, so we shouldn’t infer them

- So in the operation $C[t\alpha]$, require that $\alpha \notin FV(t)$
 - (Except if $t = a$, in which case there’s no recursion in the types, so unification should succeed)

- In practice, it may better to allow $\alpha \in FV(t)$ and do the occurs check at the end
 - But that can be awkward to implement
Unifying a Variable and a Type

• Computing $C[t\alpha]$ by substitution is inefficient

• Instead, use a union-find data structure to represent equal types
 - The terms are in a union-find forest
 - When a variable and a term are equated, we union them so they have the same ECR (equivalence class representative)
 - Want the ECR to be the concrete type with which variables have been unified, if one exists. Can read off solution by reading the ECR of each set.
Example

\[\alpha = \text{int} \rightarrow \beta \]
\[\gamma = \text{int} \rightarrow \text{int} \]
\[\alpha = \gamma \]
Unification

• The process of finding a solution to a set of equality constraints is called \textit{unification}

 ▪ Original algorithm due to Robinson
 - But his algorithm was inefficient

 ▪ Often written out in different form
 - See Algorithm W

 ▪ Constraints usually solved on-line
 - As type inference rules applied
Discussion

• The algorithm we’ve given finds the most general type of a term
 ▪ Any other valid type is “more specific,” e.g.,
 - \(\lambda x . x : \text{int} \to \text{int} \)
 ▪ Formally, any other valid type can be gotten from the most general type by applying a substitution to the type variables

• This is still a monomorphic type system
 ▪ \(\alpha \) stands for “some particular type, but it doesn’t matter exactly which type it is”
Benefits of Type Inference

- Handles higher-order functions
- Handles data structures smoothly
- Works in infinite domains
 - Set of types is unlimited
- No forward/backward distinction
 - (Compare to data flow analysis, next)
Drawbacks to Type Inference

- Flow-insensitive
 - Types are the same at all program points
 - May produce coarse results
 - Type inference failure can be hard to understand

- Polymorphism may not scale
 - Exponential in worst case
 - Seems fine in practice (witness ML)