CMSC 430
Introduction to Compilers
Fall 2014

Lexing and Parsing
Overview

• Compilers are roughly divided into two parts
 ▪ Front-end — deals with surface syntax of the language
 ▪ Back-end — analysis and code generation of the output of the front-end

• Lexing and Parsing translate source code into form more amenable for analysis and code generation

• Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.
Lexing vs. Parsing

- Language grammars usually split into two levels
 - Tokens — the “words” that make up “parts of speech”
 - Ex: Identifier \[a-zA-Z_]+\]
 - Ex: Number \[0-9]+\]
 - Programs, types, statements, expressions, declarations, definitions, etc — the “phrases” of the language
 - Ex: if (expr) expr;
 - Ex: def id(id, ..., id) expr end

- Tokens are identified by the lexer
 - Regular expressions

- Everything else is done by the parser
 - Uses grammar in which tokens are primitives
 - Implementations can look inside tokens where needed
Lexing vs. Parsing (cont’d)

- Lexing and parsing often produce abstract syntax tree as a result
 - For efficiency, some compilers go further, and directly generate intermediate representations

- Why separate lexing and parsing from the rest of the compiler?
- Why separate lexing and parsing from each other?
Parsing theory

• Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree

• There’s an alphabet soup of parsers
 - Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
 - Can parse any context-free grammar (but inefficient)
 - LL(k)
 - top-down, parses input left-to right (first L), produces a leftmost derivation (second L), k characters of lookahead
 - LR(k)
 - bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead

• We will study only some of this theory
 - But we’ll start more concretely
Parsing practice

• Yacc and lex — most common ways to write parsers
 ▪ yacc = “yet another compiler compiler” (but it makes parsers)
 ▪ lex = lexical analyzer (makes lexers/tokenizers)

• These are available for most languages
 ▪ bison/flex — GNU versions for C/C++
 ▪ ocamlyacc/ocamllex — what we’ll use in this class
Example: Arithmetic expressions

- High-level grammar:
 - \(E \rightarrow E + E \mid n \mid (E) \)

- What should the tokens be?
 - Typically they are the non-terminals in the grammar
 - \{+, (,), n\}
 - Notice that \(n \) itself represents a set of values
 - Lexers use *regular expressions* to define tokens

- But what will a typical input actually look like?

 | 1 | + | 2 | + | \n | (| 3 | + | 4 | 2 |) | eof |

 - We probably want to allow for whitespace
 - Notice not included in high-level grammar: lexer can discard it
 - Also need to know when we reach the end of the file
 - The parser needs to know when to stop
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 }
    | ...
    | regexp_n { action_n }
and ...
{ trailer }
```

- Compiled to .ml output file
 - `header` and `trailer` are inlined into output file as-is
 - `regexps` are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
 - Finds longest possible match in the case of multiple matches
 - Generated regexp matching function is called `entrypoint`
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
   regexp_1 { action_1 }
| ...
| regexp_n { action_n }
and ...
{ trailer }
```

- When match occurs, generated `entrypoint` function returns value in corresponding action
 - If we are lexing for `ocamlyacc`, then we’ll return tokens that are defined in the `ocamlyacc` input grammar
Example

```ml
{  
    open Ex1_parser 
    exception Eof 
}

rule token = parse 
| [' ' 't' 'r'] { token lexbuf } (* skip blanks *) 
| ['\n'] { EOL } 
| ['0'-'9']+ as lxm { INT(int_of_string lxm) } 
| '+' { PLUS } 
| '(' { LPAREN } 
| ')' { RPAREN } 
| eof { raise Eof } 

(* token definition from Ex1_parser *)

type token =  
| INT of (int)  
| EOL  
| PLUS  
| LPAREN  
| RPAREN
```
Generated code

You don’t need to understand the generated code
 - But you should understand it’s not magic

Uses **Lexing** module from OCaml standard lib

Notice that **token** rule was compiled to **token** fn
 - Mysterious **lexbuf** from before is the argument to **token**
 - Type can be examined in **Lexing** module ocamldoc
Lexer limitations

- Automata limited to 32767 states
 - Can be a problem for languages with lots of keywords

```plaintext
rule token = parse
  "keyword_1"   { ... } 
| "keyword_2"   { ... } 
| ... 
| "keyword_n"   { ... } 
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id 
  { IDENT id}
```

- Solution?
Now we can build a parser that works with lexemes (tokens) from `token.mll`

- Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
- Now the input stream will be tokens, rather than chars

```
  1  +  2  +  \n  (  3  +  4  )  2  )  eof

  INT(1)  PLUS  INT(2)  PLUS  LPAREN  INT(3)  PLUS  INT(42)  RPAREN  eof
```

- Notice parser doesn’t need to worry about whitespace, deciding what’s an `INT`, etc
Suitability of Grammar

• Problem: our grammar is ambiguous
 ▪ $E \rightarrow E + E \mid n \mid (E)$
 ▪ Exercise: find an input that shows ambiguity

• There are parsing technologies that can work with ambiguous grammars
 ▪ But they’ll provide multiple parses for ambiguous strings, which is probably not what we want

• Solution: remove ambiguity
 ▪ One way to do this from 330:
 ▪ $E \rightarrow T \mid E + T$
 ▪ $T \rightarrow n \mid (E)$
Parsing with ocamlyacc (.mly)

%{
 header
}%
declarations
%%
rules
%%
trailer

.mly input

type token =
 | INT of (int)
 | EOL
 | PLUS
 | LPAREN
 | RPAREN

val main :
 (Lexing.lexbuf -> token) ->
 Lexing.lexbuf -> int

.mli output

- Compiled to .ml and .mli files
 - .mli file defines token type and entry point main for parsing
 - Notice first arg to main is a fn from a lexbuf to a token, i.e., the function generated from a .mll file!
Parsing with ocamlyacc (.mly)

- .ml file uses **Parsing** library to do most of the work
 - **header** and **trailer** copied direct to output
 - **declarations** lists tokens and some other stuff
 - **rules** are the productions of the grammar
 - Compiled to **yytables**; this is a table-driven parser Also include **actions** that are executed as parser executes
 - We’ll see an example next
Actions

- In practice, we don’t just want to check whether an input parses; we also want to do something with the result
 - E.g., we might build an AST to be used later in the compiler
- Thus, each production in ocamlyacc is associated with an *action* that produces a result we want
- Each rule has the format
 - `lhs: rhs {act}`
 - When parser uses a production `lhs → rhs` in finding the parse tree, it runs the code in `act`
 - The code in `act` can refer to results computed by actions of other non-terminals in `rhs`, or token values from terminals in `rhs`
Example

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main                   /* the entry point */
%type <int> main
%
main:
|  expr EOL              { $1 }        (* 1 *)

expr:
|  term                  { $1 }        (* 2 *)
|  expr PLUS term        { $1 + $3 }   (* 3 *)

term:
|  INT                   { $1 }        (* 4 *)
|  LPAREN expr RPAREN    { $2 }        (* 5 *)
```

• Several kinds of declarations:
 - `%token` — define a token or tokens used by lexer
 - `%start` — define start symbol of the grammar
 - `%type` — specify type of value returned by actions
Actions, in action

<table>
<thead>
<tr>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>term[1].+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[1].+2+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[3]+(3+42)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[3]+(expr[45].)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expr[48].$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main[48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

main:
| expr EOL | { $1 } |

expr:
| term | { $1 } |
| expr PLUS term | { $1 + $3 } |

term:
| INT | { $1 } |
| LPAREN expr RPAREN | { $2 } |

- The “.” indicates where we are in the parse
- We’ve skipped several intermediate steps here, to focus only on actions
- (Details next)
Actions, in action

main:
| expr EOL { $1 }
expr:
| term { $1 }
| expr PLUS term { $1 + $3 }
term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }
Invoking lexer/parser

```ocaml
try
  let lexbuf = Lexing.from_channel stdin in
  while true do
    let result = Ex1_parser.main Ex1_lexer.token lexbuf in
    print_int result; print_newline(); flush stdout
  done
with Ex1_lexer.Eof ->
  exit 0
```

- Tip: can also use `Lexing.from_string` and `Lexing.from_function`
Terminology review

• Derivation
 - A sequence of steps using the productions to go from the start symbol to a string

• Rightmost (leftmost) derivation
 - A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step

• Sentential form
 - A sequence of terminals and non-terminals derived from the start-symbol of the grammar with 0 or more reductions
 - I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar

• Right- (left-)sentential form
 - A sentential form from a rightmost (leftmost) derivation

• FIRST(α)
 - Set of initial symbols of strings derived from α
Bottom-up parsing

• ocamlyacc builds a bottom-up parser
 ▪ Builds derivation from input back to start symbol
 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

• To reduce \(\gamma_i \) to \(\gamma_{i-1} \)
 ▪ Find production \(A \rightarrow \beta \) where \(\beta \) is in \(\gamma_i \), and replace \(\beta \) with \(A \)

• In terms of parse tree, working from leaves to root
 ▪ Nodes with no parent in a partial tree form its *upper fringe*
 ▪ Since each replacement of \(\beta \) with \(A \) shrinks upper fringe, we call it a reduction.

• Note: need not actually build parse tree
 ▪ \(|\text{parse tree nodes}| = |\text{input}| + |\text{reductions}|\)
Bottom-up parsing, illustrated

LR(1) parsing
- Scan input left-to-right
- Rightmost derivation
- 1 token lookahead

\[S \Rightarrow^{*} \alpha \ B \ y \Rightarrow \alpha \ \gamma \ y \Rightarrow^{*} x \ y \]

Rule: \(B \rightarrow \gamma \)

Upper fringe: solid
Yet to be parsed: dashed
Bottom-up parsing, illustrated

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

\[
S \Rightarrow^* \alpha B y \Rightarrow \alpha \gamma y \Rightarrow^* x y
\]

rule \ B \rightarrow \gamma

Upper fringe: solid
Yet to be parsed: dashed
Finding reductions

- Consider the following grammar
 1. \(S \rightarrow aABe \)
 2. \(A \rightarrow Abc \)
 3. \(b \)
 4. \(B \rightarrow d \)

 Input: abbcde

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Production</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>aAbcde</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>aAde</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>aABe</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- How do we find the next reduction?
 - How do we do this efficiently?
Handles

- Goal: Find substring β of tree’s frontier that matches some production $A \rightarrow \beta$
 - (And that occurs in the rightmost derivation)
 - Informally, we call this substring β a handle

- Formally,
 - A *handle* of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
 - $A \rightarrow \beta$ is a production and k is the position in γ of β’s rightmost symbol.
 - If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right
 sentential form from which γ is derived in the rightmost derivation.
 - Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
 - \Rightarrow the parser doesn’t need to scan past the handle (only lookahead)
Example

• Grammar

1. S → E
2. E → E + T
3. | E - T
4. | T
5. T → T * F
6. | T / F
7. | F
8. F → n
9. | id
10. | (E)

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle (prod,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>E-T</td>
<td>3,3</td>
</tr>
<tr>
<td>5</td>
<td>E-T*F</td>
<td>5,5</td>
</tr>
<tr>
<td>9</td>
<td>E-T*id</td>
<td>9,5</td>
</tr>
<tr>
<td>7</td>
<td>E-F*id</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>E-n*id</td>
<td>8,3</td>
</tr>
<tr>
<td>4</td>
<td>T-n*id</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>F-n*id</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>id-n*id</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Handles for rightmost derivation of id-n*id
Finding reductions

• Theorem: If G is unambiguous, then every right-sentential form has a unique handle
 ▪ If we can find those handles, we can build a derivation!

• Sketch of Proof:
 ▪ G is unambiguous \Rightarrow rightmost derivation is unique
 ▪ \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
 ▪ and a unique position k at which $A \rightarrow \beta$ is applied
 ▪ \Rightarrow a unique handle $(A \rightarrow \beta, k)$

• This all follows from the definitions
Bottom-up handle pruning

- **Handle pruning**: discovering handle and reducing it
 - Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation

 \[
 S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input}
 \]

- Apply the following simple algorithm

 for i ← n to 1 by −1

 Find handle \((A_i \rightarrow \beta_i , k_i)\) in \(\gamma_i\)

 Replace \(\beta_i\) with \(A_i\) to generate \(\gamma_{i-1}\)

 - This takes \(2n\) steps
Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
 - Rightmost terminal/non-terminal on top of stack
 - Since we’re building rightmost derivation, will look at top elements of stack for reductions

```python
push INVALID
token ← next_token( )
repeat until (top of stack = Goal and token = EOF)
    if the top of the stack is a handle A→β
        then  // reduce β to A
            pop |β| symbols off the stack
            push A onto the stack
    else if (token ≠ EOF)
        then  // shift
            push token
            token ← next_token( )
    else    // need to shift, but out of input
            report an error
```

Potential errors
- Can’t find handle
- Reach end of file
Example

- Grammar

1. \(S \rightarrow E \)
2. \(E \rightarrow E + T \)
3. \(| E - T \)
4. \(| T \)
5. \(T \rightarrow T * F \)
6. \(| T / F \)
7. \(| F \)
8. \(F \rightarrow n \)
9. \(| id \)
10. \(| (E) \)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Handle (prod,k)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>id-n*id</td>
<td>none</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>id</td>
<td>-n*id</td>
<td>9,1</td>
<td>reduce 9</td>
</tr>
<tr>
<td>F</td>
<td>-n*id</td>
<td>7,1</td>
<td>reduce 7</td>
</tr>
<tr>
<td>T</td>
<td>-n*id</td>
<td>4,1</td>
<td>reduce 4</td>
</tr>
<tr>
<td>E</td>
<td>-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-n</td>
<td>*id</td>
<td>8,3</td>
<td>reduce 8</td>
</tr>
<tr>
<td>E-F</td>
<td>*id</td>
<td>7,3</td>
<td>reduce 7</td>
</tr>
<tr>
<td>E-T</td>
<td>*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*</td>
<td>id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*id</td>
<td></td>
<td>9,5</td>
<td>reduce 9</td>
</tr>
<tr>
<td>E-T*F</td>
<td></td>
<td>5,5</td>
<td>reduce 5</td>
</tr>
<tr>
<td>E-T</td>
<td></td>
<td>3,3</td>
<td>reduce 3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,1</td>
<td>reduce 1</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>none</td>
<td>accept</td>
</tr>
</tbody>
</table>

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce
Parse tree for example
Algorithm actions

• Shift-reduce parsers have just four actions
 ▪ **Shift** — next word is shifted onto the stack
 ▪ **Reduce** — right end of handle is at top of stack
 - Locate left end of handle within the stack
 - Pop handle off stack and push appropriate lhs
 ▪ **Accept** — stop parsing and report success
 ▪ **Error** — call an error reporting/recovery routine

• Cost of operations
 ▪ **Accept** is constant time
 ▪ **Shift** is just a push and a call to the scanner
 ▪ **Reduce** takes $|\text{rhs}|$ pops and 1 push
 - If handle-finding requires state, put it in the stack $\Rightarrow 2x$ work
 ▪ **Error** depends on error recovery mechanism
Finding handles

• To be a handle, a substring of sentential form γ must:
 - Match the right hand side β of some rule $A \rightarrow \beta$
 - There must be some rightmost derivation from the start symbol that produces γ with $A \rightarrow \beta$ as the last production applied
 - \Rightarrow Looking for rhs’s that match strings is not good enough

• How can we know when we have found a handle?
 - LR(1) parsers use DFA that runs over stack and finds them
 - One token look-ahead determines next action (shift or reduce) in each state of the DFA.
 - A grammar is LR(1) if we can build an LR(1) parser for it
• LR(0) parsers: no look-ahead
LR(1) parsing

• Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
 - Standard library Parser module interprets the tables
- LR parsing invented in 1965 by Donald Knuth
- LALR parsing invented in 1969 by Frank DeRemer
LR(1) parsing algorithm

- Two tables
 - ACTION: reduce/shift/accept
 - GOTO: state to be in after reduce
- Cost
 - |input| shifts
 - |derivation| reductions
 - One accept
- Detects errors by failure to shift, reduce, or accept

```java
stack.push(INVALID); stack.push(s_0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == “reduce A→β” ) {
        stack.popnum(2*|β|); // pop 2*|β| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    } else if ( ACTION[s,token] == “shift s_i” ) {
        stack.push(token); stack.push(s_i);
        token ← scanner.next_token();
    } else if ( ACTION[s,token] == “accept” && token == EOF )
        not_found = false;
    else report a syntax error and recover;
} report success;
```
Example parser table

- `ocamlyacc -v ex1_parser.mly` — produce `.output` file with parser table

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>goto</th>
<th>productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>1</td>
<td>s3 s4</td>
<td>acc</td>
<td>entry → . main</td>
</tr>
<tr>
<td>2</td>
<td>r4</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>3</td>
<td>s3 s4</td>
<td>8 7</td>
<td>term → INT .</td>
</tr>
<tr>
<td>4</td>
<td>s3 s4</td>
<td>8 7</td>
<td>term → (. expr)</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>6</td>
<td>s9 s10</td>
<td></td>
<td>main → expr . EOL</td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td></td>
<td>expr → term .</td>
</tr>
<tr>
<td>8</td>
<td>s10 s11</td>
<td></td>
<td>expr → expr . + term</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td></td>
<td>main → expr EOL .</td>
</tr>
<tr>
<td>10</td>
<td>s3 s4</td>
<td>12</td>
<td>expr → expr + . term</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td></td>
<td>term → (expr).</td>
</tr>
<tr>
<td>12</td>
<td>r3</td>
<td></td>
<td>expr → expr + term .</td>
</tr>
</tbody>
</table>

NB: Numbers in shift refer to state numbers
Numbers in reduction refer to production numbers
Example parse (N+N+N)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,N,3</td>
<td>+N+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,term,7</td>
<td>+N+N</td>
<td>r2</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td>+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td>+N</td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td></td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td></td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td></td>
<td>s9</td>
</tr>
<tr>
<td>1,expr,6,EOL,9</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example parser table (cont’d)

• Notes
 - Notice derivation is built up (bottom to top)
 - Table only contains kernel of each state
 - Apply closure operation to see all the productions in the state

• LR(1) parsing requires start symbol not on any rhs
 - Thus, ocamlyacc actually adds another production
 - %entry% → \001 main
 - (so the acc in the previous table is a slight fib)

• Values returned from actions stored on the stack
 - Reduce triggers computation of action result
Why does this work?

• Stack = upper fringe
 ▪ So all possible handles on top of stack
 ▪ Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
 ▪ Language of handles is regular
 ▪ ACTION and GOTO tables encode the DFA
 - Shift = DFA transition
 - Reduce = DFA accept
 - New state = GOTO[state at top of stack (after pop), lhs]

• If we can build these tables, grammar is LR(1)
LR(k) items

• An *LR(k) item* is a pair $[P, \delta]$, where
 - P is a production $A \rightarrow \beta$ with a \cdot at some position in the rhs
 - δ is a lookahead string of length $\leq k$ (words or $\$)
 - The \cdot in an item indicates the position of the top of the stack

• LR(1):
 - $[A \rightarrow \cdot\beta\gamma, a]$ — input so far consistent with using $A \rightarrow \beta\gamma$ immediately after symbol on top of stack
 - $[A \rightarrow \beta\cdot\gamma, a]$ — input so far consistent with using $A \rightarrow \beta\gamma$ at this point in the parse, and parser has already recognized β
 - $[A \rightarrow \beta\gamma\cdot, a]$ — parser has seen $\beta\gamma$, and lookahead of a consistent with reducing to A

• LR(1) items represent valid configurations of an LR(1) parser; DFA states are sets of LR(1) items
LR(k) items, cont’d

• Ex: $A \rightarrow BCD$ with lookahead a can yield 4 items
 - $[A \rightarrow \cdot BCD, a], [A \rightarrow B \cdot CD, a], [A \rightarrow BC \cdot D, a], [A \rightarrow BCD \cdot, a]$
 - Notice: set of LR(1) items for a grammar is finite

• Carry lookaheads along to choose correct reduction
 - Lookahead has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
 - In $[A \rightarrow \beta \cdot, a]$, a lookahead of $a \Rightarrow$ reduction by $A \rightarrow \beta$
 - For $\{ [A \rightarrow \beta \cdot, a], [B \rightarrow \gamma \cdot \delta, b] \}$
 - Lookahead of $a \Rightarrow$ reduce to A
 - $\text{FIRST}(\delta) \Rightarrow$ shift
 - (else error)
LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
 - Initial state \(s_0\)
 - Assume \(S'\) is the start symbol of grammar, does not appear in rhs
 - (Extend grammar if necessary to ensure this)
 - \(s_0 = \text{closure}([S' \rightarrow \bullet S,\$])\) \((\$ = \text{EOF})\)
 - For each \(s_k\) and each terminal/non-terminal \(X\), compute new state \(\text{goto}(s_k,X)\)
 - Use \(\text{closure()}\) to “fill out” kernel of new state
 - If the new state is not already in the collection, add it
 - Record all the transitions created by \(\text{goto()}\)
 - These become ACTION and GOTO tables
 - i.e., the handle-finding DFA
 - This process eventually reaches a fixpoint
Closure()

- \([A \rightarrow \beta \cdot B \delta, a]\) implies \([B \rightarrow \cdot \gamma, x]\) for each production with \(B\) on lhs and each \(x \in \text{FIRST}(\delta a)\)
 - (If you’re about to see a \(B\), you may also see a \(\gamma\))

```
Closure( s )
while ( s is still changing )
  \forall \text{ items } [A \rightarrow \beta \cdot B \delta, a] \in s \quad \quad \quad \quad \quad // \text{ item with } \cdot \text{ to left of nonterminal } B
  \forall \text{ productions } B \rightarrow \gamma \in P \quad \quad \quad \quad // \text{ all productions for } B
  \forall b \in \text{FIRST}(\delta a) \quad \quad \quad \quad // \text{ tokens appearing after } B
  \quad \text{ if } [B \rightarrow \cdot \gamma, b] \notin s \quad \quad \quad \quad // \text{ form LR(1) item w/ new lookahead}
  \quad \quad \text{ then add } [B \rightarrow \cdot \gamma, b] \text{ to } s \quad \quad \quad \quad // \text{ add item to } s \text{ if new}
```

- Classic fixed-point method
- Halts because \(s \subset \text{ITEMS}\) (worklist version is faster)
 - Closure “fills out” a state
Example — closure with LR(0)

S → E
E → T+E
| T
T → id

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[E → T+ • E]
[E → • T+E]
[E → • T]
[T → • id]
Example — closure with LR(1)

\[
S \rightarrow E \\
E \rightarrow T+E \\
| T \\
T \rightarrow \text{id}
\]

\[
[S \rightarrow \cdot E, $] \\
[E \rightarrow \cdot T+E, $] \\
[E \rightarrow \cdot T, $] \\
[T \rightarrow \cdot \text{id}, +] \\
[T \rightarrow \cdot \text{id}, $]
\]

[kernel item]
[derived item]
• **Goto**\((s,x) \) computes the state that the parser would reach if it recognized an \(x \) while in state \(s \)
 - Goto(\(\{ [A \rightarrow \beta \cdot X \delta, a] \} \), \(X \)) produces \([A \rightarrow \beta X \cdot \delta, a]\)
 - Should also includes \(\text{closure}([A \rightarrow \beta X \cdot \delta, a]) \)

\[
\text{Goto}(s, X) \\
\text{new} \leftarrow \emptyset \\
\forall \text{ items } [A \rightarrow \beta \cdot X \delta, a] \in s \quad \text{// for each item with } \cdot \text{ to left of } X \\
\text{new} \leftarrow \text{new } \cup [A \rightarrow \beta X \cdot \delta, a] \quad \text{// add item with } \cdot \text{ to right of } X \\
\text{return closure(new)} \quad \text{// remember to compute closure!}
\]

• Not a fixed-point method!
• Straightforward computation
• Uses \(\text{closure}() \)
 • Goto() moves forward
Example — goto with LR(0)

S → E
E → T+E
| T
T → id

[S → E •]
[E → T • +E]
[E → T •]
[T → id •]

[kernel item]
[derived item]
Example — goto with LR(1)

S → E
E → T+E
 | T
T → id

[S → E •, $]
[E → T • +E, $]
[E → T •, $]
[T → id •, +]
[T → id •, $]

[kernel item]
[derived item]
Building parser states

\[
\begin{align*}
cc_0 & \leftarrow \text{closure} \left([S' \rightarrow \bullet S, \$$] \right) \\
CC & \leftarrow \{ cc_0 \}
\end{align*}
\]

while (new sets are still being added to \(CC\))
 for each unmarked set \(cc_j \in CC\)
 mark \(cc_j\) as processed
 for each \(x\) following a \(\bullet\) in an item in \(cc_j\)
 \[
 \begin{align*}
temp & \leftarrow \text{goto}(cc_j, x) \\
 \text{if } temp & \notin CC \\
 \text{then } CC & \leftarrow CC \cup \{ temp \}
 \end{align*}
 \]
 record transitions from \(cc_j\) to \(temp\) on \(x\)

- \(CC\) = canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to \(CC\)
 - \(CC \subseteq 2^{ITEMS}\), so \(CC\) is finite
Example LR(0) states

S → E
E → T+E
 | T
T → id

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[E → T • +E]
[E → T •]

[T → • id]

[E → T + E •]

[E → T + • E]
[E → • T+E]
[E → • T]
[T → • id]

E

T

id

id

E
Example LR(1) states

S → E
E → T+E
| T
T → id

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + • E, $]
[E → T •, $]

[T → id •, +]

[E → T + E •, $]
Building ACTION and GOTO tables

∀ set $s_x \in S$
∀ item $i \in s_x$
 if i is $[A \rightarrow \beta \cdot a \gamma, b]$ and $\text{goto}(s_x, a) = s_k$, $a \in \text{terminals}$ // • to left of terminal a
 then $\text{Action}[x, a] \leftarrow \text{"shift k"}$ // ⇒ shift if lookahead = a
 else if i is $[S' \rightarrow S \cdot, \$]$ // start production done,
 then $\text{Action}[x, \$] \leftarrow \text{"accept"}$ // ⇒ accept if lookahead = $\$$
 else if i is $[A \rightarrow \beta \cdot, a]$ // • all the way to right
 then $\text{Action}[x, a] \leftarrow \text{"reduce A→β"}$ // → production done
∀ $n \in \text{nonterminals}$ // reduce if lookahead = a
 if $\text{goto}(s_x, n) = s_k$
 then $\text{Goto}[x, n] \leftarrow k$ // store transitions for nonterminals

• Many items generate no table entry
 • e.g., $[A \rightarrow \beta \cdot B\alpha, a]$ does not, but closure ensures that all the rhs’s for B are in s_x
Ex ACTION and GOTO tables

1. $S \to E$
2. $E \to T+E$
3. $| T$
4. $T \to id$

ACTION GOTO Table

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>r2</td>
</tr>
</tbody>
</table>

Diagram

- $S \to E$ (S0)
- $E \to T+E$ (S2)
- $T \to id$ (S3)
- $E \to T+id$ (S4)
- $E \to T+E$ (S5)
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| T \)
4. \(T \rightarrow id \)

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
<td>2</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td>r2</td>
<td>2</td>
</tr>
</tbody>
</table>

Entries for shift

\[
\begin{align*}
&[S \rightarrow \cdot E, $] \\
&E \rightarrow \cdot T+E, $] \\
&E \rightarrow \cdot T, $] \\
&T \rightarrow \cdot id, +] \\
&T \rightarrow \cdot id, $] \\
&S0 \rightarrow E \cdot, $] \\
&S1 \rightarrow T \cdot, $] \\
&S2 \rightarrow T \cdot +E, $] \\
&S3 \rightarrow T \cdot, $] \\
&S4 \rightarrow T + \cdot E, $] \\
&S5 \rightarrow T + E \cdot, $]
\end{align*}
\]
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| \ T \)
4. \(T \rightarrow id \)

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>r2</td>
</tr>
</tbody>
</table>

Entry for accept
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $| T$
4. $T \rightarrow \text{id}$

Entries for reduce

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

The diagram illustrates the transitions and actions for the grammar rules given above.
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(T \rightarrow \) id
4. \(T \rightarrow \) id

Entries for GOTO

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>
What can go wrong?

• What if set s contains $[A \rightarrow \beta \cdot a \gamma, b]$ and $[B \rightarrow \beta \cdot, a]$?
 ▪ First item generates “shift”, second generates “reduce”
 ▪ Both define $\text{ACTION}[s,a]$ — cannot do both actions
 ▪ This is a shift/reduce conflict

• What if set s contains $[A \rightarrow \gamma \cdot, a]$ and $[B \rightarrow \gamma \cdot, a]$?
 ▪ Each generates “reduce”, but with a different production
 ▪ Both define $\text{ACTION}[s,a]$ — cannot do both reductions
 ▪ This is called a reduce/reduce conflict

• In either case, the grammar is not LR(1)
Shift/reduce conflict

• Associativity unspecified
 ▪ Ambiguous grammars always have conflicts
 ▪ But, some non-ambiguous grammars also have conflicts
Solving conflicts

- Refactor grammar
- Specify operator precedence and associativity

```ocaml
%left PLUS MINUS    /* lowest precedence */
%left TIMES DIV     /* medium precedence */
%nonassoc UMINUS    /* highest precedence */
```

- Lots of details here
 - See “12.4.2 Declarations” at

- When comparing operator on stack with lookahead
 - Shift if lookahead has higher prec OR same prec, right assoc
 - Reduce if lookahead has lower prec OR same prec, left assoc

- Can use smaller, simpler (ambiguous) grammars
 - Like the one we just saw
Left vs. right recursion

- Right recursion
 - Required for termination in top-down parsers
 - Produces right-associative operators

- Left recursion
 - Works fine in bottom-up parsers
 - Limits required stack space
 - Produces left-associative operators

- Rule of thumb
 - Left recursion for bottom-up parsers
 - Right recursion for top-down parsers
Reduce/reduce conflict (1)

- Often these conflicts suggest a serious problem
 - Here, there’s a deep ambiguity
Reduce/reduce conflict (2)

- Grammar not ambiguous, but not enough lookahead to distinguish last two `expr` productions
Shrinking the tables

• Combine terminals
 - E.g., number and identifier, or + and -, or * and /
 - Directly removes a column, may remove a row

• Combine rows or columns (*table compression*)
 - Implement identical rows once and remap states
 - Requires extra indirection on each lookup
 - Use separate mapping for ACTION and for GOTO

• Use another construction algorithm
 - LALR(1) used by ocamlyacc
LALR(1) parser

- Define the core of a set of LR(1) items as
 - Set of LR(0) items derived by ignoring lookahead symbols

 \[
 \begin{aligned}
 [E &\rightarrow a \cdot, b] \\
 [A &\rightarrow a \cdot, c]
 \end{aligned}
 \]

 LR(1) state

 \[
 \begin{aligned}
 [E &\rightarrow a \cdot] \\
 [A &\rightarrow a \cdot]
 \end{aligned}
 \]

 Core

- LALR(1) parser merges two states if they have the same core

- Result
 - Potentially much smaller set of states
 - May introduce reduce/reduce conflicts
 - Will not introduce shift/reduce conflicts
LALR(1) example

- Introduces reduce/reduce conflict
 - Can reduce either $E \rightarrow a$ or $A \rightarrow ba$ for lookahead = b
LALR(1) vs. LR(1)

• Example grammar

\[
\begin{align*}
S' & \rightarrow S \\
S & \rightarrow aAd \mid bBd \mid aBe \mid bAe \\
A & \rightarrow c \\
B & \rightarrow c
\end{align*}
\]

• LR(0) ?

• LR(1) ?

• LALR(1) ?
LR(k) Parsers

• Properties
 ▪ Strictly more powerful than LL(k) parsers
 ▪ Most general non-backtracking shift-reduce parser
 ▪ Detects error as soon as possible in left-to-right scan of input
 - Contents of stack are viable prefixes
 - Possible for remaining input to lead to successful parse
Error handling (lexing)

• What happens when input not handled by any lexing rule?
 ■ An exception gets raised
 ■ Better to provide more information, e.g.,

```ocaml
rule token = parse
...
| _ as lxm { Printf.printf "Illegal character %c" lxm;
           failwith "Bad input" }
```

• Even better, keep track of line numbers
 ■ Store in a global-ish variable (oh no!)
 ■ Increment as a side effect whenever \n recognized
Error handling (parsing)

- What happens when parsing a string not in the grammar?
 - Reject the input
 - Do we keep going, parsing more characters?
 - May cause a cascade of error messages
 - Could be more useful to programmer, if they don’t need to stop at the first error message (what do you do, in practice?)

- Ocamlyacc includes a basic error recovery mechanism
 - Special token `error` may appear in rhs of production
 - Matches erroneous input, allowing recovery
Error example (1)

• If unexpected input appears while trying to match \texttt{expr}, match token to \texttt{error}

 ▪ Effectively treats token as if it is produced from \texttt{expr}

 ▪ Triggers error action

```plaintext
... 
expr:
 | term                  { $1 }
 | expr PLUS term        { $1 + $3 }
 | error                 { Printf.printf "invalid expression"; 0 }

term: ...
```
Error example (2)

...

term:
| INT { $1 }
| LPAREN expr RPAREN { $2 }
| LPAREN error RPAREN { printf "Syntax error!\n"; 0}

- If unexpected input appears while trying to match term, match tokens to error
 - Pop every state off the stack until LPAREN on top
 - Scan tokens up to RPAREN, and discard those, also
 - Then match error production
Error recovery in practice

• A very hard thing to get right!
 ▪ Necessarily involves guessing at what malformed inputs you may see

• How useful is recovery?
 ▪ Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
 ▪ On the other hand, that does involve some delay

• Perhaps the most important feature is good error messages
 ▪ Error recovery features useful for this, as well
 ▪ Some compilers are better at this than others
OCamlyacc tip

• Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs
• (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)
Real programming languages

• Essentially all real programming languages don’t quite work with parser generators
 ▪ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing actions to resolve conflicts

• In-class exercise: C typedefs and identifier declarations/definitions
Additional Parsing Technologies

• For a long time, parsing was a “dead” field
 ▪ Considered solved a long time ago

• Recently, people have come back to it
 ▪ LALR parsing can have unnecessary parsing conflicts
 ▪ LALR parsing tradeoffs more important when computers were slower and memory was smaller

• Many recent new (or new-old) parsing techniques
 ▪ GLR — generalized LR parsing, for ambiguous grammars
 ▪ LL(*) — ANTLR
 ▪ Packrat parsing — for parsing expression grammars
 ▪ etc...

• The input syntax to many of these looks like yacc/lex
Designing language syntax

- Idea 1: Make it look like other, popular languages
 - Java did this (OO with C syntax)

- Idea 2: Make it look like the domain
 - There may be well-established notation in the domain (e.g., mathematics)
 - Domain experts already know that notation

- Idea 3: Measure design choices
 - E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
 - This is very hard to do!

- Idea 4: Make your users adapt
 - People are really good at learning...