CMSC 430
Introduction to Compilers
Fall 2014

Type Systems
What is a Type System?

- A type system is some mechanism for distinguishing good programs from bad
 - Good programs = well typed
 - Bad programs = ill-typed or not typable

- Examples:
 - 0 + 1 // well typed
 - false 0 // ill-typed: can’t apply a boolean
 - 1 + (if true then 0 else false) // ill-typed: can’t add boolean to integer

- Notice that the type system may be conservative — it may report programs as erroneous if they could run without type errors
A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”

– Benjamin Pierce, *Types and Programming Languages*
The Plan

• Start with lambda calculus (yay!)
• Add types to it
 ▪ Simply-typed lambda calculus
• Prove type soundness
 ▪ So we know what our types mean
 ▪ We’ll learn about structural induction here
• Discuss issues of types in real languages
 ▪ E.g., null, array bounds checks, etc
• Explain type inference
• Add subtyping (for OO) to all of the above
Lambda calculus

• We’ll use lambda calculus are a “core language” to explain type systems
 ▪ Has essential features (functions)
 ▪ No overlapping constructs
 ▪ And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

• We will add features to lambda calculus as we go on
Simply-Typed Lambda Calculus

- $e ::= n \mid x \mid \lambda x:t.e \mid e\ e$
 - Functions include the type of their argument
 - We’ve added integers, so we can have (obvious) type errs
 - We don’t really need this, but it will come in handy

- $t ::= \text{int} \mid t \rightarrow t$
 - $t_1 \rightarrow t_2$ is the type of a function that, given an argument of type t_1, returns a result of type t_2
 - t_1 is the domain, and t_2 is the range
Type Judgments

- Our type system will prove judgments of the form
 - $A ⊢ e : t$
 - “In type environment A, expression e has type t”
Type Environments

• A type environment is a map from variables to types (a kind of symbol table)
 ▪ · is the empty type environment
 - A closed term e is well-typed if · ⊢ e : t for some t
 - We’ll abbreviate this as ⊢ e : t
 ▪ x:t, A is just like A, except x now has type t
 - The type of x in x:t, A is t
 - The type of z≠x in x:t, A in the type of z in A

• When we see a variable in a program, we look in the type environment to find its type
Type Rules

\[A \vdash n : \text{int} \]

\[x \in \text{dom}(A) \quad \Rightarrow \quad A \vdash x : A(x) \]

\[x : t, A \vdash e : t' \quad \Rightarrow \quad A \vdash \lambda x : t. e : t \to t' \]

\[A \vdash e_1 : t \to t' \quad A \vdash e_2 : t \quad \Rightarrow \quad A \vdash e_1 e_2 : t' \]
Example

\[A = - : \text{int} \rightarrow \text{int} \]

\[
\frac{- \in \text{dom}(A)}{A \vdash - : \text{int} \rightarrow \text{int} \quad A \vdash 3 : \text{int}}
\]

\[A \vdash - 3 : \text{int} \]
Another Example

\[
\begin{align*}
A &= + : \text{int} \rightarrow \text{int} \\
B &= x : \text{int}, A \\
\text{\textcolor{red}{+\in\text{dom}(B)}} & \quad \text{\textcolor{red}{x\in\text{dom}(B)}} \\
B &\vdash + : \text{int} \rightarrow \text{int} \\
B &\vdash x : \text{int} \\
B &\vdash + x : \text{int} \rightarrow \text{int} \\
B &\vdash 3 : \text{int} \\
B &\vdash + x 3 : \text{int} \\
A &\vdash (\lambda x: \text{int} . + x 3) : \text{int} \rightarrow \text{int} \\
A &\vdash 4 : \text{int} \\
A &\vdash (\lambda x: \text{int} . + x 3) 4 : \text{int}
\end{align*}
\]

We’d usually use infix \(x + 3\)
An Algorithm for Type Checking

- Our type rules are deterministic
 - For each syntactic form, only one possible rule

- They define a natural type checking algorithm
 - $\text{TypeCheck : type env} \times \text{expression} \rightarrow \text{type}$

 $\text{TypeCheck}(A, n) = \text{int}$
 $\text{TypeCheck}(A, x) = \text{if } x \in \text{dom}(A) \text{ then } A(x) \text{ else fail}$
 $\text{TypeCheck}(A, \lambda x:t.e) = \text{TypeCheck}((A, x:t), e)$
 $\text{TypeCheck}(A, e_1 e_2) =$
 $\quad \text{let } t_1 = \text{TypeCheck}(A, e_1) \text{ in }$
 $\quad \text{let } t_2 = \text{TypeCheck}(A, e_2) \text{ in }$
 $\quad \text{if } \text{dom}(t_1) = t_2 \text{ then } \text{range}(t_1) \text{ else fail}$
Semantics

• Here is a small-step, call-by-value semantics
 ▪ If an expression can’t be evaluated any more and is not a value, then it is \textit{stuck}

\[
(\lambda x.e_1) \, v_2 \rightarrow e_1[v_2/x] \\
\text{e}_1 \rightarrow e_1' \\
\text{e}_1 \, e_2 \rightarrow e_1' \, e_2 \\
\text{e}_2 \rightarrow e_2' \\
\text{v}_1 \, e_2 \rightarrow v_1 \, e_2'
\]

\[\text{e} ::= \text{v} \mid x \mid \text{e} \, \text{e} \]

\[\text{v} ::= n \mid \lambda x:t.e \quad \textit{values} – \textit{not evaluated}\]
Progress

• Suppose $\vdash e : t$. Then either e is a value, or there exists e' such that $e \rightarrow e'$

• Proof by induction on e
 - Base cases $n, \lambda x. e$ – these are values, so we’re done
 - Base case x – can’t happen (empty type environment)
 - Inductive case $e_1 e_2$ – If e_1 is not a value, then by induction we can evaluate it, so we’re done, and similarly for e_2. Otherwise both e_1 and e_2 are values. Inspection of the type rules shows that e_1 must have a function type, and therefore must be a lambda since it’s a value. Therefore we can make progress.
Preservation

• If $\vdash e : t$ and $e \rightarrow e'$ then $\vdash e' : t$

• Proof by induction on $e \rightarrow e'$

 ▪ Induction (easier than the base case!). Expression e must have the form $e_1 e_2$.

 ▪ Assume $\vdash e_1 e_2 : t$ and $e_1 e_2 \rightarrow e'$. Then we have $\vdash e_1 : t' \rightarrow t$ and $\vdash e_2 : t'$.

 ▪ Then there are three cases.

 - If $e_1 \rightarrow e_1'$, then by induction $\vdash e_1 : t' \rightarrow t$, so $e_1' e_2$ has type t

 - If reduction inside e_2, similar
Preservation, cont’d

• Otherwise \((\lambda x.e) \nu \rightarrow e[\nu|x]\). Then we have

\[
\frac{x: t' \vdash e : t}{\vdash \lambda x.e : t' \rightarrow t}
\]

- Thus we have
 - \(x: t' \vdash e : t\)
 - \(\vdash \nu: t'\)

- Then by the substitution lemma (not shown) we have
 - \(\vdash e[\nu|x] : t\)

- And so we have preservation
Substitution Lemma

• If \(A \vdash v : t \) and \(x : t, A \vdash e : t' \), then \(A \vdash e[v/x] : t' \)

• Proof: Induction on the structure of \(e \)

• For lazy semantics, we’d prove
 - If \(A \vdash e1 : t \) and \(x : t, A \vdash e : t' \), then \(A \vdash e[e1/x] : t' \)
Soundness

• So we have
 ■ Progress: Suppose $\cdot \vdash e : t$. Then either e is a value, or there exists e' such that $e \rightarrow e'$
 ■ Preservation: If $\cdot \vdash e : t$ and $e \rightarrow e'$ then $\cdot \vdash e' : t$

• Putting these together, we get soundness
 ■ If $\cdot \vdash e : t$ then either there exists a value v such that $e \rightarrow^* v$, or e diverges (doesn’t terminate).

• What does this mean?
 ■ Evaluation getting stuck is bad, so
 ■ “Well-typed programs don’t go wrong”
Consequences of Soundness

• Progress—anything that can go wrong “locally” at run time should be forbidden in the type system
 ▪ E.g., can’t “call” an int as if it were a function
 ▪ To check this, identify all places where the semantics get stuck, and cross-reference with type rules

• Preservation—running a program can’t change types
 ▪ E.g., after beta reduction, types still the same
 ▪ To check this, ensure that for each possible way the semantics can take a step, types are preserved

• These problems greatly influence the way type systems are designed
Conditionals

\[
e ::= \ldots \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e
\]

\[
A \vdash \text{true} : \text{bool} \quad A \vdash \text{false} : \text{bool}
\]

\[
A \vdash e_1 : \text{bool} \quad A \vdash e_2 : t \quad A \vdash e_3 : t
\]

\[
A \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\]
Conditionals (op sem)

\[
e ::= \ldots \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e\]

- \(\text{if true then } e_2 \text{ else } e_3 \rightarrow e_2\)
- \(\text{if false then } e_2 \text{ else } e_3 \rightarrow e_3\)
- \(e_1 \rightarrow e_1'\)
- \(\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow\
 \text{if } e_1' \text{ then } e_2 \text{ else } e_3\)

Notice how need to satisfy progress and preservation influences type system, and interplay between operational semantics and types
Product Types (Tuples)

\[e ::= \ldots \mid (e, e) \mid \text{fst } e \mid \text{snd } e \]

\[
\frac{A \vdash e_1 : t \quad A \vdash e_2 : t'}{A \vdash (e_1, e_2) : t \times t'}
\]

\[
\frac{A \vdash e : t \times t'}{A \vdash \text{fst } e : t}
\]

\[
\frac{A \vdash e : t \times t'}{A \vdash \text{snd } e : t'}
\]

- Or, maybe, just add functions
 - \(\text{pair} : t \to t' \to t \times t' \)
 - \(\text{fst} : t \times t' \to t \)
 - \(\text{snd} : t \times t' \to t' \)
Sum Types (Tagged Unions)

\[e ::= \ldots \mid \text{inL}_{t_2} e \mid \text{inR}_{t_1} e \]
\[\mid (\text{case } e \text{ of } x_1:t_1 \rightarrow e_1 \mid x_2:t_2 \rightarrow e_2) \]

\[
\begin{align*}
A \vdash e : t_1 &\quad A \vdash e : t_2 \\
A &\quad A
\end{align*}
\]

\[
\begin{align*}
A \vdash e : t_1 + t_2 &\quad x_1:t_1, A \vdash e_1 : t \quad x_2:t_2, A \vdash e_2 : t \\
A &\quad (\text{case } e \text{ of } x_1:t_1 \rightarrow e_1 \mid x_2:t_2 \rightarrow e_2) : t
\end{align*}
\]
Self Application and Types

- Self application is not checkable in our system

$$x:?, A \vdash x : t \rightarrow t'$$

$$x:?, A \vdash x : t$$

$$x:?, A \vdash xx : ...$$

$$A \vdash \lambda x:?.x \ x : ...$$

- It would require a type t such that $t = t \rightarrow t'$
 - (We’ll see this next, but so far...)

- The simply-typed lambda calculus is *strongly normalizing*
 - Every program has a normal form
 - I.e., every program halts!
Recursive Types

- We can type self application if we have a type to represent the solution to equations like \(t = t \rightarrow t' \)
 - We define the type \(\mu \alpha.t \) to be the solution to the (recursive) equation \(\alpha = t \)
 - Example: \(\mu \alpha.\text{int} \rightarrow \alpha \)
In the pure lambda calculus, every term is typable with recursive types
 (Pure = variables, functions, applications only)

Most languages have some kind of “recursive” type
 E.g., for data structures like lists, tree, etc.

However, usually two recursive types that define the same structure but use a different name are considered different
 E.g., in C, `struct foo { int x; struct foo *next; }` is different from `struct bar { int x; struct bar *next; }`
Subtyping

• The Liskov Substitution Principle (paraphrased):

 Let \(q(x) \) be a property provable about objects \(x \) of type \(T \). If \(S \) is a subtype of \(T \), then \(q(y) \) should be provable for objects \(y \) of type \(S \).

• In other words

 If \(S \) is a subtype of \(T \), then an \(S \) can be used anywhere a \(T \) is expected

• Common used in object-oriented programming
 - Subclasses can be used where superclasses expected
 - This is a kind of polymorphism
Kinds of Polymorphism

• Parametric polymorphism
 ▪ Generics in Java, `a types in OCaml

• Another popular form is subtype polymorphism
 ▪ As in OO programming
 ▪ These two can be combined (c.f. Java)

• Some languages also have ad-hoc polymorphism
 ▪ E.g., + operator that works on ints and floats
 ▪ E.g., overloading in Java
Lambda Calc with Subtyping

- \(e ::= n \mid f \mid x \mid \lambda x:t.e \mid e \ e \)
 - We now have both floating point numbers and integers
 - We want to be able to implicitly use an integer wherever a floating point number is expected
 - Warning: This is a bad design! Don’t do this in real life

- \(t ::= \text{int} \mid \text{float} \mid t \rightarrow t \)
 - We want \text{int} to be a subtype of \text{float}
Subtyping

• We’ll write $t_1 \leq t_2$ if t_1 is a subtype of t_2
• Define subtyping by more inference rules
• Base case

\[
\text{int} \leq \text{float}
\]

• (notice reverse is not allowed)

• What about function types?

\[
\text{???
}

\[
t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'
\]
Replacing “f x” by “g x”

• Suppose \(f : t_1 \rightarrow t_1' \) and \(g : t_2 \rightarrow t_2' \)
• When is \(t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2' \)?

• Return type:
 ▪ We are expecting \(t_1' \) (f’s return type)
 ▪ So we can return \(at \ most \ t_1' \)
 ▪ So need \(t_1' \leq t_2' \)

• Examples
 ▪ If we’re expecting \(float \), can return \(int \) or \(float \)
 ▪ If we’re expecting \(int \), can only return \(int \)
Replacing “f x” by “g x”

- Suppose $f : \tau_1 \rightarrow \tau_1'$ and $g : \tau_2 \rightarrow \tau_2'$
- When is $\tau_1 \rightarrow \tau_1' \leq \tau_2 \rightarrow \tau_2'$?

- Argument type:
 - We are supposed to accept expecting τ_1 (f’s arg type)
 - So we must accept at least τ_1
 - So need $\tau_2 \leq \tau_1$

- Examples
 - A function that accepts an int can be replaced by one that accepts int, or one that accepts float
 - A function that accepts a float can only be replaced by one that accepts float
Subtyping on Function Types

\[
\frac{t_2 \leq t_1 \quad t_1' \leq t_2'}{t_1 \rightarrow t_1' \leq t_2 \rightarrow t_2'}
\]

• We say that arrow is
 - *Covariant* in the range (subtyping dir the same)
 - *Contravariant* in the domain (subtyping dir flips)

• Some languages have gotten this wrong
 - Eiffel allows covariant parameter types
Similar Pattern for Pre/Post-conds

• class A { int f(int x) { ... } }
• class B extends A { int f(int x) { ... } }

• A.f — precondition Pre_A, postcondition Post_A
• B.f — precondition Pre_B, postcondition Post_B
• Relationship among \{Pre,Post\}_\{A,B\}?
 ▪ Post_A ⇒ Post_B
 ▪ Pre_B ⇒ Pre_A

• Example:
 ▪ Pre_A = (x > 42), Post_A = (ret > 42)
 ▪ Pre_B = (x > 0), Post_B = (ret > 100)
Type Rules, with Subtyping

\[A \vdash n : \text{int} \]
\[A \vdash x : A(x) \]
\[x \in \text{dom}(A) \]
\[A \vdash \lambda x : t.e : t \to t' \]
\[A \vdash e_1 : t_1 \to t_1' \]
\[A \vdash e_2 : t_2 \quad t_2 \leq t_1 \]
\[A \vdash e_1 \ e_2 : t_1' \]

\[A \vdash f : \text{float} \]
Soundness

• Progress and preservation still hold
 ▪ Slight tweak: as evaluation proceeds, expression’s type may “decrease” in the subtyping sense
 ▪ Example:
 - (if true then n else f) : float
 - But after taking one step, will have type int ≤ float

• Proof: exercise for the reader
Subtyping, again

\[A \vdash n : \text{int} \]

\[x \in \text{dom}(A) \quad \frac{A \vdash x : A(x)}{A \vdash x : A(x)} \]

\[x : \text{t}, A \vdash e : \text{t}' \quad \frac{A \vdash \lambda x : \text{t}.e : \text{t}' \rightarrow \text{t}'}{A \vdash \lambda x : \text{t}.e : \text{t}' \rightarrow \text{t}'} \]

\[A \vdash e_1 : \text{t}_1 \rightarrow \text{t}_1' \quad A \vdash e_2 : \text{t}_2 \quad \frac{A \vdash e_1 e_2 : \text{t}_1'}{A \vdash e_1 e_2 : \text{t}_1'} \]

\[A \vdash e : \text{t} \quad t \leq t' \quad \frac{A \vdash e : t}{A \vdash e : t'} \]
Rule with subtyping is called *subsumption*

- Very clearly captures subtyping property

But system is no longer *syntax driven*

- Given an expression e, there are two rules that apply to e ("regular" type rule, and subsumption rule)

Can prove that the two systems are equivalent

- Exercise left to the reader
Lambda Calc with Updatable Refs

- \(e ::= \ldots \ | \ \text{ref } e \ | \ !e \ | \ e := e \)
 - ML-style updatable references
 - \(\text{ref } e \) — allocate memory and set its contents to \(e \); return pointer
 - \(!e \) — dereference pointer and return contents
 - \(e_1 := e_2 \) — update contents pointed to by \(e_1 \) with \(e_2 \)

- \(t ::= \ldots \ | \ t \ \text{ref} \)
 - A \(t \ \text{ref} \) is a pointer to contents of type \(t \)
Type Rules for Refs

A ⊢ e : t
_-----------------
A ⊢ ref e : t ref

A ⊢ e : t ref
_-----------------
A ⊢ !e : t

A ⊢ e1 : t1 ref
A ⊢ e2 : t2
_-----------------
t2 ≤ t1
A ⊢ e1 := e2 : t1

A ⊢ e1 : t1 ref
A ⊢ e2 : t2
_-----------------
t2 ≤ t1
A ⊢ e1 := e2 : t1
Subtyping Refs

• The wrong rule for subtyping refs is

\[
t_1 \leq t_2 \\
\hline
\Downarrow
\text{t}_1 \text{ ref} \leq \text{t}_2 \text{ ref}
\]

• Counterexample

\[
\begin{align*}
\text{let } x &= \text{ref 3 in} & (* x : \text{int ref} *) \\
\text{let } y &= x \text{ in} & (* y : \text{float ref} *) \\
\text{y := 3.14} & (* \text{oops! !x is now a float} *)
\end{align*}
\]
Aliasing

- We have multiple names for the same memory location
 - But they have different types
 - This we can **write** into the same memory at different types
Solution #1: Java’s Approach

• Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

• Counterexample:
 - Foo[] $a = \text{new} \ Foo[5]$;
 - Object[] $b = a$;
 - $b[0] = \text{new} \ Object();$ // forbidden at runtime
 - $a[0].foo();$ // …so this can’t happen
Solution #2: Purely Static

• Reason from rules for functions
 - A reference is like an object with two methods:
 • get : unit \rightarrow t
 • set : t \rightarrow unit
 - Notice that t occurs both co- and contravariantly
 - Thus it is non-variant

• The right rule:

$$
\begin{align*}
\text{tl} \leq \text{t2} & \quad \text{t2} \leq \text{tl} \\
\hline
\text{tl ref} \leq \text{t2 ref} & \quad \text{or} \quad \text{tl} = \text{t2} \\
\text{tl ref} \leq \text{t2 ref} &
\end{align*}
$$
Type Inference

- Let’s consider the simply typed lambda calculus with integers
 - $e ::= n \mid x \mid \lambda x:t.e \mid e\ e$

- *Type inference:* Given a bare term (with no type annotations), can we reconstruct a valid typing for it, or show that it has no valid typing?
Type Language

- Problem: Consider the rule for functions

\[
x: t, A \vdash e : t' \\
\hline
A \vdash \lambda x : t. e : t \rightarrow t'
\]

- Without type annotations, where do we get \(t \)?
 - We’ll use type variables to stand for as-yet-unknown types
 - \(t ::= \alpha \mid \text{int} \mid t \rightarrow t \)
 - We’ll generate equality constraints \(t = t \) among the types and type variables
 - And then we’ll solve the constraints to compute a typing
Type Inference Rules

\[A \vdash n : \text{int} \]

\[A \vdash x : A(x) \]

\[x \in \text{dom}(A) \]

\[x : \alpha, A \vdash e : t' \quad \alpha \text{ fresh} \]

\[A \vdash \lambda x.e : \alpha \rightarrow t' \]

\[A \vdash e1 : t1 \quad A \vdash e2 : t2 \]

\[t1 = t2 \rightarrow \beta \quad \beta \text{ fresh} \]

"Generated" constraint

\[A \vdash e1 \ e2 : \beta \]
We collect all constraints appearing in the derivation into some set C to be solved.

Here, C contains just $\alpha \rightarrow \alpha = \text{int} \rightarrow \beta$.

Solution: $\alpha = \text{int} = \beta$.

Thus this program is typable, and we can derive a typing by replacing α and β by int in the proof tree.
Solving Equality Constraints

- We can solve the equality constraints using the following rewrite rules, which reduce a larger set of constraints to a smaller set:
 - $C \cup \{\text{int}=\text{int}\} \Rightarrow C$
 - $C \cup \{\alpha=t\} \Rightarrow C[t\backslash\alpha]$
 - $C \cup \{t=\alpha\} \Rightarrow C[t\backslash\alpha]$
 - $C \cup \{t_1 \rightarrow t_2=t_1' \rightarrow t_2'\} \Rightarrow C \cup \{t_1=t_1'\} \cup \{t_2=t_2'\}$
 - $C \cup \{\text{int}=t_1 \rightarrow t_2\} \Rightarrow \text{unsatisfiable}$
 - $C \cup \{t_1 \rightarrow t_2=\text{int}\} \Rightarrow \text{unsatisfiable}$
Termination

• We can prove that the constraint solving algorithm terminates.

• For each rewriting rule, either
 ▪ We reduce the size of the constraint set
 ▪ We reduce the number of “arrow” constructors in the constraint set

• As a result, the constraint always gets “smaller” and eventually becomes empty
 ▪ A similar argument is made for strong normalization in the simply-typed lambda calculus
Occurs Check

• We don’t have recursive types, so we shouldn’t infer them

• So in the operation $C[t\alpha]$, require that $\alpha \notin FV(t)$
 - (Except if $t = a$, in which case there’s no recursion in the types, so unification should succeed)

• In practice, it may better to allow $\alpha \in FV(t)$ and do the occurs check at the end
 - But that can be awkward to implement
Unifying a Variable and a Type

- Computing $C[t\alpha]$ by substitution is inefficient

- Instead, use a union-find data structure to represent equal types
 - The terms are in a union-find forest
 - When a variable and a term are equated, we union them so they have the same ECR (equivalence class representative)
 - Want the ECR to be the concrete type with which variables have been unified, if one exists. Can read off solution by reading the ECR of each set.
Example

\[\alpha = \text{int} \rightarrow \beta \]
\[\gamma = \text{int} \rightarrow \text{int} \]
\[\alpha = \gamma \]
Unification

- The process of finding a solution to a set of equality constraints is called *unification*
 - Original algorithm due to Robinson
 - But his algorithm was inefficient
 - Often written out in different form
 - See Algorithm W
 - Constraints usually solved on-line
 - As type inference rules applied
Discussion

- The algorithm we’ve given finds the most general type of a term
 - Any other valid type is “more specific,” e.g.,
 - \(\lambda x.x : \text{int} \to \text{int} \)
 - Formally, any other valid type can be gotten from the most general type by applying a substitution to the type variables

- This is still a monomorphic type system
 - \(\alpha \) stands for “some particular type, but it doesn’t matter exactly which type it is”
Benefits of Type Inference

- Handles higher-order functions
- Handles data structures smoothly
- Works in infinite domains
 - Set of types is unlimited
- No forward/backward distinction
 - (Compare to data flow analysis, next)
Drawbacks to Type Inference

• Flow-insensitive
 - Types are the same at all program points
 - May produce coarse results
 - Type inference failure can be hard to understand

• Polymorphism may not scale
 - Exponential in worst case
 - Seems fine in practice (witness ML)