CMSC 430
Introduction to Compilers
Fall 2014

Optimization
Introduction

• An *optimization* is a transformation “expected” to
 - Improve running time
 - Reduce memory requirements
 - Decrease code size

• No guarantees with optimizers
 - Produces “improved,” not “optimal” code
 - Can sometimes produce worse code
Why are optimizers needed?

- Reduce programmer effort
 - Don’t make programmers waste time doing simple opts
- Allow programmer to use high-level abstractions without penalty
 - E.g., convert dynamic dispatch to direct calls
- Maintain performance portability
 - Allow programmer to write code that runs efficiently everywhere
 - Particularly a challenge with GPU code
Two laws and a measurement

• Moore’s law
 - Chip density doubles every 18 months
 - Until now, has meant CPU speed doubled every 18 months
 - These days, moving to multicore instead

• Proebsting’s Law
 - Compiler technology doubles CPU power every 18 years
 - Difference between optimizing and non-optimizing compiler about 4x
 - Assume compiler technology represents 36 years of progress

• Worse: runtime performance swings of up to 10% can be expected with no changes to executable
 - http://dl.acm.org/citation.cfm?id=1508275
Dimensions of optimization

• Representation to be optimized
 - Source code/AST
 - IR/bytecode
 - Machine code

• Types of optimization
 - Peephole — across a few instructions (often, machine code)
 - Local — within basic block
 - Global — across basic blocks
 - Interprocedural — across functions
Dimensions of optimization (cont’d)

- **Machine-independent**
 - Remove extra computations
 - Simplify control structures
 - Move code to less frequently executed place
 - Specialize general purpose code
 - Remove dead/useless code
 - Enable other optimizations

- **Machine-dependent**
 - Replace complex operations with simpler/faster ones
 - Exploit special instructions (MMX)
 - Exploit memory hierarchy (registers, cache, etc)
 - Exploit parallelism (ILP, VLIW, etc)
Selecting optimizations

• Three main considerations
 ■ Safety — will optimizer maintain semantics?
 - Tricky for languages with partially undefined semantics!
 ■ Profitability — will optimization improve code?
 ■ Opportunity — could optimization often enough to make it worth implementing?

• Optimizations interact!
 ■ Some optimizations enable other optimizations
 - E.g., constant folding enables copy propagation
 ■ Some optimizations block other optimizations
Some classical optimizations

- Dead code elimination

  ```
  jmp L
  /* unreachable */
  L: ...
  ```

  ```
  if true then
  ...
  else
  /* unreachable */
  ```

- Also, unreachable functions or methods

- Control-flow simplification

 - Remove jumps to jumps

  ```
  jmp L
  /* unreachable */
  L: goto M
  M: ...
  ```
More classical optimizations

• Algebraic simplification

 \[x = a + 0 \quad \Rightarrow \quad x = a \quad \Rightarrow \quad x = a \times 0 \quad \Rightarrow \quad x = 0 \]

 - Be sure simplifications apply to modular arithmetic

• Constant folding

 - Pre-compute expressions involving only constants

\[
\begin{align*}
a &= 5 \\
b &= 6 \\
x &= a + b \\
/* a, b \text{ dead } */
\end{align*}
\]

• Special handling for idioms

 - Replace multiplication by shifting

 - May need constant folding to enable sometimes

\[
\begin{align*}
a &= 5 \\
b &= 6 \\
x &= 11 \\
/* a, b \text{ dead } */
\end{align*}
\]

\[
\begin{align*}
a &= 5 \\
b &= 6 \\
x &= 11 \\
/* a, b \text{ dead } */
\end{align*}
\]

\[
\text{dead code elim}
\]
More classical optimizations

• Common subexpression elimination

\[
\begin{align*}
a &= b + c \\
d &= b + c
\end{align*}
\]

\[
\begin{align*}
a &= b + c \\
d &= a
\end{align*}
\]

• Copy propagation

\[
\begin{align*}
b &= a \\
c &= b \\
&\text{/* b dead */}
\end{align*}
\]

\[
\begin{align*}
b &= a \\
c &= a \\
&\text{/* b dead */}
\end{align*}
\]

\[
c = a
\]

\text{dead code elim}
Example

Fortran (!) source code:

```
sum = 0
do 10 i = 1, n
  10 sum = sum + a(i) * a(i)
```
Three-address code

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>sum = 0</td>
<td>sum = 0</td>
</tr>
<tr>
<td>2.</td>
<td>i = 1</td>
<td>init for loop</td>
</tr>
<tr>
<td>3.</td>
<td>if i > n goto 15</td>
<td>and check limit</td>
</tr>
<tr>
<td>4.</td>
<td>t1 = addr(a) - 4</td>
<td>a[i]</td>
</tr>
<tr>
<td>5.</td>
<td>t2 = i * 4</td>
<td>a[i]</td>
</tr>
<tr>
<td>6.</td>
<td>t3 = t1[t2]</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>t4 = addr(a) - 4</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>t5 = i * 4</td>
<td>a[i]</td>
</tr>
<tr>
<td>9.</td>
<td>t6 = t4[t5]</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>t7 = t3 * t6</td>
<td>a[i] * a[i]</td>
</tr>
<tr>
<td>11.</td>
<td>t8 = sum + t7</td>
<td>increment sum</td>
</tr>
<tr>
<td>12.</td>
<td>sum = t8</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>i = i + 1</td>
<td>Incr. loop counter</td>
</tr>
<tr>
<td>14.</td>
<td>goto 3</td>
<td>back to loop check</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control-flow graph

1. \(\text{sum} = 0 \)
2. \(\text{i} = 1 \)
3. \(\text{if i} > \text{n goto} 15 \)
4. \(\text{t1} = \text{addr(a)} - 4 \)
5. \(\text{t2} = \text{i} \times 4 \)
6. \(\text{t3} = \text{t1}[\text{t2}] \)
7. \(\text{t4} = \text{addr(a)} - 4 \)
8. \(\text{t5} = \text{i} \times 4 \)
9. \(\text{t6} = \text{t4}[\text{t5}] \)
10. \(\text{t7} = \text{t3} \times \text{t6} \)
11. \(\text{t8} = \text{sum} + \text{t7} \)
12. \(\text{sum} = \text{t8} \)
13. \(\text{i} = \text{i} + 1 \)
14. \(\text{goto} 3 \)
15.
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
3. \(\text{if } i > n \text{ goto 15} \)
4. \(t_1 = \text{addr(a)} - 4 \)
5. \(t_2 = i \times 4 \)
6. \(t_3 = t_1[t_2] \)
7. \(t_4 = \text{addr(a)} - 4 \)
8. \(t_5 = i \times 4 \)
9. \(t_6 = t_4[t_5] \)
10. \(t_7 = t_3 \times t_6 \)
10a. \(t_7 = t_3 \times t_3 \)
11. \(t_8 = \text{sum} + t_7 \)
12. \(\text{sum} = t_8 \)
13. \(i = i + 1 \)
14. \(\text{goto 3} \)
15.
Copy propagation

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
Invariant code motion

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
3. If \(i > n \) goto 15
5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. goto 3
15.
1. sum = 0
2. i = 1
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
2c. \(t9 = n \times 4 \)
3. if \(i > n \) goto 15
3a. if \(t2 > t9 \) goto 15
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. goto 3a
15.
Induction variable elimination

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15.
Constant propagation

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2d. t2 = 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
14. goto 3a
15.
Dead code elimination

1. \(\text{sum} = 0 \)

2. \(i = 1 \)

2a. \(t1 = \text{addr}(a) - 4 \)

2d. \(t2 = 4 \)

2c. \(t9 = n \times 4 \)

3a. if \(t2 > t9 \) goto 15

6. \(t3 = t1[t2] \)

10a. \(t7 = t3 \times t3 \)

12a. \(\text{sum} = \text{sum} + t7 \)

12b. \(t2 = t2 + 4 \)

14. goto 3a

15.
Final optimized code

1. sum = 0
2. t1 = addr(a) - 4
3. t2 = 4
4. t4 = n * 4
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5
11.

unoptimized: 8 temps, 11 stmts in innermost loop
optimized: 5 temps, 5 stmts in innermost loop

1 index addressing 2 index addressing
1 multiplication 3 multiplications
2 additions 2 additions & 2 subtractions
1 jump 1 jump
1 test 1 test
1 copy 1 copy
CFG of final optimized code

1. \(\text{sum} = 0 \)
2. \(\text{t1} = \text{addr}[a] - 4 \)
3. \(\text{t2} = 4 \)
4. \(\text{t4} = 4 \times n \)
5. if \(\text{t2} > \text{t4} \) goto 11
6. \(\text{t3} = \text{t1}[\text{t2}] \)
7. \(\text{t5} = \text{t3} \times \text{t3} \)
8. \(\text{sum} = \text{sum} + \text{t5} \)
9. \(\text{t2} = \text{t2} + 4 \)
10. goto 5
n = 1; k = 0; m = 3;
read x;
while (n < 10) {
 if (2 + x ≥ 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}
1. \(n = 1; \) 2. \(k = 0; \) 3. \(m = 3; \)

4. read \(x; \)

5. while (\(n < 10 \)) {

6. \(\text{if } (2 \times x \geq 5) \)

7. \(k := 5; \)

8. \(\text{if } (3 + k == 3) \)

9. \(m := m + 2; \)

10. \(n = n + k + m; \)

11. }

Invariant within loop and therefore moveable

Unaffected by definitions in loop and guarded by invariant condition

Moveable after we move statements 6 and 7

Not moveable because may use def of \(m \) from statement 9 on previous iteration

General code motion (cont’d)
General code motion, result

n = 1; k = 0; m = 3;
read x;
while (n < 10) {
 if (2 * x ≥ 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

n = 1; k = 0; m = 3;
read x;
if (2 * x ≥ 5) k = 5;
t1 = (3 + k == 3);
while (n < 10) {
 if (t1) m = m + 2;
 n = n + k + m;
}
n = 1; k = 0; m = 3;
read x;
if (2 * x ≥ 5) k := 5;
t1 = (3 + k == 3);
if (t1)
 while (n < 10) {
 m = m + 2;
 n = n + k + m;
 }
else
 while (n < 10)
 n = n + k + m;

Specialization of while loop depending on value of t1
(Global) common subexpr elim

\[z = a \times b \]
\[r = 2 \times z \]
\[q = a \times b \]
\[u = a \times b \]
\[z = u / 2 \]
\[w = a \times b \]

Can be eliminated since \(a \times b \) is available, i.e., calculated on all paths to this point.

Cannot be eliminated since \(a \times b \) is not available on all paths reaching this point.
(Global) common subexpr elim

Ensure $a*b$ is assigned to the same variable t so it can be used for the assignment to u.
Copy propagation

We can then forward substitute \(t \) for \(z \)…

\[
\begin{align*}
t &= a \times b \\
z &= a \times b \\
z &= t \\
r &= 2 \times z \\
r &= 2 \times t \\
t &= a \times b \\
q &= a \times b \\
q &= t \\
u &= a \times b \\
u &= t \\
z &= u \div 2 \\
w &= a \times b
\end{align*}
\]
Dead code elimination

...and eliminate the assignment to z since it is now dead code.
What else can we do?

t = a * b
r = 2 * t

t = a * b
q = t

u = t
z = u / 2

w = a * b
Partial redundancy elimination

We can compute \(a*b \) on paths where it is not available…

Then eliminate the now fully redundant computation of \(a*b \)