Introduction to Balanced Search Trees

- Want to guarantee worst case time $O(\log n)$ for dictionary operations on ordered data, irrespective of what sequence the operations come in (Vanilla BST is embarrassing when data is in increasing order)

- Possible balanced or approximately balanced choices include
 - B-Trees: Great for large amounts of data. Internal nodes are not fully “occupied,” however.
 - Bottom Up Red-Black Tree: Somewhat mysterious update operations. Difficult to handle the several cases. Two pass algorithms
 - Top-Down Red-Black Trees: One pass algorithm, difficult to handle delete
 - BB-trees, AA-trees: Two pass algorithms.
 - AVL trees: Simplest next step after BST. One function `restructure(x)` takes care of all cases. Two pass algorithm.
AVL Tree Is Simple To Describe

- An AVL tree T is a binary search tree (BST) such that for every internal node v the heights of the children of v differ at most by 1

- The height of an empty tree (possible only in improper binary trees) is -1. Heights often explicitly stored in each node

- v is said to be balanced, even though it is only approximately balanced

- Main trick: Keep nodes balanced as dynamic insert() and remove() operations are called. Difficult to ensure if we insist on exact balance
AVL Tree Height is $O(\log n)$

- The balance restriction is good enough
- Let $n(h)$ be the minimum number of internal nodes of an AVL tree of height h
 - $n(1) = 1$ and $n(2) = 2$
 - For $n > 2$, an AVL tree of height h contains the root node, and a child of height $h - 1$.
 - The other child cannot have arbitrary height. Due to the AVL restriction, the height can be only $h - 1$ or $h - 2$.
 - $n(h)$ measures minimum and $n(h - 2) < n(h - 1)$
 - Both children are roots of AVL trees
 - Therefore $n(h) = 1 + n(h - 1) + n(h - 2) > 2n(h - 2)$
- Solving $n(h) \geq 2^{\frac{h}{2} - 1}$ or $h < 2 \log n(h) - 2$
Insertion

• General idea: Insert a node at the leaf level which changes the height of at most \(O(\log n)\) nodes

• Nodes on the path from the newly created inserted key to the root may have increased heights

 – Let \(x\) be the node (with parent \(y\)) such that its grandparent \(z\) is the first unbalanced node

 – The \(O(1)\) local procedure \(\text{restructure}(x)\) involving \(x, y,\) and \(z\) fixes the height of \(z\)

• In fact, for insertion, this procedure will fix the height of every unbalanced node
restructure(x) Is Easy

Five simple steps to understand the rearrangement

1. Identify \(x, y \) and \(z \). Let \(abc \) be the order in which \(x, y \) and \(z \) show up in an inorder listing. (Thus \(a \) is one of \(x \) or \(y \) or \(z \)).

2. Identify the four subtrees of the children of \(x, y \) and \(z \). Let \(T0, T1, T2, T3 \) be the order in which these trees show up in an inorder listing.

3. Replace the data at the subtree rooted at \(z \) by \(b \).

4. \(b\.left := a; a\.left := T0; a\.right := T1; \)

5. \(b\.right := c; c\.left := T2; c\.right := T3; \)
restructure(x) Is Easy

The zig-zag case

Inorder Listing: yxz

The zig-zig case
Remove Also Uses restructure(x)

- General idea: Follow the vanilla BST procedure for removal. Finally remove a node at the leaf level which potentially changes the height of at most $O(\log n)$ nodes
- Nodes on the path from the position of the deleted key to the root may have decreased heights
- But in fact at most one node z can become unbalanced
 - Let y be the taller child of z.
 - Let x be the taller child of y. (If both children are equally tall, pick x so that x, y and z are in a “straight line” (zig-zig case).
 - $\text{restructure}(x)$ fixes the height of z but may cause parent of z to become unbalanced
- Repeat the above procedure at most $O(\log n)$ times
ZigZag and ZigZig Removal

The zig-zag case

The zig-zig case
Example: Cascaded Removal
Pseudocode for Update Operations

```c
void insertAVL ( Key k ) {
    node pos = insertBST ( k , root );
    replace ( pos , new AVLItem ( k , 1 ));
    // AVL trees have height , BST don’t
    rebalance ( pos );
}
```

```c
Object removeAVL ( Key k ) {
    Object t = removeBST ( k , root );
    if ( t != NO_SUCH_KEY ) {
        rebalance (( node ) t );
    }
    return t ;
}
```
Pseudocode for Update Operations

```c
void rebalance (node z) {
    // traverse path from z to root
    // to start of, z is the point of insert or remove
    // and is never unbalanced
    while ( ! isRoot(z)) {
        z = z.parent();
        setHeight(z);
        // insert or remove may have caused the height to change
        if ( ! isBalanced(z)) {
            node x = z.tallerChild().tallerChild();
            z = restructure(x); // see earlier description
            setHeight(z.leftchild()); setHeight(z.rightchild());
            setHeight(z);
        }
        // height of parent of z may need to be changed
    }
}
```
Pseudocode for Update Operations

```plaintext
tallerChild(node p) {
    if (p.leftChild.height() > p.rightChild.height())
        return p.leftChild;
    if (p.leftChild.height() < p.rightChild.height())
        return p.rightChild;
    if (p.parent.leftChild == p)
        return p.leftChild;
    return p.rightChild;
}

setHeight(node p) {
    p.height = 1 + max(p.leftChild().height,
                       p.rightChild().height);
}

isBalanced(node p) {
    int diff = p.leftChild().height - p.rightChild().height;
    return ((-1 <= diff) && (diff <= 1))
}
```