Sketch of Solutions to Homework 1

- Problem 1
 - Part A
 * Single real valued variable
 - Check the point value to see whether or not it lies within the valid range.
 - Run statistics tests like chi squares.
 - Visually by using histograms and boxplots.
 - Compute the sample mean μ and choose those points within the range μ ± λ for some λ.
 * Set of 20 real valued variables
 - Check range of each variable.
 - Check for invalid combinations of values.
 - Visually by using Scatter plots, Trellis plots.
 - Use PCA and Clustering Algorithms.
 * Categorical variables
 - Partition the data based on possible values of the categorical variable and analyze each set using the previous techniques.
 - Visually by using plots for the observations within each category.
 - Use Clustering Algorithms
 - Part B
 Mean is more sensitive to outliers than Median.
 - Part C
 * Use PCA for dimension reduction then apply the trimmed α technique over each component.
 * Transform each point to a scalar by using techniques like reduced sub-ordering based on distance measure then apply the trimmed α technique over the scalars.
 * For each value of a specific variable, apply the trimmed α technique over the other variables. That’s for a simple two dimension case X and Y, for each value of X check the possible Y values. Unusual Y values are outliers that can be removed by using the trimmed α technique.
 - Part D
 The problem can not be completely automated, and it is not usually possible to detect outliers without having a prior model for the data.

- Problem 2
 - Part A This part should be solved in two steps.
* Step 1
Take the partial derivatives $\frac{\partial S}{\partial a}$ and $\frac{\partial S}{\partial b}$ and set both to 0 and simplify to obtain two equations in two unknowns that can be solved simultaneously.

$$S(a, b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 = \sum_{i=1}^{n} (a^2 x_i^2 - 2ax_iy_i + 2abx_i + b^2 - 2by_i + y_i^2)$$

$$\frac{\partial S(a, b)}{\partial a} = \sum_{i=1}^{n} \frac{\partial}{\partial a} (a^2 x_i^2 - 2ax_iy_i + 2abx_i + b^2 - 2by_i + y_i^2) = \sum_{i=1}^{n} (2ax_i^2 - 2x_iy_i + 2bx_i) = 0$$

Similarly

$$\frac{\partial S(a, b)}{\partial b} = \sum_{i=1}^{n} \frac{\partial}{\partial b} (a^2 x_i^2 - 2ax_iy_i + 2abx_i + b^2 - 2by_i + y_i^2) = \sum_{i=1}^{n} (2ax_i + 2b - 2y_i) = 0$$

Solving the two equations yields

$$a = \frac{\sum_{i=1}^{n} x_i (\sum_{i=1}^{n} y_i) - n \sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2 - n \sum_{i=1}^{n} x_i^2}$$

and

$$b = \frac{\sum_{i=1}^{n} x_i y_i (\sum_{i=1}^{n} x_i) - (\sum_{i=1}^{n} x_i^2) (\sum_{i=1}^{n} y_i)}{\sum_{i=1}^{n} x_i^2 - n \sum_{i=1}^{n} x_i^2}$$

* Step 2
Check to see that the values obtained for a and b in Step 1 actually minimizes S by taking the second derivative and check to see if it is positive.

$$\frac{\partial^2 S(a, b)}{\partial a^2} = \sum_{i=1}^{n} (2x_i^2)$$

and

$$\frac{\partial^2 S(a, b)}{\partial b^2} = \sum_{i=1}^{n} (2)$$

Clearly these values are positive.

- Part B

* Use the trimmed α technique.
* Replace sum by the median in least squares formula, that’s median($y(i) - (ax(i) + b))^2$.
* Select a random set of points and get its fit. Repeat several times and choose the set with the smallest error.