Readings:
 - handouts

Today’s Lecture:
 - d-Separation, minimal I-Maps
 - Bayesian Networks
 - Markov Networks

Upcoming Due Dates:
 - H2 due today
 - P2 due 3/14
Summary of Last Class

We defined the following concepts
• The Markov Independences of a DAG G
 – I (X_i, NonDesc(X_i) | Pa_i)

• G is an I-Map of a distribution P
 – If P satisfies the Markov independencies implied by G

We proved the factorization theorem
• if G is an I-Map of P, then

\[P(X_1, ..., X_n) = \prod_{i} P(X_i | Pa_i) \]

• slides courtesy of Nir Friedman, see references
Conditional Independencies

• Let $\text{Markov}(G)$ be the set of Markov Independencies implied by G

• The factorization theorem shows

$$G \text{ is an I-Map of } P \Rightarrow P(X_1,\ldots,X_n) = \prod_i P(X_i \mid Pa_i)$$

• We can also show the opposite:

Thm:

$$P(X_1,\ldots,X_n) = \prod_i P(X_i \mid Pa_i) \Rightarrow G \text{ is an I-Map of } P$$
Proof (Outline)

Example:

\[P(Z \mid X, Y) = \frac{P(X,Y,Z)}{P(X,Y)} = \frac{P(X)P(Y \mid X)P(Z \mid X)}{P(X)P(Y \mid X)} \]

\[= P(Z \mid X) \]
Implied Independencies

• Does a graph G imply additional independencies as a consequence of $\text{Markov}(G)$?

• We can define a logic of independence statements

• Some axioms:
 - $I(X; Y / Z) \Rightarrow I(Y; X / Z)$
 - $I(X; Y_1, Y_2 / Z) \Rightarrow I(X; Y_1 / Z)$
d-separation

- A procedure \(d-sep(X; Y / Z, G)\) that given a DAG \(G\),
 and sets \(X\), \(Y\), and \(Z\) returns either \(yes\) or \(no\)

- **Goal:**
 \[d-sep(X; Y / Z, G) = yes \iff I(X; Y|Z) \text{ follows from } Markov(G)\]
Paths

- **Intuition**: dependency must “flow” along paths in the graph

- A path is a sequence of neighboring variables

Examples:
- $R \leftarrow E \rightarrow A \leftarrow B$
- $C \leftarrow A \leftarrow E \rightarrow R$
Paths

• We want to know when a path is
 – active -- creates dependency between end nodes
 – blocked -- cannot create dependency end nodes

• We want to classify situations in which paths are active.
Path Blockage

Three cases:

- Common cause

Blocked

Active
Path Blockage

Three cases:
- Common cause
 - Intermediate cause

Path Blockage

Three cases:
- Common cause
- Intermediate cause
- Common Effect

Blocked

Active
Path Blockage -- General Case

A path is active, given evidence \mathbf{Z}, if

- Whenever we have the configuration B or one of its descendents are in \mathbf{Z}
- No other nodes in the path are in \mathbf{Z}

A path is blocked, given evidence \mathbf{Z}, if it is not active.
Example

- d-sep(R,B)?
Example

- d-sep$(R, B) = yes$
- d-sep$(R, B|A)$?
Example

- d-sep$(R, B) = yes$
- d-sep$(R, B|A) = no$
- d-sep$(R, B|E, A)$?
d-Separation

- **X is d-separated from Y, given Z, if all paths from a node in X to a node in Y are blocked, given Z.**

- Checking d-separation can be done efficiently (linear time in number of edges)
 - **Bottom-up phase:**
 Mark all nodes whose descendents are in Z
 - **X to Y phase:**
 Traverse (BFS) all edges on paths from X to Y and check if they are blocked
Soundness

Thm:

• If
 – G is an I-Map of P
 – d-sep($X; Y / Z, G$) = yes

• then
 – P satisfies $I(X; Y / Z)$

Informally,

• Any independence reported by d-separation is satisfied by underlying distribution
Completeness

Thm:
• If d-sep$(X; Y \mid Z, G) = no$
• then there is a distribution P such that
 – G is an I-Map of P
 – P does not satisfy $I(X; Y \mid Z)$

Informally,
• Any independence not reported by d-separation might be violated by the underlying distribution
• We cannot determine this by examining the graph structure alone
I-Maps revisited

- The fact that G is I-Map of P might not be that useful

- For example, **complete** DAGs
 - A DAG is G is complete is we cannot add an arc without creating a cycle

- These DAGs do not imply any independencies
- Thus, they are I-Maps of any distribution
Minimal I-Maps

A DAG G is a **minimal I-Map** of P if

- G is an I-Map of P
- If $G' \subset G$, then G' is not an I-Map of P

Removing any arc from G introduces (conditional) independencies that do not hold in P
Minimal I-Map Example

• If $X_1 \rightarrow X_2$ is a minimal I-Map

• Then, these are not I-Maps:
Constructing minimal I-Maps

The factorization theorem suggests an algorithm
• Fix an ordering X_1, \ldots, X_n
• For each i,
 – select Pa_i to be a minimal subset of $\{X_1, \ldots, X_{i-1}\}$, such that $I(X_i ; \{X_1, \ldots, X_{i-1}\} - Pa_i / Pa_i)$

• Clearly, the resulting graph is a minimal I-Map.
Non-uniqueness of minimal I-Map

• Unfortunately, there may be several minimal I-Maps for the same distribution
 − Applying I-Map construction procedure with different orders can lead to different structures

Order: C, R, A, E, B

Original I-Map
Choosing Ordering & Causality

• The choice of order can have drastic impact on the complexity of minimal I-Map

• Heuristic argument:
 construct I-Map using causal ordering among variables

• Justification?
 – It is often reasonable to assume that graphs of causal influence should satisfy the Markov properties.
 – We will revisit this issue in future classes
P-Maps

- A DAG G is P-Map (perfect map) of a distribution P if
 - $I(X; Y \mid Z)$ if and only if d-sep$(X; Y \mid Z, G) = yes$

Notes:
- A P-Map captures all the independencies in the distribution
- P-Maps are unique, up to DAG equivalence
P-Maps

• Unfortunately, some distributions do not have a P-Map

• Example: \(P(A, B, C) = \begin{cases} \frac{1}{12} & \text{if } A \oplus B \oplus C = 0 \\ \frac{1}{6} & \text{if } A \oplus B \oplus C = 1 \end{cases} \)

• A minimal I-Map:

• This is not a P-Map since \(I(A;C) \) but \(d\text{-sep}(A;C) = no \)
Bayesian Networks

• A Bayesian network specifies a probability distribution via two components:

 – A DAG G
 – A collection of conditional probability distributions $P(X_i | Pa_i)$

• The joint distribution P is defined by the factorization

$$P(X_1, ..., X_n) = \prod_i P(X_i | Pa_i)$$

• Additional requirement: G is a minimal I-Map of P
Summary

• We explored DAGs as a representation of conditional independencies:
 – Markov independencies of a DAG
 – Tight correspondence between $\text{Markov}(G)$ and the factorization defined by G
 – d-separation, a sound & complete procedure for computing the consequences of the independencies
 – Notion of minimal I-Map
 – P-Maps

• This theory is the basis for defining Bayesian networks
References

• Nir Friedman’s excellent lecture notes, http://www.cs.huji.ac.il/~pmai/