Inference in Bayesian Networks

Variable Elimination
General idea:
• Write query in the form
\[P(X_e) = \sum_{x_1} \cdots \sum_{x_k} \prod_{x \in E} P(x | \mathcal{pa}_x) \]

Iteratively
• Move all irrelevant terms outside of innermost sum
• Perform innermost sum, getting a new term
• Insert the new term into the product

A More Complex Example

Visit to Asia
Smoking
Tuberculosis
Lung Cancer
Abnormality in Chest
Bronchitis
Dyspnea

• "Asia" network:

\[P(v) P(s) P(t | v) P(l | s) P(b | s) P(a | t, l) P(x | a) P(d | a, b) \]

• We want to compute \(P(d) \)
• Need to eliminate: v, s, x, t, l, a, b

Initial factors

\[P(v) P(s) P(t | v) P(l | s) P(b | s) P(a | t, l) P(x | a) P(d | a, b) \]

We want to compute \(P(d) \)
Need to eliminate: v, s, x, t, l, a, b
Initial factors

\[P(v) P(s) P(t | v) P(l | s) P(b | s) P(a | t, l) P(x | a) P(d | a, b) \]

Eliminate: \(v \)
Compute:
\[f_t(t) = \sum_v P(v) P(t | v) \]
\[\Rightarrow f_t(t) P(s) P(l | s) P(b | s) P(a | t, l) P(x | a) P(d | a, b) \]

Note: \(f_t(t) = P(t) \)
In general, result of elimination is not necessarily a probability term
• We want to compute $P(d)$
• Need to eliminate: x, t, l, a, b

Initial factors

$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

$\Rightarrow f(t)P(s)P(t|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

Eliminate: s

Compute: $f(t) = \sum f(s)P(b|s)P(t|s)$

$\Rightarrow f(t)P(b|t)P(a|t,l)P(x|a)P(d|a,b)$

Summing on s results in a factor with two arguments $f(b,t)$

In general, result of elimination may be a function of several variables

• We want to compute $P(d)$
• Need to eliminate: x, t, l, a, b

Initial factors

$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

$\Rightarrow f(t)P(s)P(t|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

Eliminate: a

Compute: $f(a) = \sum f(b)P(d|a,b)$

$\Rightarrow f(a)P(d|a,b)$

Note: $f(a) =$ 1 for all values of a!!

• We want to compute $P(d)$
• Need to eliminate: x, t, l, a, b

Initial factors

$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

$\Rightarrow f(t)P(s)P(t|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

Eliminate: a

Compute: $f(a) = \sum f(b)P(d|a,b)$

$\Rightarrow f(a)P(d|a,b)$

Note: $f(a) =$ 1 for all values of a!!

Variable Elimination

• We now understand variable elimination as a sequence of rewriting operations

• Actual computation is done in elimination step

• Exactly the same computation procedure applies to Markov networks

• Computation depends on order of elimination
Complexity of variable elimination

- Suppose in one elimination step we compute
 \[f'_x(y_1, \ldots, y_n) = \sum f(x, y_1, \ldots, y_n) \]
 \[f'_x(x, y_1, \ldots, y_n) = \prod f(x, y_1, \ldots, y_n) \]
 This requires
 - \[m \cdot |\text{Val}(X)| \cdot |\text{Val}(Y)| \] multiplications
 - For each value for \(x, y_1, \ldots, y_n \), we do \(m \) multiplications
 - \[|\text{Val}(X)| \cdot |\text{Val}(Y)| \] additions
 - For each value of \(y_1, \ldots, y_n \), we do \(|\text{Val}(X)| \) additions

Complexity is exponential in number of variables in the intermediate factor!

Understanding Variable Elimination

- We want to select "good" elimination orderings that reduce complexity
- We start by attempting to understand variable elimination via the graph we are working with
- This will reduce the problem of finding good ordering to graph-theoretic operation that is well-understood

Undirected graph representation

- At each stage of the procedure, we have an algebraic term that we need to evaluate
- In general this term is of the form:
 \[P(x_1, \ldots, x_n) = \sum \prod f(Z_i) \]
 where \(Z_i \) are sets of variables
- We now plot a graph where there is an undirected edge \(X \rightarrow Y \) if \(X, Y \) are arguments of some factor
 - that is, if \(X, Y \) are in some \(Z_i \)
- Note: this is the Markov network that describes the probability on the variables we did not eliminate yet

Chordal Graphs

- elimination ordering \(\Rightarrow \) undirected chordal graph

Graph:
- Maximal cliques are factors in elimination
- Factors in elimination are cliques in the graph
- Complexity is exponential in size of the largest clique in graph

Induced Width

- The size of the largest clique in the induced graph is thus an indicator for the complexity of variable elimination
- This quantity is called the induced width of a graph according to the specified ordering
- Finding a good ordering for a graph is equivalent to finding the minimal induced width of the graph

General Networks

- From graph theory:
 \textbf{Thm:}
 - Finding an ordering that minimizes the induced width is NP-Hard
 However,
 - There are reasonable heuristic for finding "relatively" good ordering
 - There are provable approximations to the best induced width
 - If the graph has a small induced width, there are algorithms that find it in polynomial time
Elimination on Trees

- Formally, for any tree, there is an elimination ordering with induced width = 1

Thm

- Inference on trees is linear in number of variables

PolyTrees

- A polytree is a network where there is at most one path from one variable to another

Thm:

- Inference in a polytree is linear in the representation size of the network
 - This assumes tabular CPT representation

Stochastic simulation

- Suppose you are given values for some subset of the variables, G, and want to infer values for unknown variables, U

 Thm

 - Inference on trees is linear in number of variables

PolyTrees

- A polytree is a network where there is at most one path from one variable to another

 Thm:

 - Inference in a polytree is linear in the representation size of the network
 - This assumes tabular CPT representation

Markov chain Monte Carlo methods

- So called because
 - Markov chain – each instance generated in the sample is dependent on the previous instance
 - Monte Carlo – statistical sampling method

 Thm:

 - Inference in a polytree is linear in the representation size of the network
 - This assumes tabular CPT representation

- Perform a random walk through variable assignment space, collecting statistics as you go
 - Start with a random instantiation, consistent with evidence variables
 - At each step, for some nonevidence variable, randomly sample its value, consistent with the other current assignments

 Thm:

 - Inference in a polytree is linear in the representation size of the network
 - This assumes tabular CPT representation

- Given enough samples, MCMC gives an accurate estimate of the true distribution of values

Approaches to inference

- **Exact inference**
 - Inference in Simple Chains
 - Variable elimination
 - Clustering / join tree algorithms

- **Approximate inference**
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Mean field theory

Learning Bayesian Networks
Learning Bayesian networks

- **Known Structure -- Complete Data**
 - Network structure is specified
 - Inducer needs to estimate parameters
 - Data does not contain missing values

- **Unknown Structure -- Complete Data**
 - Network structure is not specified
 - Inducer needs to select arcs & estimate parameters
 - Data does not contain missing values

- **Known Structure -- Incomplete Data**
 - Network structure is specified
 - Data contains missing values
 - We consider assignments to missing values

- **Known Structure / Complete Data**
 - Given a network structure G
 - And choice of parametric family for P(Xi|Pa_i)
 - Learn parameters for network

- **Goal**
 - Construct a network that is "closest" to probability that generated the data

- **Learning Parameters for a Bayesian Network**
 - Training data has the form:

 $$
 D = \begin{bmatrix}
 \vdots & \vdots & \vdots & \vdots \\
 \end{bmatrix}
 $$
Learning Parameters for a Bayesian Network

- Since we assume i.i.d. samples, likelihood function is

\[\mathcal{L}(\Theta : D) = \prod_{m} P(E[m], B[m], A[m], C[m] : \Theta) \]

Learning Parameters for a Bayesian Network (Cont.)

- By definition of network, we get

\[\mathcal{L}(\Theta : D) = \prod_{m} P(E[m], B[m], A[m], C[m] : \Theta) \]

 \[P(E[m] : \Theta) \]
 \[= \prod_{m} P(E[m] | B[m], A[m], C[m] : \Theta) \]

From Binomial to Multinomial

- For example, suppose \(X \) can have the values 1, 2, ..., \(K \)
- We want to learn the parameters \(\theta_1, \theta_2, \ldots, \theta_K \)

Sufficient statistics:

- \(N_1, N_2, \ldots, N_K \) - the number of times each outcome is observed

Likelihood function:

\[\mathcal{L}(\Theta : D) = \prod_{k=1}^{K} \theta_k^{N_k} \]

MLE:

\[\hat{\theta}_k = \frac{N_k}{\sum N_k} \]
Likelihood for Multinomial Networks

- When we assume that $P(X_i | P_{ai})$ is multinomial, we get further decomposition:

$$L(\Theta_i : D) = \prod_{m} P(x_i[m] | p_{ai}[m] : \Theta_i)$$

$$= \prod_{p_{ai}, \Theta_i} \prod_{m} P(x_i[m] | p_{ai}, \Theta_i)$$

$$= \prod_{p_{ai}, \Theta_i} \prod_{m, x_i} P(x_i | p_{ai}, \Theta_i)^{N(x_i, p_{ai})}$$

$$= \prod_{p_{ai}, x_i} \Theta = \prod_{p_{ai}, x_i} \Theta = \Theta = \Theta$$

Maximum Likelihood Estimation

Consistency

- Estimate converges to best possible value as the number of examples grow

- To make this formal, we need to introduce some definitions

KL-Divergence

- Let P and Q be two distributions over X

- A measure of distance between P and Q is the Kullback-Leibler Divergence

$$KL(P || Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

- $KL(P || Q) = 1$ (when logs are in base 2) =

- The probability P assigns to an instance is, on average, half the probability Q assigns to it

- $KL(P || Q) \geq 0$

- $KL(P || Q) = 0$ iff P and Q are equal

Consistency -- Geometric Interpretation

- Distributions that can be represented by $P(X | \theta)$

- Space of probability distribution

- θ^* is the MLE estimate given a dataset D
Bayesian Inference

Frequentist Approach:
- Assumes there is an unknown but fixed parameter \(\theta \)
- Estimates \(\theta \) with some confidence
- Prediction by using the estimated parameter value

Bayesian Approach:
- Represents uncertainty about the unknown parameter
- Uses probability to quantify this uncertainty:
 - Unknown parameters as random variables
- Prediction follows from the rules of probability:
 - Expectation over the unknown parameters

Bayesian Inference (cont.)
- We can represent our uncertainty about the sampling process using a Bayesian network

![Bayesian Network Diagram]

The values of \(X \) are independent given \(\theta \)
- The conditional probabilities, \(P(x[m] \mid \theta) \), are the parameters in the model
- Prediction is now inference in this network

Dirichlet Priors
- Recall that the likelihood function is
 \[L(\theta \mid D) = \prod_{k=1}^{K} \theta_k^{N_k} \]
- A Dirichlet prior with hyperparameters \(\alpha_1, \ldots, \alpha_K \) is defined as
 \[\mathcal{P}(\theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k-1} \]
 for legal \(\theta \), \(\theta \)

Then the posterior has the same form, with hyperparameters \(\alpha_1 + N_1, \ldots, \alpha_K + N_K \)

\[\mathcal{P}(\theta \mid D) \propto \mathcal{P}(\theta) \mathcal{P}(D \mid \theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k+N_k-1} \]

Dirichlet Priors (cont.)
- We can compute the prediction on a new event in closed form:
 - If \(\mathcal{P}(\theta) \) is Dirichlet with hyperparameters \(\alpha_1, \ldots, \alpha_K \)
 then
 \[P(X[k+1]) = \int \mathcal{P}(\theta) \mathcal{P}(D \mid \theta) \theta \]
 \[= \int \mathcal{P}(\theta) \mathcal{P}(D \mid \theta) \theta = \frac{\alpha_k}{\sum N_k} \]

- Since the posterior is also Dirichlet, we get
 \[P(X[k+1] \mid D) = \frac{\alpha_k + N_k}{\sum_{k=1}^{K} (\alpha_k + N_k)} \]

Prior Knowledge
- The hyperparameters \(\alpha_1, \ldots, \alpha_K \) can be thought of as "imaginary" counts from our prior experience
- Equivalent sample size = \(\alpha_1 + \cdots + \alpha_K \)
- The larger the equivalent sample size the more confident we are in our prior
Bayesian Prediction (cont.)

- Given these observations, we can compute the posterior for each multinomial $\theta_{x_i | p_{ai}}$ independently
 - The posterior is Dirichlet with parameters $\alpha_{(x_i = 1 | p_{ai})} + N(x_i = 1 | p_{ai})$, ..., $\alpha_{(x_i = k | p_{ai})} + N(x_i = k | p_{ai})$

- The predictive distribution is then represented by
 $$\tilde{\theta}_{x_i | p_{ai}} = \frac{\alpha(x_i, p_{ai}) + N(x_i, p_{ai})}{\alpha(p_{ai}) + N(p_{ai})}$$

Learning Parameters: Summary

- Estimation relies on **sufficient statistics**
 - For multinomial these are of the form $N(x_i, p_{ai})$
 - Parameter estimation
 $$\hat{\theta}_{x_i | p_{ai}} = \frac{N(x_i, p_{ai})}{N(p_{ai})}$$
 $$\tilde{\theta}_{x_i | p_{ai}} = \frac{\alpha(x_i, p_{ai}) + N(x_i, p_{ai})}{\alpha(p_{ai}) + N(p_{ai})}$$

- Bayesian methods also require choice of priors
- Both MLE and Bayesian are asymptotically equivalent and consistent
- Both can be implemented in an **on-line** manner by accumulating sufficient statistics

Why Struggle for Accurate Structure?

- Increases the number of parameters to be fitted
- Wrong assumptions about causality and domain structure

Approaches to Learning Structure

- **Constraint based**
 - Perform tests of conditional independence
 - Search for a network that is consistent with the observed dependencies and independencies

- **Pros & Cons**
 + Intuitive, follows closely the construction of BNs
 + Separates structure learning from the form of the independence tests
 - Sensitive to errors in individual tests

- **Score based**
 - Define a score that evaluates how well the (in)dependencies in a structure match the observations
 - Search for a structure that maximizes the score

- **Pros & Cons**
 + Statistically motivated
 + Can make compromises
 + Takes the structure of conditional probabilities into account
 - Computationally hard

Learning Structure from Complete Data
Likelihood Score for Structures

First cut approach:
- Use likelihood function

- Recall, the likelihood score for a network structure and parameters is
 \[L(G, \theta : D) = \prod_x P(x[m], \ldots, x[m] : G, \theta) \]

- Since we know how to maximize parameters from now we assume
 \[L(G : D) = \max_\theta L(G, \theta : D) \]

Posterior Score

Using Bayes rule:

\[P(G | D) = \frac{P(D | G) P(G)}{P(D)} \]

- Prior over structures
- Marginal likelihood
- Probability of Data

\[P(D) \text{ is the same for all structures } G \]

Can be ignored when comparing structures

Avoiding Overfitting

“Classic” issue in learning.

Approaches:

- **Restricting the hypotheses space**
 - Limits the overfitting capability of the learner
 - Example: restrict # of parents or # of parameters

- **Minimum description length**
 - Description length measures complexity
 - Prefer models that compactly describes the training data

- **Bayesian methods**
 - Average over all possible parameter values
 - Use prior knowledge

Marginal Likelihood

- By introduction of variables, we have that
 \[P(D | G) = \int P(D | G, \theta) P(\theta | G) d\theta \]

- This integral measures sensitivity to choice of parameters

Bayesian Inference

- Bayesian Reasoning---compute expectation over unknown \(G \)
 \[P(x[M+1] | D) = \sum G P(x[M+1] | D, G) P(G | D) \]

- **Assumption**: \(G \)s are mutually exclusive and exhaustive

- We know how to compute \(P(x[M+1] | G, D) \)
 - Same as prediction with fixed structure

- How do we compute \(P(G | D) \)

Marginal Likelihood: Multinomials

The same argument generalizes to multinomials with Dirichlet prior

- \(P(\theta) \) is Dirichlet with hyperparameters \(\alpha_1, \ldots, \alpha_K \)
- \(D \) is a dataset with sufficient statistics \(N_1, \ldots, N_K \)

Then

\[P(D) = \frac{\Gamma \left(\sum \alpha_i \right)}{\prod \Gamma (\alpha_i + N)} \]
Marginal Likelihood for General Network

The marginal likelihood has the form:

\[P(D | \mathcal{G}) = \prod_{\mathcal{P}} \left(\frac{I(\alpha(\mathcal{P}))}{I(\alpha(\mathcal{P})) + N(\mathcal{P})} \right) \prod_{\mathcal{X}} \left(\frac{I(\alpha(\mathcal{X}, \mathcal{P}))}{I(\alpha(\mathcal{X}, \mathcal{P})) + N(\mathcal{X}, \mathcal{P})} \right) \]

where

- \(N(\cdot) \) are the counts from the data
- \(\alpha(\cdot) \) are the hyperparameters for each family given \(\mathcal{G} \)

\[\gamma_{i \mathcal{G}} \prod \gamma_{i \mathcal{G}} = \prod \gamma_{i \mathcal{G}} \]

Dirichlet Marginal Likelihood

For the sequence of values of \(X_i \) when \(X_i \)’s parents have a particular value

Priors

- We need: prior counts \(\alpha(\cdot) \) for each network structure \(\mathcal{G} \)
- This can be a formidable task
 - There are exponentially many structures...

BDe Score

\[\text{Intuition: } M_0 \text{ prior examples distributed by } B_0 \]

- Set \(\alpha(x, \mathcal{P}) = M_0 P(x, \mathcal{P} \mid \mathcal{B}_0) \)
 - Note that \(\mathcal{P} \) are not the same as the parents of \(X_i \) in \(\mathcal{B}_0 \)
 - Compute \(P(x, \mathcal{P} \mid \mathcal{B}_0) \) using standard inference procedures
- Such priors have desirable theoretical properties
 - Equivalent networks are assigned the same score

Bayesian Score: Asymptotic Behavior

\[\log P(D \mid \mathcal{G}) = I(\mathcal{G} : D) - \frac{\log M}{2} \text{dim}(\mathcal{G}) + O(1) \]

Asymptotic Behavior: Consequences

\[\log P(D \mid \mathcal{G}) = I(\mathcal{G} : D) - \frac{\log M}{2} \text{dim}(\mathcal{G}) + O(1) \]

- Bayesian score is consistent
 - As \(M \to \infty \), the "true" structure \(\mathcal{G}^* \) maximizes the score (almost surely)
 - For sufficiently large \(M \), the maximal scoring structures are equivalent to \(\mathcal{G}^* \)
- Observed data eventually overrides prior information
 - Assuming that the prior assigns positive probability to all cases
Asymptotic Behavior

\[\text{Score}(G : D) = I(G : D) - \frac{\log M}{2} \text{dim}(G) \]

- This score can also be justified by the Minimal Description Length (MDL) principle
- This equation explicitly shows the tradeoff between
 - Fitness to data --- likelihood term
 - Penalty for complexity --- regularization term

Scores -- Summary

- Likelihood, MDL, (log) BDe have the form
 \[\text{Score}(G : D) = \sum_i \text{Score}(X_i \mid Pa_i^G : N(X_i, Pa_i)) \]
- BDe requires assessing prior network. It can naturally incorporate prior knowledge and previous experience
- BDe is consistent and asymptotically equivalent (up to a constant) to MDL
- All are score-equivalent
 - \(G \) equivalent to \(G' \) \(\Rightarrow \) Score(\(G \)) = Score(\(G' \))

Optimization Problem

Input:
- Training data
- Scoring function (including priors, if needed)
- Set of possible structures
 - Including prior knowledge about structure
Output:
- A network (or networks) that maximize the score

Key Property:
- Decomposability: the score of a network is a sum of terms.

Heuristic Search

We address the problem by using heuristic search
- Define a search space:
 - nodes are possible structures
 - edges denote adjacency of structures
- Traverse this space looking for high-scoring structures

Search techniques:
- Greedy hill-climbing
- Best first search
- Simulated Annealing
- ...

Difficulty

Theorem: Finding maximal scoring network structure with at most \(k \) parents for each variables is NP-hard for \(k \geq 1 \)
Exploiting Decomposability in Local Search

- **Caching**: To update the score of after a local change, we only need to re-score the families that were changed in the last move

Greedy Hill-Climbing

- Simplest heuristic local search
 - Start with a given network
 - empty network
 - best tree
 - a random network
 - At each iteration
 - Evaluate all possible changes
 - Apply change that leads to best improvement in score
 - Reiterate
 - Stop when no modification improves score
- Each step requires evaluating approximately \(n \) new changes

Model Selection

- So far, we focused on single model
 - Find best scoring model
 - Use it to predict next example
- **Implicit assumption**:
 - Best scoring model dominates the weighted sum
- **Pros**:
 - We get a single structure
 - Allows for efficient use in our tasks
- **Cons**:
 - We are committing to the independencies of a particular structure
 - Other structures might be as probable given the data

Greedy Hill-Climbing: Possible Pitfalls

- Greedy Hill-Climbing can get stuck in:
 - **Local Maxima**:
 - All one-edge changes reduce the score
 - **Plateaus**:
 - Some one-edge changes leave the score unchanged
 - Happens because equivalent networks received the same score and are neighbors in the search space
- Both occur during structure search
- Standard heuristics can escape both
 - Random restarts
 - TABU search

Model Averaging

- Recall, Bayesian analysis started with
 \[
P(x[M+1] | D) = \sum_{G} P(x[M+1] | D, G) P(G | D)
\]
 - This requires us to average over all possible models

Model Averaging (cont.)

- **Full Averaging**
 - Sum over all structures
 - Usually intractable—there are exponentially many structures
- **Approximate Averaging**
 - Find \(K \) largest scoring structures
 - Approximate the sum by averaging over their prediction
 - Weight of each structure determined by the Bayes Factor

\[
\frac{P(G | D)}{P(G | D)} \cdot \frac{P(G) P(D | G)}{P(G) P(D | G)} = \frac{P(D)}{P(D)}
\]

The actual score we compute.
Search: Summary

- Discrete optimization problem
- In general, NP-Hard
 - Need to resort to heuristic search
 - In practice, search is relatively fast (~100 vars in ~10 min):
 - Decomposability
 - Sufficient statistics
- In some cases, we can reduce the search problem to an easy optimization problem
 - Example: learning trees

References

- Nir Friedman’s excellent lecture notes, http://www.cs.huji.ac.il/~pmail/