Recall
- Independence: \(P(X,Y) = P(X)P(Y) \)
- Conditional Independence: \(P(X,Y|Z) = P(X|Z)P(Y|Z) \)
- Example 1: \(I(X,Y|\emptyset) \) and not \(I(X,Y|Z) \)
- Example 2: \(I(X,Y|Z) \) and not \(I(X,Y|\emptyset) \)

Conclusion: Independence does not imply conditional independence or vice-versa!

Importance of Independence
- Independence/Conditional Independence are important properties to identify in a distribution
- They provide one criterion on which a joint distribution can be **factored** into a product of simpler marginal and/or conditional distributions

Sequential Data
- sequence of values, \(x_1, \ldots, x_n \)
- a common assumption made is that next value in the sequence is independent of all of the past values given the current value:
 \[
 P(X_i | X_{i-1} \ldots X_1) = P(X_i | X_{i-1})
 \]
- **first-order Markov assumption**
- Allows factorization of joint into simpler products:
 \[
 p(x_1, \ldots, x_n) = p(x_1) \prod_{j=2}^{n} p(x_j | x_{j-1})
 \]

Samples
- In data mining, sometimes we work with entire population of interest
- Other times we work with a sample from the population
- Even if the entire data set is available, we may work with a sample:
 - entirely legitimate if we are interested in learning a model
 - may be less appropriate when we are looking for patterns of anomalous behavior

Statistical Inference
- Statistical inference: inferring properties of an unknown distribution from data generated by that distribution.
- most common: approximating the unknown distribution by choosing a distribution from a restricted family of distributions.
- **Estimate** parameters of the model from data
- (if we had the entire population, we would calculate parameters)
Statistical Inference, cont.

- assumes that the sample has been drawn from the population at random
- The model specifies the distribution for the population; the probability that a particular value for the variable will appear in the sample
- If we have a model M for the data, we can compute the probability that a random sampling process will lead to the data $D = \{x(1), \ldots, x(n)\}$:

 $$p(D | M)$$

- if we assume the probability of each data point is independent, or 'drawn at random' then

 $$p(D | \theta, M) = \prod_{i=1}^{n} p(x(i) | \theta, M)$$

Desirable properties of estimators

- Let $\hat{\theta}$ be an estimate for a population parameter θ
- The value we compute for $\hat{\theta}$ depends on the data
- For different samples, we will have different estimates
- in other words, $\hat{\theta}$ is a random variable
- it will have a distribution, mean, $E(\hat{\theta})$ and $\text{Var}(\hat{\theta})$
- The bias of an estimator is defined:

 $$\text{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- An estimator is unbiased if $E(\hat{\theta}) = \theta$
- i.e., no systematic departure from the true parameter on average

Example

- Suppose we ignore data D and simply say that $\hat{\theta}$ is 1.0$
- \text{Var}(\hat{\theta})$ is 0
- however, in most cases this estimator will have a bias that will be nonzero and large

Desirable estimator properties, cont.

- The variance of an estimator is another measure of quality.
- The variance of an estimator is:

 $$\text{Var}(\hat{\theta}) = E[\hat{\theta} - E(\hat{\theta})]^2$$

- Measures how sensitive the estimator is to individual data sets
- Choose between estimators that have the same bias by choosing one with minimum variance
- unbiased estimators with minimum variance are called best unbiased estimators

Bias-Variance decomposition of MSE

- The mean squared error (MSE) of $\hat{\theta}$ is

 $$E[(\hat{\theta} - \theta)^2] = E[\hat{\theta} - E(\hat{\theta})]^2 + E[E(\hat{\theta} - \theta)^2]$$

- $E[(\hat{\theta} - \theta)^2] = \text{Bias}^2 + \text{Variance}$

- MSE is useful criteria, since it measures systematic bias and random variance between estimate and true value
- Unfortunately, bias and variance often work in different directions; reducing an estimator’s bias tends to increase the variance and vice-versa.

Bias Variance Tradeoff
More desirable properties

• Let \(\hat{\theta}_1, \hat{\theta}_2, \ldots, \hat{\theta}_m \) be a sequence of estimators based on increasing sample sizes \(n_1, n_2, \ldots, n_m \).
• The sequence is consistent if
 \[
 \lim_{n \to \infty} \Pr(\hat{\theta}_n = \theta) = 1.
 \]

Parameter estimation

• Maximum Likelihood Estimation
• Bayesian Estimation

Likelihood Function

• Let \(D = \{x(1), \ldots, x(n)\} \)
• Independently sampled, from the same distribution \(p(x|\theta) \)
 'independent and identically distributed', iid
• The likelihood function, \(L(\theta | x(1), \ldots, x(n)) \) captures the probability of the data as a function of \(\theta \)
 \[
 L(\theta | D) = L(\theta | x(1), \ldots, x(n)) = p(x(1), \ldots, x(n) | \theta) = \prod_{i=1}^{n} p(x(i) | \theta)
 \]

Maximum Likelihood Estimation (MLE)

• Most widely used method of parameter estimation
• The likelihood function, \(L(\theta | x(1), \ldots, x(n)) \)
 \[
 L(\theta | D) = L(\theta | x(1), \ldots, x(n)) = \prod_{i=1}^{n} p(x(i) | \theta)
 \]
• Choose value that maximizes the likelihood function
 \(\hat{\theta}_{MLE} \)

Example

• Database of customer purchases, want to estimate probability that a randomly chosen customer buys milk
• Suppose we have random sample 1000 customers that either do or do not buy milk, \(D = \{x(1), \ldots, x(n)\} \)
• Assume simple Binomial model where \(\theta \) is the probability that milk is purchased
 \[
 L(\theta | x(1), \ldots, x(1000)) = \prod_{i=1}^{1000} \theta^{x(i)} (1-\theta)^{1000-x(i)} = \theta^{\sum x(i)} (1-\theta)^{1000-\sum x(i)}
 \]
• Take logs:
 \[
 L(\theta) = \log \theta^{\sum x(i)} (1-\theta)^{1000-\sum x(i)} = \sum x(i) \log \theta - (1000-\sum x(i)) \log (1-\theta)
 \]
• Differentiate and set to zero:
 \[
 \frac{\partial}{\partial \theta} L(\theta) = \sum x(i) - (1000-\sum x(i)) \frac{\theta}{1-\theta} = 0
 \]
 \[
 \hat{\theta}_{MLE} = \frac{r}{1000}
 \]

Binomial Likelihood Function
Next Time

- Reading:
 - HMS, chapter 4 cont.

- Topic:

- Due:
 - homework #1

References

- http://www.cc.gatech.edu/classes/cs6751_97_winter/Topics/stat-meas/probHist.html
- http://mathforum.org/epigone/apstat-l/folkixblon