• Today’s Reading:
 – HMS, chapter 9

• Today’s Lecture:
 – Descriptive Modeling
 – Clustering Algorithms

• Upcoming:
 – hw2 available on web page this evening
 – project proposals due 3/12
Descriptive Models

• model presents the main features of the data, a global summary of the data
 – cluster analysis
 – density estimation
Cluster Analysis

• decomposing or partitioning a data set into groups so that
 – the points in one group are similar to each other
 – and are as different as possible from the points in other groups

This isn’t really clustering, it’s just binning the objects...
General Applications of Clustering

• Pattern Recognition
• Spatial Data Analysis
 – create thematic maps in GIS by clustering feature spaces
 – detect spatial clusters and explain them in spatial data mining
• Image Processing
• Economic Science (especially market research)
• WWW
 – Document classification
 – Cluster Weblog data to discover groups of similar access patterns
Examples of Clustering Applications

- **Marketing**: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.
- **Land use**: Identification of areas of similar land use in an earth observation database.
- **Insurance**: Identifying groups of motor insurance policy holders with a high average claim cost.
- **City-planning**: Identifying groups of houses according to their house type, value, and geographical location.
- **Earthquake studies**: Observed earthquake epicenters should be clustered along continent faults.
Example

- households:
 - location, income, number of children, rent/own, crime rate, number of cars

- The appropriate clustering will depend on goals:
 - minimize delivery time \(\Rightarrow\) cluster by location
 - others?
Clustering

• decomposing or partitioning a data set into groups so that
 – the points in one group are similar to each other
 – and are as different as possible from the points in other groups

• Measure of distance is fundamental

• Explicit representation:
 – $D(x(i), x(j))$ for each x
 – only feasible for small domains

• Measurement:
 – distance computed from features
 – we saw a number of different ways of doing this in ch. 2
Clustering

- **Huge** body of work
- (aka unsupervised learning, segmentation, ...)
- One of the major difficulties is in evaluating the success of a method
- validity depends on goals
- if goal is to find ‘interesting’ clusters, this is rather difficult to quantify
- however, for our probabilistic methods, we will present some tools for validating our models
Choosing an Algorithm

• As we will see, different algorithms will result in clusters of different ‘shapes’
• The appropriate shape will depend on the application and should be consider when choosing an algorithm
• match method to objectives
Families of Clustering Algorithms

• Partition-based methods
 – e.g., K-means

• Hierarchical clustering
 – e.g., hierarchical agglomerative clustering

• Probabilistic model-based clustering
 – e.g., mixture models
Partition-based Clustering Algorithms

- Given set of n data points $D = \{x(1), ..., x(n)\}$ partition data into k clusters $C = \{C_1, ..., C_k\}$ such that each $x(i)$ is assigned to a unique C_j and $\text{Score}(C, D)$ is minimized/maximized

- combinatorial optimization: searching for allocation of n objects into k classes that maximizes score function

- Number of possible allocations $\approx n^k$

- exhaustive typically finding the optimal solution is intractable

- Resort to iterative improvement
Score Function

- Score function:
 - clusters compact \Rightarrow minimize within cluster distance, $\text{wc}(C)$
 - clusters should be far apart \Rightarrow maximize distance between clusters, $\text{bc}(C)$
- Given a clustering C, assign cluster centers, c_k
 - if points belong to space where means make sense, we can use the centroid of the points in the cluster: $c_k = \frac{1}{n_k} \sum_{x \in C_k} x$
- $\text{wc}(C) = \text{sum-of-squares within cluster distance}$
 \[\text{wc}(C) = \sum_{k=1}^{K} \text{wc}(C_k) = \sum_{k=1}^{K} \sum_{x \in C_k} d(x, c_k) \]
- $\text{bc}(C) = \text{distance between clusters}$
 \[\text{bc}(C) = \sum_{1 \leq j < k \leq K} d(c_j, c_k)^2 \]
- $\text{Score(C,D)} = f(\text{wc}(C), \text{bc}(C))$
K-means

• Idea:
 – Start with randomly chosen cluster centers
 – Assign points to give greatest increase in score
 – Recompute cluster centers
 – Reassign points
 – Repeat until no changes
K-means example
K-means example
K-means example
K-means example
K-means example
K-means example
K-means example #2
K-means example #2
K-means example #2
Demos

k-means applet
another demo
image example
Complexity

• Does algorithm terminate?
• Does algorithm converge to optimal solution?
• Time complexity one iteration? nk
Algorithm Variations

- recompute centroid as soon as a point is reassigned
- allow merge and split of clusters
- methods for improving solution accuracy?
- in cases where means do not make sense
 - k-mediods – use one of the data points as center
 - categorical data -
- what if data set is too large for algorithm to be tractable?
 - compress data by replacing groups of objects by ‘condensed representation’
Binary Variables

- A contingency table for binary data

<table>
<thead>
<tr>
<th>Object i</th>
<th>1</th>
<th>0</th>
<th>$a+b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>$a+b$</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>d</td>
<td>$c+d$</td>
</tr>
<tr>
<td>sum</td>
<td>$a+c$</td>
<td>$b+d$</td>
<td>p</td>
</tr>
</tbody>
</table>

- Simple matching coefficient (invariant, if the binary variable is \textit{symmetric}): \[d(i, j) = \frac{b + c}{a + b + c + d} \]

- Jaccard coefficient (noninvariant if the binary variable is \textit{asymmetric}): \[d(i, j) = \frac{b + c}{a + b + c} \]
Dissimilarity between Binary Variables

- **Example**

<table>
<thead>
<tr>
<th>Name</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mary</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Jim</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

\[
d(\text{jack}, \text{mary}) = \frac{0 + 1}{2 + 0 + 1} = 0.33
\]

\[
d(\text{jack}, \text{Jim}) = \frac{1 + 1}{1 + 1 + 1} = 0.67
\]

\[
d(\text{Jim}, \text{mary}) = \frac{1 + 2}{1 + 1 + 2} = 0.75
\]
Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green

- Method 1: Simple matching
 - \(m \): # of matches, \(p \): total # of variables

 \[
 d(i, j) = \frac{p - m}{p}
 \]

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the \(M \) nominal states
Hierarchical Clustering

- rather than deciding the number of clusters K at the start, build a hierarchy of nested clusters
- either gradually
 - merge points (agglomerative)
 - divide superclusters (divisive)
- result of either approach can be shown as a dendogram which depicts the sequence of merges or splits
Dendogram

http://www.flg.tum.de/pbpz/mm/mt/dendro.htm
Agglomerative Methods

- based on measures of distance between clusters

\[
\text{for } i = 1 \text{ to } n \\
\text{let } C_i = \{x(i)\} \\
\text{while there is more than one cluster left do} \\
\text{let } C_i \text{ and } C_j \text{ be the pair of clusters with minimum } D(C_i, C_j) \\
C_i = C_i \cup C_j \\
\text{remove } C_j \\
\text{end}
\]

- time complexity?
- space complexity?
Measuring Distances between Clusters

- **single link/nearest neighbor method:**
 \[D(C_i, C_j) = \min\{d(x, y) \mid x \in C_i, y \in C_j\} \]

- **complete link/furthest neighbor method:**
 \[D(C_i, C_j) = \max\{d(x, y) \mid x \in C_i, y \in C_j\} \]

- **average link:**
 \[D(C_i, C_j) = \text{avg}\{d(x, y) \mid x \in C_i, y \in C_j\} \]

- **centroid measure:**
 \[D(C_i, C_j) = d(c_i, c_j) \text{ where } c_i \text{ and } c_j \text{ are centroids} \]

- **Ward’s measure:** difference between total within cluster sum of squares for the two clusters separately and the sum of squares error in the merged cluster
Divisive Methods

- Begin with a single cluster, consisting of all the data points
- split into components
- ultimately ends with a partition in which each cluster has a single point
- **monolithic** methods split cluster using one variable at a time
- **polythetic** methods make splits based on all of the variables together; difficulty comes in how to choose potential splits
- in general, divisive methods are less widely used than agglomerative methods
Demos

Next Time

• Reading:
 – HMS, chapter 9 cont.
References

• *Data Mining*, Jiawei Han and Micheline Kamber. Morgan Kaufmann, 2001. slides: http://www.cs.sfu.ca/~han/dmbook

• http://www.flg.tum.de/pbpz/mm/mt/dendro.htm