An Information-centric View of Communications

What information is needed where and why?
Who Communicates

• **Two autonomous entities**
 - Capable of independent operations
 » Timing
 » What if not independent
 • Master-Slave operation
 • I/O Devices

• **What do they communicate?**
 - Information
 - Convert to message – Has meaning only to the two entities
Message

- Encoding and decoding known/agreed upon by the sender/receiver
- Representable in a form so that it can be manipulated by processors
 - Stored
 - Moved
 - (Not Necessarily Interpreted)
Communications Between Two Entities

- S and R need to communicate
- Sender S needs to send information I to receiver R and be assured that R has received it
- All assumptions have to be true by design or due to the physical properties
Entities

• Sender
 – Capable of autonomous action
 – Has access to information I
 » How long does it take for it to access I?
 – Has ability to send and receive signals to/from the medium

• Receiver
 – Capable of autonomous action
 – Has ability to send and receive signals to/from the medium

• Medium
 – Can move signals from S to R and R to S
 » What additional properties must M have?
Who to Communicate with

• How does the sender know to communicate with the receiver?
 – Based on additional information
 – Hard Coded
 – Search engines
 » Has to know the name/address of search engines

• What does sender know about the Receiver?
 – Name
 – Address
 – Some other properties
Expectations

• Does the Sender expect the Receiver to take some specific action on receiving the message?
 – Based on additional information
 – How does it know that the action was taken by the Receiver?
 » Confirmation
 » Response
 » …
 – How does it know that the receiver received the message intact?
Receiver

• How does it know that Sender is sending a message?

• When should it listen?
 – Always listening
 – At some agreed upon times
 – Some other mechanism
 » Signal
 • How does it know to listen for the signal
 – ...

Spring 2003
Message Movement

• Message Representation
 – Bit String

• Movement
 – Medium
 – IPC
 » On the same computer
 » OS Mechanisms
 » Shared memory
 – On different computers
 » Medium permits movement of message encoded as bit string from one machine to the other
Medium

• Capabilities
 – Can move messages
 – What can we assume about the capabilities
 » Functionality – storage, order, processing
 » Performance

• Topology
 – Point to point – one sender/one receiver
 – Broadcast – one sender/multiple possible receivers

• Control
 – Active
 – Passive
Medium

• Lowest level
 – Dedicated
 » Point-to-point
 – Shared
 » Multicast/Broadcast
 » Control Mechanisms
 • Who
 • When

• Higher level
 – Additional capabilities
 » Buffering
 » Error handling
 » Format Conversion
 » Segmentation/ Packetizing
 » ...

Spring 2003
Timing

• Passive Medium
 – There must be agreement about timing
 » Predefined
 » R Listening all the time
 • Interrupt is a form of listening all the time
 • Polling can be in hardware or in software
 – Sender and receiver must synchronize to interpret the signals properly
 – Buffers act as universal sender/receiver

• Similar issues arise at higher levels
Information Coding

- S and R must know the common coding for the information
- Interpretation of the information must be consistent
Naming

• S must know the identity of R
 – Explicitly
 – Implicitly

• ID must contain enough information for the medium to locate R

• Name / Address mapping issues

• Routing issues

• Is mapping static or dynamic
 – Mobile computing
Confirmation

• How does S know that R has received the information correctly?
 – True by design
 – Handshake
 – Explicit acknowledgement

• Error Detection and Handling
 – Who detects
 – What steps are taken
 » Ignore error
 » Inform sender
 » ..
Building Block

• Simple Medium
• Media as agent
 – Active
 » Capable of acting as
 • sender
 • receiver
 • processor
 – State information
 – Storage Capabilities
Organizing a network

• Hierarchical structure
 – Levels of abstraction

• Defined in terms of units of information
 – bit
 – byte
 – frame
 – packet
 – message
 – cell

• At one level
 – Sender
 – Receiver
 – Medium
Transfer Cycle

- Move one unit of information from S to R and sustain a delay
- Unacknowledged
- Sequencing of information
 - Explicit - sequence numbering
 - Implicit - Medium guarantees in order delivery
Producer Consumer Relationship

- No Storage \(\Rightarrow t_2 = t_3 \)

\[\text{Cycle time} = \max(t_1, t_4) + t_2 \]

- Single Buffer

\[\text{Cycle Time} = \max(t_1 + t_2, t_2 + t_3, t_3 + t_4) \]

- Multiple Buffers?
Resource Implications

- All actions require the use of resources
- Have to consider them in Resource/Time space
- Independent resources may be capable of autonomous actions
- Interdependencies/ sequencing of actions has to be explicitly identified
Basics of Packet Switching
Multiple Protocol Layers

Headers/trailers are required at each level
Model of a node
Processing Required

Move the incoming packet to an outgoing link
• Packet must have enough information to permit determination of which link?
Steps in Processing a Packet

1. Packet is received in the buffer of the line receiver
 - Checked for errors
 - New buffer assigned to the line receiver

2. Header is examined
 - What to do if error

3. Outgoing link is determined
 - What to do if error

4. Packet is moved to the outgoing link buffer
 - What to do if buffers are full?

5. Packet is sent

Detailed model is lot more complex
Resources Available

- **Receiver**
 - Has buffers
 - Can function autonomously receiving a packet once buffer is available

- **Processor**
 - Carries out processing and error handling
 - Buffer management
 - Priority management

- **Sender**
 - Has buffer
 - Can function autonomously sending a packet once the packet is in the buffer
Step 1 - Receiving the Packet

• t_1 - Time to receive the packet
 - Line speed R
 - Packet size N

• $t_1 = N/R$

• Example
 - $R = 1$ Mb/sec
 - $N = 1024$ Bytes
 - $t_1 = 1024 \times 8/1 = 8$ ms

• Example
 - $R = 1$ Gb/s
 - $N = 50$ Bytes
 - $t_1 = 50 \times 8/1 = 400$ ns
Steps 2,3,4 - Processing

• t_2 - Depends on many factors
 – Processor speed
 – Complexity of steps
 – Error conditions and handling
 – ...

• Resource Involved - Processor
 – One processor may be handling all the lines

• There may be queuing delays
Step 5 - Sending

• t_3 - Time to send the packet
 – Line speed R
 – Packet size N

• $t_3 = \frac{N}{R}$

• Example
 – $R = 1$ Mb/sec
 – $N = 1024$ Bytes
 – $t_3 = 1024 \times 8 / 1 = 8$ ms

• Example
 – $R = 1$ Gb/s
 – $N = 50$ Bytes
 – $t_3 = 50 \times 8 / 1 = 400$ ns

Resource used - Sender
Timing Issues

• Store and Forward
 – Can not overlap steps
 – Time to process
 » $t_1 + t_2 + t_3$
 – For a series of packets
 » May overlap the times when different resources are used

• Cut Through Forwarding
 – Start forwarding the packet as soon as the header has arrived and examined to determine outgoing link
 – What is the link is busy?
 – Have to implement store and forward also
Routing

- **Source Routing**
 - The header contains the information about each outgoing link
 - For long routes header may become large

- **Hop Routing**
 - Each node maintains a table
 - Header contains Old ID, New ID and Link(Port)
 » Look up old ID in the table
 » Replace with New ID in the packet
 » Put it on the Link

- **Hierarchical**
 - Have a few levels
Source Routing
Hop Routing

<table>
<thead>
<tr>
<th>old</th>
<th>new</th>
<th>port</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>57</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>94</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>
Error Recovery

• Should error recovery be done at the lowest level?
• Sequence Numbering?
• When cell lost what to do?
 – Loose message
• Does Forward Error Correction help?
• What are the tradeoffs?