Due Wednesday, March 17 at the beginning of your discussion section.

You must write the solutions to the problems single-sided on your own lined paper, with all sheets stapled together, and with all answers written in sequential order or you will lose points.

1. Simplify this expression: \(\ln \left(\prod_{i=1}^{n} e^{f(i)} \right) \).

2. Prove \(\forall n \in \mathbb{Z}^+ \sum_{i=1}^{n} (2i)(2i - 1) = \frac{n(n + 1)(4n - 1)}{3} \).

3. Prove \(\forall n \in \mathbb{Z}^+ \sum_{i=1}^{n} (4i - 3) = n(2n - 1) \).

 Note: Do not use Theorem 4.2.2 to solve this problem.

4. Prove \(\forall n \in \mathbb{Z}^+ \prod_{i=1}^{n} 2^i = 2 \left(\frac{n^2 + n^3}{2} \right) \).

5. Recall the recursive definition of the Fibonacci sequence:

 \[
 F_1 = 1 \\
 F_2 = 1 \\
 F_k = F_{k-1} + F_{k-2} \quad \text{for} \ k > 2.
 \]

 Prove these interesting facts about this sequence:

 (a) \(\forall n \in \mathbb{Z}^+ \sum_{k=1}^{n} F_k = F_{n+2} - 1 \)

 (b) \(\forall n \in \mathbb{Z}^+ \sum_{k=1}^{n} F_k^2 = F_n \cdot F_{n+1} \).

 Hint: You can perform a change of variable on the third line in the Fibonacci sequence formula to obtain equivalent formulas that may prove useful.