CMSC 250

- Syllabus
- Lecture Section: Tu & Thur 9:30-10:45 or 11:00-12:15
- Lab/Discussion Section M & W 10-10:50 or 11-11:50
- Every Week:
 - Worksheet
 - Quiz
 - Homework
- Hourly Exams - as noted on Syllabus
- Web Page and UNIX Accounts

Motivation

Why Learn This Material??
- Some things can be "directly applied"
- Some things are "good to know"
- Some things just teach "a way of thinking" and expressing yourself

Overall Theme:
- Proofs

Course Content

- Propositional Logic (and circuits)
- Predicate Calculus - quantification
- Number Theory
- Mathematical Induction
- Counting - Combinations and Probability
- Functions
- Relations
- Graph Theory
Statement / Proposition

- declarative (true or false)
- symbolized by a letter
- Examples:
 - Today is Wednesday.
 - $5 + 2 = 7$
 - $3 \times 6 > 18$
 - The sky is blue.
 - Why is the sky blue?
 - Brett Farve
 - This sentence is false.

Other Symbols and Definitions to make compound statements

- Conjunction
 - and --- symbolized by \land
- Disjunction
 - or ---- symbolized by \lor
- Negation
 - not ---- symbolized by \neg
- Truth Tables for these operators

Translation of English to Symbolic Logic Statements

- The sky is blue.
 - single statement - assign to a letter i.e. b
- The sky is blue and the grass is green.
 - conjunction
 - each single statement gets a letter i.e. b, g
 - and join with \land i.e. $b \land g$
- The sky is blue or the sky is purple.
 - disjunction
 - each single statement gets a letter i.e. b, p
 - and join with \lor i.e. $b \lor p$
Trickier Translation 1

- The sky is blue or purple.
 - two statements
 - the sky is blue assign this to b
 - the sky is purple assign this to p
 - still a disjunction
 - the sky is blue or the sky is purple
 - b v p

Trickier Translation 2

- The sky is blue but not dark.
 - two statements
 - the sky is blue assign this to b
 - the sky is dark assign this to d
 - conjunction with negation
 - the sky is blue and the sky is not dark
 - the sky is blue and it is not the case that the sky is dark
 - “it is not the case that the sky is dark” is ~d
 - b ^ ~d

Trickier Translation 3

- 2 ≤ x ≤ 6
- English: x is greater than or equal to 2 and less than or equal to 6
- two statements:
 - x is greater than or equal to 2 assign this to p
 - x is less than or equal to 6 assign this to q
- becomes
 - p ^ q
#3 Continued --- $2 \leq x \leq 6$

- *p* is actually a compound statement
 - x is greater than 2 or x is equal to 2 \(r \lor s \)
 - x is greater than 2 is symbolized by \(r \)
 - x is equal to 2 is symbolized by \(s \)
- *q* is actually a compound statement
 - x is less than 6 or x is equal to 6 \(m \lor n \)
 - x is less than 6 is symbolized by \(m \)
 - x is equal to 6 is symbolized by \(n \)
- \(p \land q \) becomes \((r \lor s) \land (m \lor n) \)

More about Operators

- **exclusive or**: \(p, q \) \(p \lor q \) but not both
 - \(p \oplus q \)
 - same as \((p \lor q) \land \neg(p \land q) \)
- Precedence between the operators
 - \(\neg \) (not) highest precedence
 - \(\land \) (and) / \(\lor \) (or) have equal precedence
 - use parentheses to override default precedence
 - \(a \land b \lor c \)

Other "More Advanced" Truth Tables

- \((p \land q) \lor \neg p \)
- \(\neg q \lor (p \land q) \)
- \((p \land r) \lor (q \land r) \)
- \((p \land \neg r) \lor (p \land r) \)
- \((p \land \neg q) \lor (q \land r) \)
Special Results in the Truth Table

- **Tautological Proposition**
 - A tautology is a statement that can never be false
 - When all of the lines of the truth table have the result "true"

- **Contradictory Proposition**
 - A contradiction is a statement that can never be true
 - When all of the lines of the truth table have the result "false"

- **Logical Equivalence of two propositions**
 - Two statements are logically equivalent if they will be true in exactly the same cases and false in exactly the same cases
 - When all of the lines of one column of the truth table have all of the same truth values as the corresponding lines from another column of the truth table

Special Truth Tables

- $p \lor \neg p$
- $p \land \neg p$
- $(p \land r) \land \neg(p \lor r)$
- $(p \land \neg q) \equiv (\neg q \land p)$
- $(p \land q) \equiv (\neg (q \lor \neg p)$

Logical Equivalences

Theorem 1.1.1 - Page 14

- **Double Negative:**
 - $\neg(\neg p) \equiv p$

- **Commutative:**
 - $p \lor q \equiv q \lor p$ and $p \land q \equiv q \land p$

- **Associative:**
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$ and $(p \land q) \land r \equiv p \land (q \land r)$

- **Distributive:**
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ and $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
More Logical Equivalences

• Idempotent:
 \(- p \land p \equiv p \) and \(- p \lor p \equiv p \)

• Absorption:
 \(- p \lor (p \land q) \equiv p \) and \(p \land (p \lor q) \equiv p \)

• Identity:
 \(- p \land t \equiv p \) and \(p \lor c \equiv p \)

• Negation:
 \(- p \lor -p \equiv t \) and \(p \land -p \equiv c \)

• Universal Bound:
 \(- p \land c \equiv c \) and \(p \lor t \equiv t \)

• Negations of t and c:
 \(- t \equiv c \) and \(- c \equiv t \)

DeMorgan's Laws

• \(-(p \lor q) \equiv -p \land -q \)

• \(-(p \land q) \equiv -p \lor -q \)

• It is not the case that Pete or Quincy went to the store. ⇔ Pete did not go to the store and Quincy did not go to the store.

• It is not the case that both Pete and Quincy went to the store. ⇔ Pete did not go to the store or Quincy did not go to the store.

Prove by Truth Table & by Rules

• \(- (p \lor -q) \lor (-q \land -p) \equiv -p \)

• \(- ((-p \land q) \lor (-p \land -q)) \lor (p \land q) \equiv p \)

• \((p \lor q) \lor (-p \land q) \equiv (p \land -q) \lor (q \land -p) \)
Conditional Statements

- Hypothesis → Conclusion
- If this, then that. Hypothesis implies Conclusion
- → has lowest precedence (~ / ^ ∨ / →)
- If it is raining, I will carry my umbrella.
- If you don’t eat your dinner, you will not get desert.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p → q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Converting: → to ∨

- p → q ≡ ~p ∨ q
- Show with Truth Table
- ~(p → q) ≡ p ∧ ~q
- Show with Truth Table and Rules

Contrapositive

- Negate the conclusion and negate the hypothesis
- Use the negated Conclusion as the new Hypothesis and the negated Hypothesis as the Conclusion
- p → q ≡ ~q → ~p
- English:
 - If Paula is here, then Quincy is here.
 - If Quincy is not here, then Paula is not here.
Converse and Inverse

• \(p \rightarrow q \)
 • If Paula is here, then Quincy is here.
 • Converse:
 – swap the hypothesis and the conclusion
 \(-q \rightarrow p \)
 – If Quincy is here, then Paula is here.
 • Inverse:
 – negate the hypothesis and negate the conclusion
 \(-\sim p \rightarrow \sim q \)
 – If Paula is not here, then Quincy is not here.

biconditional

• \(p \text{ if and only if } q \)
 • \(p \leftrightarrow q \)
 • \(p \text{ iff } q \)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Only If

• Translation to if-then form
 – p only if q
 – p can be true only if q is true
 – if q is not true then p can't be true
 – if not q then not p \((\sim q \rightarrow \sim p)\)
 – if p then q \((p \rightarrow q)\)
• Translation in English
 – You will graduate is CS only if you pass this course.
 • \(G \text{ only if } P \)
 – If you do not pass this course then you will not graduate in CS.
 • \(-P \rightarrow \sim G\)
 – If you graduate in CS then you passed this course.
 • \(G \rightarrow P\)
Other English Words for Implication

• **Sufficient Condition**
 - “if r, then s” \(r \rightarrow s \)
 - means \(r \) is a **sufficient** condition for \(s \)
 - the truth of \(r \) is sufficient to ensure the truth of \(s \)

• **Necessary Condition**
 - “if y, then x” \(y \rightarrow x \)
 - equivalent to “if not x, then not y” \(\sim x \rightarrow \sim y \)
 - means \(x \) is a **necessary** condition for \(y \)
 - the truth of \(x \) is necessary if \(y \) is true

• **Sufficient and Necessary Condition**
 - if, and only if \(p \leftrightarrow q \)
 - the truth of \(p \) is enough to ensure the truth of \(q \) and vice versa

Argument

• A Sequence of Statements where
 - The **last in the sequence** is the Conclusion
 - All **others** are Premises (Assumptions, Hypotheses)

(\(\text{premise1} \land \text{premise2} \land \ldots \land \text{premiseN} \) \(\rightarrow \) **conclusion**

• **Critical Rows of the Truth Table**
 - where all of the premises are true
 - Only one premise being false makes the conjunction false
 - A false hypothesis on a conditional can never make the whole false

• The **Truth Value of the Conclusion in the Critical Rows**
 - **Valid Argument** If and only if all Critical rows have true conclusion
 - **Invalid Argument** If any single Critical row has a false conclusion

Rules of Inference (Table 1.3.1 - Page 39)

<table>
<thead>
<tr>
<th>Modus Ponens</th>
<th>Modus Tollens</th>
<th>Disjunctive Syllogism</th>
<th>Rule of Contradiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \rightarrow q)</td>
<td>(p \rightarrow q)</td>
<td>(p \lor q \rightarrow p \lor q)</td>
<td>(\neg p \rightarrow \neg q \rightarrow p \lor q)</td>
</tr>
<tr>
<td>(p)</td>
<td>(\neg q)</td>
<td>(\neg p)</td>
<td>(\neg q)</td>
</tr>
<tr>
<td>(\therefore q)</td>
<td></td>
<td>(\therefore \neg q)</td>
<td>(\therefore p)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disjunctive Addition</th>
<th>Conjunctive Simplification</th>
<th>Hypothetical Syllogism</th>
<th>Dilemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \lor q \lor r)</td>
<td>(p \lor q \lor r)</td>
<td>(p \lor q \lor r)</td>
<td></td>
</tr>
<tr>
<td>(\therefore q)</td>
<td>(\therefore q)</td>
<td>(\therefore q)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\therefore q)</td>
<td></td>
</tr>
</tbody>
</table>
Proofs Using Rules of Inference

<table>
<thead>
<tr>
<th>P1</th>
<th>p ∨ q</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>q → r</td>
</tr>
<tr>
<td>P3</td>
<td>¬p</td>
</tr>
<tr>
<td>∴</td>
<td>r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>p ^ q</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>p → s</td>
</tr>
<tr>
<td>P3</td>
<td>¬r → ¬q</td>
</tr>
<tr>
<td>∴</td>
<td>s ^ r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>p ∨ q</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>¬(q ∨ r)</td>
</tr>
<tr>
<td>P3</td>
<td>p → (m → r)</td>
</tr>
<tr>
<td>∴</td>
<td>¬m</td>
</tr>
</tbody>
</table>

Conditional Worlds

- Making Assumptions - Only Allowed if you go into a "conditional world"

```
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume anything</td>
</tr>
<tr>
<td>list of statements true</td>
</tr>
<tr>
<td>in the worlds where the assumption is true</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>
```

| Assumption -> anything from the conditional world |

Conditional World Assumption Leads to Contradiction

- Make an Assumption, but that Assumption leads to a contradiction in the conditional world.

```
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume anything</td>
</tr>
<tr>
<td>list of statements true</td>
</tr>
<tr>
<td>in the worlds where the assumption is true</td>
</tr>
<tr>
<td>a contradiction with something else known true</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>
```

| Assumption must be false in all possible worlds |
Prove Using "Conditional World Method"

<table>
<thead>
<tr>
<th>P1</th>
<th>(p ∨ q) → s</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>r → p</td>
</tr>
<tr>
<td>⊢</td>
<td>r → s</td>
</tr>
</tbody>
</table>

P1	m → s
P2	s → (q ∧ r)
P3	q → ¬r
⊢	¬(m ∧ p)

Use both conditional world methods

- not m or p
- p → (q or r)
- not(s or not x)
- q → not r
-
- not(m \and r)
- assume m (leads to implication)
- assume m and r (leads to contradiction)