Inductive Proofs Must Have

- **Base Case (value):**
 - where you prove it is true about the base case

- **Inductive Hypothesis (value):**
 - where you state what will be assume in this proof

- **Inductive Step (value):**
 - show:
 - where you state what will be proven below
 - proof:
 - where you prove what is stated in the show portion
 - this proof must use the Inductive Hypothesis sometime during the proof

Prove this statement:

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}
\]

Base Case (n=1):

\[
\sum_{i=1}^{1} i = \frac{1(1 + 1)}{2} = \frac{2}{2} = 1
\]

Inductive Hypothesis (n=p):

\[
\sum_{i=1}^{p} i = \frac{p(p + 1)}{2}
\]

Inductive Step (n=p+1):

Show:

\[
\sum_{i=1}^{p+1} i = \frac{(p + 1)((p + 1) + 1)}{2}
\]

Proof: (in class)

Variations

- \([2+4+6+8+…+20 = ??]
- If you can use the fact:
 \[
 \sum_{i=1}^{n} i = \frac{n(n + 1)}{2}
 \]
 - Rearrange it into a form that works.
 - If you can’t – you must prove it from scratch
Less Mathematical Example

- If all we had was 2 and 5 cent coins, we could make any value greater than 3.

- Base Case (n = 4):
- Inductive Hypothesis (n=k):
- Inductive Step (n=k+1):
 show:
 proof:

More Examples
to be done in class

• \(\forall n \in \mathbb{Z}^{\geq 1}, 3 \mid (n^3 - n) \)
• \(\sum_{k=0}^{n} 2^k = 2^{n+1} - 1 \)
• Geometric Progression
 \(\forall r \in \mathbb{R}^{\neq 1} \forall a \in \mathbb{R} \forall n \in \mathbb{Z}^{\geq 0}, \sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r-1} \)

Proving Inequalities with Induction

• Inductive Hypothesis
 – has the form \(y < z \)
• Inductive Step
 – needs to prove something of the form \(x < z \)
• Two methods for the proof part
 – use whichever you like
 – transitivity
 • find a value between (b)
 • prove that \(b < c \)
 • prove that \(x < b \)
 – book method
 • Substitute "unequals" as long as the signs don’t change
 or
 • Add unequals to unequals as long as always adding correct sides
Prove this statement:

$$\forall n \in \mathbb{Z}^{\geq 3}, 2n + 1 \leq 2^n$$

<table>
<thead>
<tr>
<th>Base Case (n=3):</th>
<th>LHS : 2(3) + 1 = 6 + 1 = 7</th>
<th>RHS : 2^3 = 8</th>
<th>LHS \leq RHS</th>
</tr>
</thead>
</table>

Inductive Hypothesis (n=k):

$$2k + 1 \leq 2^k$$

Inductive Step (n=k+1):

Show:

$$2(k + 1) + 1 \leq 2^{k+1}$$

Proof: (both methods done in class)

Another Example

with inequalities

$$\forall n \in \mathbb{Z}^{\geq 2} \forall x \in \mathbb{Z}^{>0}, 1 + nx \leq (1 + x)^n$$

Strong Induction

- Implication changes slightly
 - if true for all lesser elements, then true for current
- $$P(i) \forall i \in \mathbb{Z}$$ as $$i < k \rightarrow P(k)$$
- $$P(i) \forall i \in \mathbb{Z}$$ as $$i \leq k \rightarrow P(k+1)$$

Regular Induction

- $$P(k) \rightarrow P(k+1)$$
- $$P(k-1) \rightarrow P(k)$$
All Integers greater than 1 are divisible by a prime

Base Case (n=2):
\[2|2 \quad 2 \in \mathbb{Z}^{\text{prime}} \]

Inductive Hypothesis (n=i \ \forall i \ 2 \leq i < k):
\[\exists p \in \mathbb{Z}^{\text{prime}} \quad p|i \]

Inductive Step (n=k):
show: \[\exists p \in \mathbb{Z}^{\text{prime}} \quad plk \]
proof:

Recurrence Relation Example

• Assume the following definition of a function:
 \[a_1 = 1 \]
 \[a_2 = 3 \]
 \[\forall k \in \mathbb{Z}^{\geq 3}, a_k = a_{k-1} + 2a_{k-2} \]

• Prove the following definition property:
 \[\forall n \in \mathbb{Z}^{\geq 1}, a_n \in \mathbb{Z}^{\text{odd}} \]

A Factorial Example

\[\forall n \in \mathbb{Z}^{\geq 2}, \quad \frac{4^n}{n+1} < \frac{(2n)!}{(n!)^2} \]
Another Example

• Assume the following definition of a recurrence relation:
 \[a_1 = 0 \]
 \[a_2 = 2 \]
 \[\forall i \in \mathbb{Z}^{\geq 1}, a_i = 3a_{i-1} + 2 \]

• Prove that all elements in this relation have this property:
 \[\forall n \in \mathbb{Z}^{\geq 1}, a_n \in \mathbb{Z}^{\text{even}} \]

Well-Ordering Principle

• For any set S of
 – one or more
 – integers
 – all larger than some value
• S has a least element

Use this to prove the Quotient Remainder Theorem

• The quotient-remainder theorem said
 – Given
 • any positive integer \(n \)
 • and any positive integer \(d \)
 – There exists an \(r \) and a \(q \)
 • where \(n = dq + r \)
 • where \(0 \leq r < d \)
 • which are integers
 • which are unique
Steps to proving the quotient-remainder theorem

• Define S as the set of all non-negative integers in the form $n-dk$ (all integers k)
• Prove that it is non-empty
• Prove that we can apply the Well-Ordering Principle
• Then it has a least element
• Prove that the least element (r) is $0 \leq r < d$