Major components of a computer system:
- CPU, memories (primary/secondary), I/O system
- I/O devices:
 - Block devices – store information in fixed-sized blocks;
 typical sizes: 128-1024 bytes
 - Character devices – delivers/accepts stream of characters
- Device controllers:
 - Connects physical device to system bus (Minicomputers, PCs)
 - Mainframes use a more complex model:
 Multiple buses and specialized I/O computers (I/O channels)
- Communication:
 - Memory-mapped I/O, controller registers
 - Direct Memory Access - DMA
I/O Hardware - Single Bus

- CPU
- Memory
- Video Controller
- Keyboard Controller
- Floppy Controller
- Disk Controller

I/O Hardware - Multiple Buses

- Memory bus
- CPU Cache
- PCI bridge/memory controller
- Memory
- Video controller
- Network controller
- IDE disk controller
- USB interface
- Keyboard
- Mouse
- SCSI disk
- SCSI controller
- SCSI bus
- PCI bus
- USB bus
Diversity among I/O Devices

The I/O subsystem has to consider device characteristics:

- **Data rate:**
 - may vary by several orders of magnitude
- **Complexity of control:**
 - exclusive vs. shared devices
- **Unit of transfer:**
 - stream of bytes vs. block-I/O
- **Data representations:**
 - character encoding, error codes, parity conventions
- **Error conditions:**
 - consequences, range of responses
- **Applications:**
 - impact on resource scheduling, buffering schemes

Organization of the I/O Function

- **Programmed I/O with polling:**
 - The processor issues an I/O command on behalf of a process
 - The process busy waits for completion of the operation before proceeding
- **Interrupt-driven I/O:**
 - The processor issues an I/O command and continues to execute
 - The I/O module interrupts the processor when it has finished I/O
 - The initiator process may be suspended pending the interrupt
- **Direct memory access (DMA):**
 - A DMA module controls exchange of data between I/O module and main memory
 - The processor requests transfer of a block of data from DMA and is interrupted only after the entire block has been transferred
Flow of a blocking I/O request

1. Thread issues blocking read() system call
2. Kernel checks parameters; may return buffered data and finish
3. Thread is removed from run queue if physical I/O required; added to wait queue for device; I/O request is scheduled
4. Device driver allocates kernel buffer; sends command to controller
5. Device controller operates the hardware to perform data transfer
6. Driver may poll for status and data; or set up DMA that will generate interrupt
7. Interrupt occurs; handler stores data; signals device driver
8. Device driver receives signal; determines request status; signals kernel I/O subsystem
9. Kernel transfers data or return code to user space; removes thread from wait queue
10. Thread resumes execution at completion of read() call

Principles of I/O Software

- Layered organization
- Device independence
- Error handling
 - Error should be handled as close to the hardware as possible
 - Transparent error recovery at low level
- Synchronous vs. Asynchronous transfers
 - Most physical I/O is asynchronous
 - Kernel may provide synchronous I/O system calls
- Sharable vs. dedicated devices
 - Disk vs. printer
Interrupt Handlers

- Should be hidden by the operating system
- Every thread starting an I/O operation should block until I/O has completed and interrupt occurs
- Interrupt handler transfers data from device (controller) and un-blocks process

Device Driver

- Contains all device-dependent code
- Handles one device
- Translates abstract requests into device commands
 - Writes controller registers
 - Accesses mapped memory
 - Queues requests
- Driver may block after issuing a request:
 - Interrupt will un-block driver (returning status information)
Device-independent I/O Software

Functions of device-independent I/O software:

- Uniform interfacing for the device drivers
- Device naming
- Device protection
- Providing a device-independent block size
- Buffering
- Storage allocation on block devices
- Allocating and releasing dedicated devices
- Error reporting

Layers of the I/O System

User-Space I/O Software

- System call libraries (read, write,...)
- Spooling
 - Managing dedicated I/O devices in a multiprogramming system
 - Daemon process, spooling directory
 - lpd – line printer daemon, sendmail – simple mail transfer protocol
Application I/O Interfaces

The OS system call interface distinguished device classes:

- Character-stream or block
- Sequential or random-access
- Synchronous or asynchronous
- Sharable or dedicated
- Speed of operation
- Read/write, read only, write only

Example:

4.3 BSD kernel I/O structure

<table>
<thead>
<tr>
<th>System-call interface to the kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>socket protocols</td>
</tr>
<tr>
<td>Plain file</td>
</tr>
<tr>
<td>Cooked block interface</td>
</tr>
<tr>
<td>Raw block interface</td>
</tr>
<tr>
<td>Raw tty interface</td>
</tr>
<tr>
<td>cooked TTY</td>
</tr>
<tr>
<td>Line discipline</td>
</tr>
<tr>
<td>Network interface</td>
</tr>
<tr>
<td>Block-device driver</td>
</tr>
<tr>
<td>character-device driver</td>
</tr>
<tr>
<td>The hardware</td>
</tr>
</tbody>
</table>
Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Disk Attachment
- Stable-Storage Implementation
- Tertiary Storage Devices
- Operating System Issues
- Performance Issues

Objectives

- Describe the physical structure of secondary and tertiary storage devices and the resulting effects on the uses of the devices
- Explain the performance characteristics of mass-storage devices
- Discuss operating-system services provided for mass storage, including RAID and HSM
Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - Drives rotate at 60 to 200 times per second
 - **Transfer rate** is rate at which data flow between drive and computer
 - **Positioning time (random-access time)** is time to move disk arm to desired cylinder (**seek time**) and time for desired sector to rotate under the disk head (**rotational latency**)
 - **Head crash** results from disk head making contact with the disk surface
 - That's bad
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI
 - **Host controller** in computer uses bus to talk to **disk controller** built into drive or storage array

Moving-head Disk Mechanism

- Track: Track t
- Spindle: Spindle
- Arm assembly: Arm assembly
- Sector: Sector s
- Cylinder: Cylinder c
- Read-write head: Read-write head
- Rotation: Rotation
- Platter: Platter
Overview of Mass Storage Structure (Cont.)

- Magnetic tape
 - Was early secondary-storage medium
 - Relatively permanent and holds large quantities of data
 - Access time slow
 - Random access ~1000 times slower than disk
 - Mainly used for backup, storage of infrequently-used data, transfer medium between systems
 - Kept in spool and wound or rewound past read-write head
 - Once data under head, transfer rates comparable to disk
 - 20-200GB typical storage
 - Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer.

- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.
 - Sector 0 is the first sector of the first track on the outermost cylinder.
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost.
Disk Attachment

- Host-attached storage accessed through I/O ports talking to I/O busses
- SCSI itself is a bus, up to 16 devices on one cable, **SCSI initiator** requests operation and **SCSI targets** perform tasks
 - Each target can have up to 8 **logical units** (disks attached to device controller)
- FC is high-speed serial architecture
 - Can be switched fabric with 24-bit address space – the basis of **storage area networks (SANs)** in which many hosts attach to many storage units
 - Can be **arbitrated loop (FC-AL)** of 126 devices

Network-Attached Storage

- Network-attached storage (**NAS**) is storage made available over a network rather than over a local connection (such as a bus)
- NFS and CIFS are common protocols
- Implemented via remote procedure calls (RPCs) between host and storage
- New iSCSI protocol uses IP network to carry the SCSI protocol
Storage Area Network

- Common in large storage environments (and becoming more common)
- Multiple hosts attached to multiple storage arrays - flexible

Disk Scheduling

- The operating system is responsible for using hardware efficiently — for the disk drives, this means having a fast access time and disk bandwidth.
- Access time has two major components
 - Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector.
 - Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.
- Minimize seek time
- Seek time \(\approx \) seek distance
- Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer.
Disk Scheduling (Cont.)

- Several algorithms exist to schedule the servicing of disk I/O requests.
- We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders.
SSTF

- Selects the request with the minimum seek time from the current head position.
- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests.
- Illustration shows total head movement of 236 cylinders.
SCAN

- The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.
- Sometimes called the *elevator algorithm*.
- Illustration shows total head movement of 208 cylinders.

SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
C-SCAN

- Provides a more uniform wait time than SCAN.
- The head moves from one end of the disk to the other, servicing requests as it goes. When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip.
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one.

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
C-LOOK

- Version of C-SCAN
- Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk.
Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk.
- Performance depends on the number and types of requests.
- Requests for disk service can be influenced by the file-allocation method.
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary.
- Either SSTF or LOOK is a reasonable choice for the default algorithm.

Disk Management

- Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk controller can read and write.
- To use a disk to hold files, the operating system still needs to record its own data structures on the disk.
 - Partition the disk into one or more groups of cylinders.
 - Logical formatting or “making a file system”.
- Boot block initializes system.
 - The bootstrap is stored in ROM.
 - Bootstrap loader program.
- Methods such as sector sparing used to handle bad blocks.
Booting from a Disk in Windows 2000

Swap-Space Management

- Swap-space — Virtual memory uses disk space as an extension of main memory.
- Swap-space can be carved out of the normal file system, or, more commonly, it can be in a separate disk partition.
- Swap-space management
 - 4.3BSD allocates swap space when process starts; holds text segment (the program) and data segment.
 - Kernel uses swap maps to track swap-space use.
 - Solaris 2 allocates swap space only when a page is forced out of physical memory, not when the virtual memory page is first created.
Data Structures for Swapping on Linux Systems

RAID Structure

- RAID – multiple disk drives provides reliability via redundancy.
- RAID is arranged into six different levels.
RAID (cont)

- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively.
- Disk striping uses a group of disks as one storage unit.
- RAID schemes improve performance and improve the reliability of the storage system by storing redundant data.
 - Mirroring or shadowing keeps duplicate of each disk.
 - Block interleaved parity uses much less redundancy.

RAID Levels

- RAID 0: non-redundant striping.
- RAID 1: mirrored disks.
- RAID 2: memory-style error-correcting nodes.
- RAID 3: bit-interleaved parity.
- RAID 4: block-interleaved parity.
- RAID 5: block-interleaved distributed parity.
- RAID 6: P + Q redundancy.
RAID (0 + 1) and (1 + 0)

![Diagram of RAID (0 + 1) and (1 + 0)]

1. RAID 0 + 1 with a single disk failure.
2. RAID 1 + 0 with a single disk failure.

Disk Attachment

- Disks may be attached one of two ways:

 1. **Host attached** via an I/O port
 2. **Network attached** via a network connection
Network-Attached Storage

![Network-Attached Storage Diagram](image1)

Storage-Area Network

![Storage-Area Network Diagram](image2)
Stable-Storage Implementation

- Write-ahead log scheme requires stable storage.

- To implement stable storage:
 - Replicate information on more than one nonvolatile storage media with independent failure modes.
 - Update information in a controlled manner to ensure that we can recover the stable data after any failure during data transfer or recovery.

Tertiary Storage Devices

- Low cost is the defining characteristic of tertiary storage.

- Generally, tertiary storage is built using removable media

- Common examples of removable media are floppy disks and CD-ROMs; other types are available.
Removable Disks

- Floppy disk — thin flexible disk coated with magnetic material, enclosed in a protective plastic case.

 - Most floppies hold about 1 MB; similar technology is used for removable disks that hold more than 1 GB.
 - Removable magnetic disks can be nearly as fast as hard disks, but they are at a greater risk of damage from exposure.

Removable Disks (Cont.)

- A magneto-optic disk records data on a rigid platter coated with magnetic material.
 - Laser heat is used to amplify a large, weak magnetic field to record a bit.
 - Laser light is also used to read data (Kerr effect).
 - The magneto-optic head flies much farther from the disk surface than a magnetic disk head, and the magnetic material is covered with a protective layer of plastic or glass; resistant to head crashes.

- Optical disks do not use magnetism; they employ special materials that are altered by laser light.
WORM Disks

- The data on read-write disks can be modified over and over.
- WORM ("Write Once, Read Many Times") disks can be written only once.
- Thin aluminum film sandwiched between two glass or plastic platters.
- To write a bit, the drive uses a laser light to burn a small hole through the aluminum; information can be destroyed by not altered.
- Very durable and reliable.
- Read Only disks, such as CD-ROM and DVD, come from the factory with the data pre-recorded.

Tapes

- Compared to a disk, a tape is less expensive and holds more data, but random access is much slower.
- Tape is an economical medium for purposes that do not require fast random access, e.g., backup copies of disk data, holding huge volumes of data.
- Large tape installations typically use robotic tape changers that move tapes between tape drives and storage slots in a tape library.
 - stacker – library that holds a few tapes
 - silo – library that holds thousands of tapes
- A disk-resident file can be archived to tape for low cost storage; the computer can stage it back into disk storage for active use.
Operating System Issues

- Major OS jobs are to manage physical devices and to present a virtual machine abstraction to applications.
- For hard disks, the OS provides two abstraction:
 - Raw device – an array of data blocks.
 - File system – the OS queues and schedules the interleaved requests from several applications.

Application Interface

- Most OSs handle removable disks almost exactly like fixed disks — a new cartridge is formatted and an empty file system is generated on the disk.
- Tapes are presented as a raw storage medium, i.e., and application does not open a file on the tape, it opens the whole tape drive as a raw device.
- Usually the tape drive is reserved for the exclusive use of that application.
- Since the OS does not provide file system services, the application must decide how to use the array of blocks.
- Since every application makes up its own rules for how to organize a tape, a tape full of data can generally only be used by the program that created it.
Tape Drives

- The basic operations for a tape drive differ from those of a disk drive.
- The **locate** operation positions the tape to a specific logical block, not an entire track (corresponds to **seek**).
- The **read position** operation returns the logical block number where the tape head is.
- The **space** operation enables relative motion.
- Tape drives are “append-only” devices; updating a block in the middle of the tape also effectively erases everything beyond that block.
- An EOT mark is placed after a block that is written.

File Naming

- The issue of naming files on removable media is especially difficult when we want to write data on a removable cartridge on one computer, and then use the cartridge in another computer.
- Contemporary OSs generally leave the name space problem unsolved for removable media, and depend on applications and users to figure out how to access and interpret the data.
- Some kinds of removable media (e.g., CDs) are so well standardized that all computers use them the same way.
Hierarchical Storage Management (HSM)

- A hierarchical storage system extends the storage hierarchy beyond primary memory and secondary storage to incorporate tertiary storage — usually implemented as a jukebox of tapes or removable disks.
- Usually incorporate tertiary storage by extending the file system.
 - Small and frequently used files remain on disk.
 - Large, old, inactive files are archived to the jukebox.
- HSM is usually found in supercomputing centers and other large installations that have enormous volumes of data.

Speed

- Two aspects of speed in tertiary storage are bandwidth and latency.
- Bandwidth is measured in bytes per second.
 - Sustained bandwidth — average data rate during a large transfer; # of bytes/transfer time. Data rate when the data stream is actually flowing.
 - Effective bandwidth — average over the entire I/O time, including seek or locate, and cartridge switching. Drive’s overall data rate.
Speed (Cont.)

- Access latency – amount of time needed to locate data.
 - Access time for a disk – move the arm to the selected cylinder and wait for the rotational latency; < 35 milliseconds.
 - Access on tape requires winding the tape reels until the selected block reaches the tape head; tens or hundreds of seconds.
 - Generally say that random access within a tape cartridge is about a thousand times slower than random access on disk.
- The low cost of tertiary storage is a result of having many cheap cartridges share a few expensive drives.
- A removable library is best devoted to the storage of infrequently used data, because the library can only satisfy a relatively small number of I/O requests per hour.

Reliability

- A fixed disk drive is likely to be more reliable than a removable disk or tape drive.
- An optical cartridge is likely to be more reliable than a magnetic disk or tape.
- A head crash in a fixed hard disk generally destroys the data, whereas the failure of a tape drive or optical disk drive often leaves the data cartridge unharmed.
Cost

- Main memory is much more expensive than disk storage.
- The cost per megabyte of hard disk storage is competitive with magnetic tape if only one tape is used per drive.
- The cheapest tape drives and the cheapest disk drives have had about the same storage capacity over the years.
- Tertiary storage gives a cost savings only when the number of cartridges is considerably larger than the number of drives.

Price per Megabyte of DRAM, From 1981 to 2004