CMSC726 Spring 2006: Bias-Variance Tradeoff and Ensemble Methods

readings: handed out in class
material from:
Tom Dietterich, http://www.cs.orst.edu/~tgd
Rich Maclin

Outline
- Bias-Variance Decomposition for Regression
- Bias-Variance Analysis of Learning Algorithms
- Ensemble Methods
- Effect of Bagging on Bias and Variance
- Effect of Boosting on Bias and Variance
- Summary and Conclusion

Intuition 1
- The goal in learning is not to learn an exact representation of the training data itself, but to build a statistical model of the process which generates the data. This is important if the algorithm is to have good generalization performance
- We saw that
 - models with too few parameters can perform poorly
 - models with too many parameters can perform poorly
- Need to optimize the complexity of the model to achieve the best performance
- One way to get insight into this tradeoff is the decomposition of generalization error into bias + variance
 - a model which is too simple, or too inflexible, will have a large bias
 - a model which has too much flexibility will have high variance

Intuition
- bias:
 - measures the accuracy or quality of the algorithm
 - high bias means a poor match
- variance:
 - measures the precision or specificity of the match
 - a high variance means a weak match
- We would like to minimize each of these
- Unfortunately, we can't do this independently, there is a trade-off

Bias-Variance Analysis in Regression
- True function is $y = f(x) + \varepsilon$
 - where ε is normally distributed with zero mean and standard deviation σ
- Given a set of training examples, $\{(x_i, y_i)\}$, we fit an hypothesis $h(x) = w \cdot x + b$ to the data to minimize the squared error
 $\sum (y_i - h(x_i))^2$

Example: 20 points
$y = x + 2 \sin(1.5x) + N(0,0.2)$
Now, given a new data point \(x^* \) (with observed value \(y^* = f(x^*) + \epsilon \)), we would like to understand the expected prediction error:

\[
E[(y^* - h(x^*))^2]
\]

Classical Statistical Analysis

Imagine that our particular training sample \(S \) is drawn from some population of possible training samples according to \(P(S) \).
- Compute \(E_P[(y^* - h(x^*))^2] \)
- Decompose this into “bias”, “variance”, and “noise”

Bias, Variance, and Noise

- Variance: \(E[(h(x^*) - \bar{h}(x^*))^2] \)
 - Describes how much \(h(x^*) \) varies from one training set \(S \) to another
- Bias: \([h(x^*) - f(x^*)] \)
 - Describes the average error of \(h(x^*) \).
- Noise: \(E[(y^* - f(x^*))^2] = E[\epsilon^2] = \sigma^2 \)
 - Describes how much \(y^* \) varies from \(f(x^*) \)

Bias-Variance-Noise Decomposition

\[
E[(h(x^*) - y^*)^2] = E[h(x^*)^2] - 2E[h(x^*)y^*] + E[y^*^2]
\]

\[
= E[h(x^*)^2] - 2E[h(x^*)E[y^*]] + E[y^*^2]
\]

\[
= E[h(x^*)^2] - 2E[h(x^*)f(x^*)] + f(x^*)^2
\]

\[
= \left(E[h(x^*)^2] - f(x^*)^2 \right) - 2\left(E[h(x^*)] - f(x^*) \right)^2
\]

Expected prediction error = Variance + Bias^2 + Noise^2
Measuring Bias and Variance

- In practice (unlike in theory), we have only ONE training set S.

- We can simulate multiple training sets by bootstrap replicates:
 - \(S' = \{x \mid x \text{ is drawn at random with replacement from } S\} \) and \(|S'| = |S| \).

- Procedure for Measuring Bias and Variance:
 - Construct B bootstrap replicates of S (e.g., B = 200): \(S_1, \ldots, S_B \)
 - Apply learning algorithm to each replicate \(S_b \) to obtain hypothesis \(h_b \)
 - Let \(T_b = S \setminus S_b \) be the data points that do not appear in \(S_b \) (out of bag points)
 - Compute predicted value \(h_b(x) \) for each \(x \) in \(T_b \).
Estimating Bias and Variance (continued)

- For each data point x, we will now have the observed corresponding value y and several predictions y_1, \ldots, y_K.
- Compute the average prediction h.
- Estimate bias as $(h - y)$.
- Estimate variance as $\sum_k (y_k - h)^2/(K - 1)$.
- Assume noise is 0.

Approximations in this Procedure

- Bootstrap replicates are not real data.
- We ignore the noise:
 - If we have multiple data points with the same x value, then we can estimate the noise.
 - We can also estimate noise by pooling y values from nearby x values.

Ensemble Learning

- What is an ensemble?
- Why use an ensemble?
- Selecting component classifiers.
- Selecting combining mechanism.
- Some results.

Ensemble Learning Methods

- Given training sample S.
- Generate multiple hypotheses, h_1, h_2, \ldots, h_L.
- Optionally: determining corresponding weights w_1, w_2, \ldots, w_L.
- Classify new points according to $\sum w_i h_i > \theta$.

A Classifier Ensemble

![Diagram of a classifier ensemble]

Key Ensemble Questions

- Which components to combine?
 - Different learning algorithms.
 - Same learning algorithm trained in different ways.
 - Same learning algorithm trained the same way.
- How to combine classifications?
 - Majority vote.
 - Weighted (confidence of classifier) vote.
 - Weighted (confidence in classifier) vote.
 - Learned combiner.
- What makes a good (accurate) ensemble?
What Makes a Good Ensemble?

Krogh and Vedelsby, 1995
Can show that the accuracy of an ensemble is mathematically related:
\[\hat{E} = E - D \]
\(\hat{E} \) is the error of the entire ensemble
\(E \) is the average error of the component classifiers
\(D \) is a term measuring the diversity of the components
Effective ensembles have accurate and diverse components

Ensemble Mechanisms - Components

- Separate learning methods
 - not often used
 - very effective in certain problems (e.g., protein folding, Rost and Sander, Zhang)
- Same learning method
 - generally still need to vary something externally
 - exception, some good results with neural networks
 - most often, data set used for training varied:
 - Bagging (Bootstrap Aggregating), Breiman
 - Boosting, Freund & Schapire
 - Ada, Freund & Schapire
 - Arcing, Breiman

Ensemble Mechanisms - Combiners

- Voting
- Averaging (if predictions not 0,1)
- Weighted Averaging
 - base weights on confidence in component
- Learning combiner
 - Stacking, Wolpert
 - region combiner
 - RegionBoosting, Maclin
 - piecewise combiner

Bagging

Varies data set
Each training set a bootstrap sample
bootstrap sample - select set of examples (with replacement) from original sample
Algorithm:
for \(k = 1 \) to \# of samples
 \(\text{train}^k = \text{bootstrap sample of train set} \)
 create classifier using \text{train}^k as training set
combine classifications using simple voting

Bagging: Bootstrap Aggregating

- For \(b = 1, \ldots, B \) do
 - \(S_b = \text{bootstrap replicate of } S \)
 - Apply learning algorithm to \(S_b \) to learn \(h_b \)
- Classify new points by unweighted vote:
 - \(\sum_{b=1}^{B} h_b(x) / B > 0 \)

- Bagging makes predictions according to
 \(y = \sum_{b=1}^{B} h_b(x) / B \)
- Hence, bagging’s predictions are \(h(x) \)
Estimated Bias and Variance of Bagging

- If we estimate bias and variance using the same B bootstrap samples, we will have:
 - Bias = (h – y) [same as before]
 - Variance = \(\Sigma_i (y – h)^2/(K – 1) = 0 \)
- Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
- In reality, bagging only reduces variance and tends to slightly increase bias.

Bagging Decision Trees
(Freund & Schapire)

Bias/Variance Heuristics

- Models that fit the data poorly have high bias: “inflexible models” such as linear regression, regression stumps
- Models that can fit the data very well have low bias but high variance: “flexible” models such as nearest neighbor regression, regression trees
- This suggests that bagging of a flexible model can reduce the variance while benefiting from the low bias

Weak Learning

Schapire showed that a set of weak learners (learners with > 50% accuracy, but not much greater) could be combined into a strong learner

Idea: weight the data set based on how well we have predicted data points so far
- data points predicted accurately - low weight
- data points mispredicted - high weight

Result: focuses components on portion of data space not previously well predicted

Boosting - Ada

Varies weights on training data

Algorithm:

- for each data points: weight \(w_i \) to 1..#datapoints
- for \(k = 1 \) to #classifiers
 - generate classifier \(k \) with current weighted train set
 - \(e_k = \) weighted sum of \(w_i \)'s of misclassified points
 - \(\beta_k = (1 - e_k)/e_k \)
 - multiply weights of all misclassified points by \(\beta_k \)
 - normalize weights to sum to 1
- combine: weighted vote, weight for classifier \(k \) is \(\log(\beta_k^{-1}) \)

Boosting

Input: a set \(S \) of \(m \) labeled examples \(S = \{ (x_i, y_i), i = 1..m \} \)
- labels \(y_i \in Y = \{1,...,K\} \)
- Learn (a learning algorithm) a constant \(\epsilon \)

1. Initialize for all \(i \): \(w_i(1) = 1/m \)
2. for \(t = 1 \) to \(T \) do
3. for all \(i : p_t(x_i) = w_i(t)/(\sum_i w_i(t)) \)
4. \(h_t = \text{Learn}(w) \)
5. \(\epsilon_t = \sum_i w_i(t) \cdot [1 - \text{Label}(x_i) = y_i] \)
6. \(L_t = \epsilon_t \cdot (1 - \epsilon_t) \)
7. if \(L_t > 1/2 \) then
8. \(t = t + 1 \)
9. else
10. \(\Delta = \epsilon_t/(1 - \epsilon_t) \)
11. for all \(i : w_i(t+1) = w_i(t) \cdot e^{-\Delta \cdot p_t(x_i)/m} \)
12. end

Output: \(h_T(x) = \text{sign} \left(\sum_{t=1}^{T} \log(1/\beta_t) \cdot [h_t(x) = y] \right) \)
Boosting vs Bagging
(Freund & Schapire)

Sample data set (like Bagging), but probability of data point being chosen weighted (like Boosting)

\[
\text{probability of selecting point } i = \frac{1 + m_i}{\sum_{j=0}^{N-1} 1 + m_j}
\]

Value 4 chosen empirically

Combine using voting

Some Results - BP, C4.5 Components

<table>
<thead>
<tr>
<th>Dataset</th>
<th>C4.5</th>
<th>BP</th>
<th>BagC4</th>
<th>BagBP</th>
<th>AdaC4</th>
<th>AdaBP</th>
<th>ArcC4</th>
<th>ArcBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter</td>
<td>14.0</td>
<td>18.0</td>
<td>7.0</td>
<td>10.5</td>
<td>4.1</td>
<td>5.7</td>
<td>3.9</td>
<td>4.6</td>
</tr>
<tr>
<td>segment</td>
<td>3.7</td>
<td>6.6</td>
<td>3.0</td>
<td>5.4</td>
<td>1.7</td>
<td>3.5</td>
<td>1.5</td>
<td>3.3</td>
</tr>
<tr>
<td>promoter</td>
<td>12.8</td>
<td>5.3</td>
<td>10.6</td>
<td>4.0</td>
<td>6.8</td>
<td>4.5</td>
<td>6.4</td>
<td>4.6</td>
</tr>
<tr>
<td>kr-vs-kp</td>
<td>0.6</td>
<td>2.3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>splice</td>
<td>5.9</td>
<td>4.7</td>
<td>5.4</td>
<td>3.9</td>
<td>5.1</td>
<td>4.0</td>
<td>5.3</td>
<td>4.2</td>
</tr>
<tr>
<td>breastc</td>
<td>5.0</td>
<td>3.4</td>
<td>3.7</td>
<td>3.4</td>
<td>3.3</td>
<td>3.5</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>housev</td>
<td>3.6</td>
<td>4.9</td>
<td>3.6</td>
<td>4.1</td>
<td>5.0</td>
<td>5.1</td>
<td>4.8</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Some Theories on Bagging/Boosting

Error = noise error + Bias + Variance

Theories:
- Bagging can reduce variance part of error
- Boosting can reduce variance AND bias part of error
- Bagging will hardly ever increase error
- Boosting may increase error
- Boosting susceptible to noise
- Boosting increases margins

Combiner - Stacking

Idea:
- generate component (level 0) classifiers with part of the data (half, three quarters)
- train combiner (level 1) classifier to combine predictions of components using remaining data
- retrain component classifiers with all of training data
- In practice, often equivalent to voting

Combiner - RegionBoost

- Train “weight” classifier for each component classifier
- “weight” classifier predicts how likely point will be predicted correctly
- “weight” classifiers: k-Nearest Neighbor, Backprop
- Combiner, generate component classifier prediction and weight using corresponding “weight” classifier
- Small gains in accuracy
Sources of Bias and Variance

- Bias arises when the classifier cannot represent the true function— that is, the classifier underfits the data.
- Variance arises when the classifier overfits the data.
- There is often a tradeoff between bias and variance.

Effect of Algorithm Parameters on Bias and Variance

- k-nearest neighbor: increasing k typically increases bias and reduces variance.
- Decision trees of depth D: increasing D typically increases variance and reduces bias.
- RBF SVM with parameter σ: increasing σ increases bias and reduces variance.

Effect of Bagging

- If the bootstrap replicate approximation were correct, then bagging would reduce variance without changing bias.
- In practice, bagging can reduce both bias and variance:
 - For high-bias classifiers, it can reduce bias.
 - For high-variance classifiers, it can reduce variance.

Effect of Boosting

- In the early iterations, boosting is primarily a bias-reducing method.
- In later iterations, it appears to be primarily a variance-reducing method.

Other Approaches

- Error Correcting Output Codes
- Mixture of Experts
- Cascading Classifiers
- Many others…