CMSC726 Spring 2006: Neural Networks

readings: Mitchell ch. 4
souces: course slides are based on material from a variety of sources, including Tom Dietterich, Carlos Guestrin, Terran Lane, Rich Maclin, Ray Mooney, Andrew Moore, Andrew Ng, Jude Shavlik, and others.

Artificial Neural Networks

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face recognition
- Advanced topics
| Connectionist Models |

Consider humans
- Neuron switching time ~ 0.001 second
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second
- 100 inference step does not seem like enough

must use lots of parallel computation!

Properties of artificial neural nets (ANNs):
- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

| When to Consider Neural Networks |

- Input is high-dimensional discrete or real-valued (e.g., raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is *unimportant*

Examples:
- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction
ALVINN drives 70 mph on highways

30x32 Sensor Input Retina

Perceptron

$$\sigma = \begin{cases}
1 & \text{if } \sum_{i=0}^{n} w_i x_i > 0 \\
-1 & \text{otherwise}
\end{cases}$$

$$o(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } w_0 + w_1 x_1 + \ldots + w_n x_n > 0 \\
-1 & \text{otherwise}
\end{cases}$$

Sometimes we will use simpler vector notation:

$$o(\vec{x}) = \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\
-1 & \text{otherwise}
\end{cases}$$
Decision Surface of Perceptron

Represents some useful functions
- What weights represent \(g(x_1, x_2) = \text{AND}(x_1, x_2) \)?
But some functions not representable
- e.g., not linearly separable
- therefore, we will want networks of these ...

Perceptron Training Rule

\[
\Delta w_i = \eta (t - o)x_i
\]
where

\[w_i \leftarrow w_i + \Delta w_i \]

- \(t = c(\bar{x}) \) is target value
- \(o \) is perceptron output
- \(\eta \) is small constant (e.g., \(0.1 \)) called learning rate

Can prove it will converge
- If training data is linearly separable
- and \(\eta \) is sufficiently small
| Linear Threshold Unit |

To understand, consider simple linear unit, where

\[o = w_0 + w_1 x_1 + \ldots + w_n x_n \]

Idea: learn \(w_i \)'s that minimize the squared error

\[E[\bar{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

Where \(D \) is the set of training examples

| Gradient Descent |

Gradient Descent

Gradient \(\nabla E[\hat{w}] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \)

Training rule: \(\Delta w_i = -\eta \nabla E[\hat{w}] \)

i.e., \(\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \)

\[
\begin{align*}
\frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\
&= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\
&= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\
&= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \hat{w} \cdot \hat{x}_d) \\
\frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d)(-x_{i,d})
\end{align*}
\]
Gradient Descent

GRADIENT-DESCENT(training_examples, \(\eta \))

Each training example is a pair of the form \(\langle \mathbf{x}, t \rangle \), where \(\mathbf{x} \) is the vector of input values and \(t \) is the target output value. \(\eta \) is the learning rate (e.g., .05).

- Initialize each \(w \) to some small random value
- Until the termination condition is met, do
 - Initialize each \(\Delta w \) to zero.
 - For each \(\langle \mathbf{x}, t \rangle \) in training_examples, do
 * Input the instance \(\mathbf{x} \) and compute output \(o \)
 * For each linear unit weight \(w \), do
 \[\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i \]
 - For each linear unit weight \(w \), do
 \[w_i \leftarrow w_i + \Delta w_i \]

Summary

Perceptron training rule guaranteed to succeed if
- Training examples are linearly separable
- Sufficiently small learning rate \(\eta \)

Linear unit training rule uses gradient descent
- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate \(\eta \)
- Even when training data contains noise
- Even when training data not separable by \(H \)
Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied:
1. Compute the gradient $\nabla E_D[\tilde{w}]$
2. $\tilde{w} \leftarrow \tilde{w} - \eta \nabla E_D[\tilde{w}]$

$$E_D[\tilde{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Incremental mode Gradient Descent:
Do until satisfied:
- For each training example d in D
 1. Compute the gradient $\nabla E_d[\tilde{w}]$
 2. $\tilde{w} \leftarrow \tilde{w} - \eta \nabla E_d[\tilde{w}]$

$E_d[\tilde{w}] \equiv \frac{1}{2} (t_d - o_d)^2$

Incremental Gradient Descent can approximate *Batch Gradient Descent* arbitrarily closely if η made small enough

Multilayer Networks of Sigmoid Units

[Diagram of a multilayer network with sigmoid units]
Multilayer Decision Space

Sigmoid Unit

\[\sigma(x) \text{ is the sigmoid function} \]

\[o = \sigma(\text{net}) = \frac{1}{1 + e^{-\text{net}}} \]

Recall:
\[\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x)) \]

We can derive gradient descent rules to train:
- One sigmoid unit
- Multilayer networks of sigmoid units → Backpropagation
The Sigmoid Function

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Sort of a rounded step function
Unlike step function, can take derivative (makes learning possible)

Error Gradient for a Sigmoid Unit

\[\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} \left(t_d - o_d \right)^2 \]

\[= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} \left(t_d - o_d \right)^2 \]

\[= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \]

\[= \sum_{d} (t_d - o_d) \left(- \frac{\partial o_d}{\partial w_i} \right) \]

\[= - \sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial w_i} \frac{\partial o_d}{\partial \text{net}_d} \frac{\partial \text{net}_d}{\partial w_i} \]

But we know:

\[\frac{\partial o_d}{\partial \text{net}_d} = \frac{\partial \sigma (\text{net}_d)}{\partial \text{net}_d} = o_d (1 - o_d) \]

\[\frac{\partial \text{net}_d}{\partial w_i} = \frac{\partial (\hat{w} \cdot \hat{x}_d)}{\partial w_i} = x_{i,d} \]

So:

\[\frac{\partial E}{\partial w_i} = - \sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d} \]
Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, do

- For each training example, do
 1. Input the training example and compute the outputs
 2. For each output unit k
 \[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit h
 \[\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{h,k} \delta_k \]
 4. Update each network weight $w_{i,j}$
 \[w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \]
 where
 \[\Delta w_{i,j} = \eta \cdot \delta_j x_{i,j} \]

More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α
 \[\Delta w_{j,i}(n) = \eta \cdot \delta_j x_{j,i} + \alpha \cdot \Delta w_{j,i}(n - 1) \]
- Minimizes error over training examples
- Will it generalize well to subsequent examples?
- Training can take thousands of iterations -- slow!
 - Using network after training is fast
Learning Hidden Layer Representations

Inputs

Outputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000 → 10000000</td>
<td>.89</td>
<td>04.08</td>
</tr>
<tr>
<td>01000000 → 01000000</td>
<td>.01</td>
<td>11.88</td>
</tr>
<tr>
<td>00100000 → 00100000</td>
<td>.97</td>
<td>27</td>
</tr>
<tr>
<td>00010000 → 00010000</td>
<td>.99</td>
<td>97.71</td>
</tr>
<tr>
<td>00001000 → 00001000</td>
<td>.03</td>
<td>05.02</td>
</tr>
<tr>
<td>00000100 → 00000100</td>
<td>.22</td>
<td>99.99</td>
</tr>
<tr>
<td>00000010 → 00000010</td>
<td>.80</td>
<td>01.98</td>
</tr>
<tr>
<td>00000001 → 00000001</td>
<td>.60</td>
<td>94.01</td>
</tr>
</tbody>
</table>

Learning Hidden Layer Representations

Inputs

Outputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000 → 10000000</td>
<td>.01</td>
<td>.94</td>
</tr>
<tr>
<td>01000000 → 01000000</td>
<td>.98</td>
<td>.01</td>
</tr>
<tr>
<td>00100000 → 00100000</td>
<td>.99</td>
<td>.99</td>
</tr>
<tr>
<td>00010000 → 00010000</td>
<td>.02</td>
<td>.05</td>
</tr>
<tr>
<td>00001000 → 00001000</td>
<td>.71</td>
<td>.97</td>
</tr>
<tr>
<td>00000100 → 00000100</td>
<td>.27</td>
<td>.97</td>
</tr>
<tr>
<td>00000010 → 00000010</td>
<td>.88</td>
<td>.11</td>
</tr>
<tr>
<td>00000001 → 00000001</td>
<td>.08</td>
<td>.04</td>
</tr>
</tbody>
</table>
Output Unit Error during Training

Sum of squared errors for each output unit

Hidden Unit Encoding

Hidden unit encoding for one input
Input to Hidden Weights

Weights from inputs to one hidden unit

Convergence of Backpropagation

- Gradient descent to some local minimum
 - Perhaps not global minimum
 - Momentum can cause quicker convergence
 - Stochastic gradient descent also results in faster convergence
 - Can train multiple networks and get different results (using different initial weights)

Nature of convergence
- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions as training progresses
Expressive Capabilities of ANNs

Boolean functions:
- Every Boolean function can be represented by network with a single hidden layer
- But that might require an exponential (in the number of inputs) hidden units

Continuous functions:
- Every bounded continuous function can be approximated with arbitrarily small error by a network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988]

Overfitting in ANNs

![Error versus weight updates (example 1)](image)
Overfitting in ANNs

Error versus weight updates (Example 2)

- Error on Training set and Validation set over number of weight updates.
- Overfitting occurs when the error on the validation set increases.

Neural Nets for Face Recognition

- Typical Input Images: 90% accurate learning, head pose, and recognizing 1-of-20 faces.
- 30x32 inputs
Learned Network Weights

Typical Input Images

30x32 inputs

Learned Weights

Alternative Error Functions

Penalize large weights:

\[E(\tilde{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \text{ outputs}} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji} \]

Train on target slopes as well as values:

\[E(\tilde{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \text{ outputs}} \left((t_{kd} - o_{kd})^2 + \mu \left(\frac{\partial t_{kd}}{\partial x_d^1} - \frac{\partial o_{kd}}{\partial x_d^1} \right)^2 \right) \]

Tie together weights:

- e.g., in phoneme recognition
Recurrent Networks

What you should know

- ANNs are practical method for learning real-valued and vector-valued functions over continuous and discrete inputs
- Backpropagation can be used to find weights for multi-layer ANNs
- Overfitting is an issue for ANNs
- Many, many variants that we have not covered