CMSC726 Spring 2006: Parameter Estimation aka Statistical Learning 101

readings: Parameter Estimation & Foundations Handouts

sources: course slides are based on material from a variety of sources, including Tom Dietterich, Carlos Guestrin, Rich Maclin, Ray Mooney, Andrew Moore, Andrew Ng, Jude

Your first consulting job

- A highroller from Las Vegas asks you a question:
 - He says: I have thumbtack, if I flip it, what’s the probability it will fall with the flat side up?
 - You say: Please flip it a few times:

- You say: The probability is:
 - **He says: Why???
 - You say: Because...**
Thumbtack – Binomial Distribution

- \(P(\text{Heads}) = \theta, \ P(\text{Tails}) = 1-\theta \)

- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence \(D \) of \(\alpha_H \) Heads and \(\alpha_T \) Tails
 \[
P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
 \]

Maximum Likelihood Estimation

- **Data:** Observed set \(D \) of \(\alpha_H \) Heads and \(\alpha_T \) Tails
- **Hypothesis:** Binomial distribution
- Learning \(\theta \) is an optimization problem
 - What’s the objective function?
- MLE: Choose \(\hat{\theta} \) that maximizes the probability of observed data:
 \[
 \hat{\theta} = \arg \max_{\theta} \ P(D \mid \theta) = \arg \max_{\theta} \ \ln P(D \mid \theta)
 \]
| ‘Learning’ algorithm

\[
\hat{\theta} = \arg\max_{\theta} \ln P(D | \theta) = \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
\]

- Set derivative to zero:
 \[
 \frac{d}{d\theta} \ln P(D | \theta) = 0
 \]

| How many flips do I need?

\[
\hat{\theta} = \frac{\alpha_H}{\alpha_H + \alpha_T}
\]

- Highroller says: I flipped 3 heads and 2 tails.
- You say: \(\theta = 3/5 \), I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!

- **He says:** What’s better?
- You say: Humm… The more the merrier???
Simple bound
(based on Hoeffding’s inequality)

- For $N = \alpha_H + \alpha_T$, and $\hat{\theta} = \frac{\alpha_H}{\alpha_H + \alpha_T}$.

- Let θ^* be the true parameter, for any $\epsilon > 0$:

$$P(\mid \hat{\theta} - \theta^* \mid \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$

PAC Learning

- PAC: Probably Approximately Correct
- Highroller says: I want to know the thumbtack parameter θ, within $\epsilon = 0.1$, with probability at least $1-\delta = 0.95$. How many flips?

$$P(\mid \hat{\theta} - \theta^* \mid \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$
What about prior

- Highroller says: Wait, I know that the thumbtack is “close” to 50-50. What can you say?

- **You say:** I can learn it the Bayesian way…

- Rather than estimating a single θ, we obtain a distribution over possible values of θ

Bayesian Learning

- Use Bayes rule:
 \[
 P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}
 \]

- Or equivalently:
 \[
 P(\theta \mid D) \propto P(D \mid \theta)P(\theta)
 \]
Bayesian Learning for Thumbtack

\[P(\theta \mid D) \propto P(D \mid \theta)P(\theta) \]

- Likelihood function is simply Binomial:
 \[P(D \mid \theta) = \theta^{\alpha_H}(1 - \theta)^{\alpha_T} \]

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution

Beta prior distribution – P(\theta)

\[P(\theta) = \gamma \theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1} \sim \text{Beta}(\beta_H, \beta_T) \]

\[\gamma = \frac{\Gamma(\beta_H + \beta_T)}{\Gamma(\beta_H)\Gamma(\beta_T)} \]

- Likelihood function:
 \[P(D \mid \theta) = \theta^{\alpha_H}(1 - \theta)^{\alpha_T} \]
- Posterior:
 \[P(\theta \mid D) \propto P(D \mid \theta)P(\theta) \]
Posterior distribution

- Prior: $\text{Beta}(\beta_H, \beta_T)$
- Data: α_H heads and α_T tails
- Posterior distribution:

$$P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Using Bayesian posterior

- Posterior distribution:

$$P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta$$

- Integral is often hard to compute
MAP: Maximum a posteriori approximation

\[P(\theta \mid D) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

\[E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta \]

- As more data is observed, Beta is more certain

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_{\theta} P(\theta \mid D) \quad E[f(\theta)] \approx f(\hat{\theta}) \]

MAP for Beta distribution

\[P(\theta \mid D) = \gamma^' \theta^{\alpha_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_H - 1} \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_H) \]

\[\gamma^' = \frac{\Gamma(\alpha_H + \beta_H + \alpha_T + \beta_T)}{\Gamma(\alpha_H + \beta_H) \Gamma(\alpha_T + \beta_T)} \]

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_{\theta} P(\theta \mid D) = \]

- Beta prior equivalent to extra thumbtack flips
- As \(N \to \infty \), prior is “forgotten”
- **But, for small sample size, prior is important!**
Summary

- Parameter estimation 101:
 - MLE
 - Bayesian estimation
 - MAP