Reinforcement Learning

Slides from Sutton and Barto

The Agent-Environment Interface

Agent and environment interact at discrete time steps: \(t = 0, 1, 2, \ldots \)
Agent observes state at step \(t \): \(s_t \in S \)
produces action at step \(t \): \(a_t \in A(s_t) \)
gets resulting reward: \(r_{t+1} \in \mathbb{R} \)
and resulting next state: \(s_{t+1} \)

\[
\cdots \quad s_t \quad a_t \quad r_{t+1} \quad s_{t+1} \quad a_{t+1} \quad r_{t+2} \quad s_{t+2} \quad a_{t+2} \quad r_{t+3} \quad s_{t+3} \quad a_{t+3} \quad \cdots
\]
The Agent Learns a Policy

Policy at step \(t \), \(\pi_t \):

- a mapping from states to action probabilities
 \(\pi_t(s, a) = \text{probability that } a_i = a \text{ when } s_i = s \)

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent’s goal is to get as much reward as it can over the long run.

Returns

Suppose the sequence of rewards after step \(t \) is:

\[r_{t+1}, r_{t+2}, r_{t+3}, \ldots \]

What do we want to maximize?

In general,
we want to maximize the expected return, \(E\{R_t\} \), for each step \(t \).

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze.

\[R_t = r_{t+1} + r_{t+2} + \cdots + r_T, \]

where \(T \) is a final time step at which a terminal state is reached, ending an episode.
Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

\[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}, \]

where \(\gamma, 0 \leq \gamma \leq 1 \), is the discount rate.

shortsighted 0 ← \(\gamma \) → 1 farsighted

An Example

Avoid failure: the pole falling beyond a critical angle or the cart hitting end of track.

As an episodic task where episode ends upon failure:

\[\text{reward} = +1 \text{ for each step before failure} \]
\[\Rightarrow \text{return} = \text{number of steps before failure} \]

As a continuing task with discounted return:

\[\text{reward} = -1 \text{ upon failure; 0 otherwise} \]
\[\Rightarrow \text{return} = -\gamma^k, \text{ for } k \text{ steps before failure} \]

In either case, return is maximized by avoiding failure for as long as possible.
Another Example

Get to the top of the hill as quickly as possible.

reward = \(-1\) for each step where not at top of hill
⇒ return = \(-\text{number of steps before reaching top of hill}\)

Return is maximized by minimizing number of steps reach the top of the hill.

A Unified Notation

- In episodic tasks, we number the time steps of each episode starting from zero.
- We usually do not have distinguish between episodes, so we write \(S_t\) instead of \(S_{t,j}\) for the state at step \(t\) of episode \(j\).
- Think of each episode as ending in an absorbing state that always produces reward of zero:

\[r_0 = +1 \quad r_1 = +1 \quad r_2 = +1 \quad r_t = 0 \]

- We can cover all cases by writing

\[R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}, \]

where \(\gamma\) can be 1 only if a zero reward absorbing state is always reached.
The Markov Property

- By “the state” at step t, the book means whatever information is available to the agent at step t about its environment.
- The state can include immediate “sensations,” highly processed sensations, and structures built up over time from sequences of sensations.
- Ideally, a state should summarize past sensations so as to retain all “essential” information, i.e., it should have the **Markov Property**:

$$
\Pr \{ s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, \ldots, r_1, s_0, a_0 \} =
\Pr \{ s_{t+1} = s', r_{t+1} = r \mid s_t, a_t \}
$$

for all s', r, and histories $s_t, a_t, r_t, s_{t-1}, a_{t-1}, \ldots, r_1, s_0, a_0$.

Markov Decision Processes

- If a reinforcement learning task has the Markov Property, it is basically a **Markov Decision Process (MDP)**.
- If state and action sets are finite, it is a **finite MDP**.
- To define a finite MDP, you need to give:
 - **state and action sets**
 - one-step “dynamics” defined by **transition probabilities**:

$$
P_{ss'}^a = \Pr \{ s_{t+1} = s' \mid s_t = s, a_t = a \} \text{ for all } s, s' \in S, a \in A(s).
$$

 - **reward probabilities**:

$$
R_{ss'}^a = E \{ r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s' \} \text{ for all } s, s' \in S, a \in A(s).
$$
An Example Finite MDP

Recycling Robot

- At each step, robot has to decide whether it should (1) actively search for a can, (2) wait for someone to bring it a can, or (3) go to home base and recharge.
- Searching is better but runs down the battery; if runs out of power while searching, has to be rescued (which is bad).
- Decisions made on basis of current energy level: high, low.
- Reward = number of cans collected

Recycling Robot MDP

\[S = \{ \text{high, low} \} \]
\[A(\text{high}) = \{ \text{search, wait} \} \]
\[A(\text{low}) = \{ \text{search, wait, recharge} \} \]
\[R_{\text{search}} = \text{expected no. of cans while searching} \]
\[R_{\text{wait}} = \text{expected no. of cans while waiting} \]
\[R_{\text{search}} > R_{\text{wait}} \]
Value Functions

- The **value of a state** is the expected return starting from that state; depends on the agent’s policy:

\[
V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}
\]

- The **value of taking an action in a state under policy** \(\pi \) is the expected return starting from that state, taking that action, and thereafter following \(\pi \):

\[
Q^\pi(s, a) = E_\pi \{ R_t \mid s_t = s, a_t = a \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}
\]

Bellman Equation for a Policy \(\pi \)

The basic idea:

\[
R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \cdots \\
= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+4} \cdots) \\
= r_{t+1} + \gamma R_{t+1}
\]

So:

\[
V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} \\
= E_\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s \}
\]

Or, without the expectation operator:

\[
V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')]
\]
More on the Bellman Equation

\[V^\pi(s) = \sum_a \pi(s,a) \sum_{s'} P_{ss'}^a [R_{ss'} + \gamma V^\pi(s')] \]

This is a set of equations (in fact, linear), one for each state. The value function for \(\pi \) is its unique solution.

Backup diagrams:

(a) \[s \]
(b) \[s, a \]

for \(V^\pi \)

for \(Q^\pi \)

Optimal Value Functions

- For finite MDPs, policies can be partially ordered:
 \(\pi \succeq \pi' \) if and only if \(V^\pi(s) \geq V^{\pi'}(s) \) for all \(s \in S \)

- There is always at least one (and possibly many) policies that is better than or equal to all the others. This is an optimal policy. We denote them all \(\pi^* \).

- Optimal policies share the same optimal state-value function:
 \(V^*(s) = \max_{\pi} V^\pi(s) \) for all \(s \in S \)

- Optimal policies also share the same optimal action-value function:
 \(Q^*(s,a) = \max_{\pi} Q^\pi(s,a) \) for all \(s \in S \) and \(a \in A(s) \)

This is the expected return for taking action \(a \) in state \(s \) and thereafter following an optimal policy.
Bellman Optimality Equation for V^*

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$V^*(s) = \max_{a \in A(s)} Q^*(s, a)$$

$$= \max_{a \in A(s)} E\left\{r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a\right\}$$

$$= \max_{a \in A(s)} \sum_s P_{ss'} \left[R_{ss'} + \gamma V^*(s')\right]$$

The relevant backup diagram:

V^* is the unique solution of this system of nonlinear equations.

Bellman Optimality Equation for Q^*

$$Q^*(s, a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') \mid s_t = s, a_t = a\right\}$$

$$= \sum_{s'} P_{ss'} \left[R_{ss'} + \gamma \max_{a'} Q^*(s', a')\right]$$

The relevant backup diagram:

Q^* is the unique solution of this system of nonlinear equations.
Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to V^* is an optimal policy.

Therefore, given V^*, one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A'</td>
<td>B'</td>
</tr>
</tbody>
</table>

- V^*
- π^*

What About Optimal Action-Value Functions?

Given Q^*, the agent does not even have to do a one-step-ahead search:

$$\pi^*(s) = \arg \max_{a \in A(s)} Q^*(s, a)$$
Solving the Bellman Optimality Equation

- Finding an optimal policy by solving the Bellman Optimality Equation requires the following:
 - accurate knowledge of environment dynamics;
 - we have enough space and time to do the computation;
 - the Markov Property.
- How much space and time do we need?
 - polynomial in number of states (via dynamic programming methods; Chapter 4),
 - BUT, number of states is often huge (e.g., backgammon has about 10^{20} states).
- We usually have to settle for approximations.
- Many RL methods can be understood as approximately solving the Bellman Optimality Equation.

Policy Evaluation

Policy Evaluation for a given policy π, compute the state-value function V^π

Recall: **State-value function for policy π:**

$$V^\pi(s) = E_{s} \left\{ R_t \mid s_t = s \right\} = E_{s} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

Bellman equation for V^π:

$$V^\pi(s) = \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right]$$

— a system of $|S|$ simultaneous linear equations
Iterative Methods

\[V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_k \rightarrow V_{k+1} \rightarrow \cdots \rightarrow V^\pi \]

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

\[V_{k+1}(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V_k(s') \right] \]

Iterative Policy Evaluation

Input \(\pi \), the policy to be evaluated
Initialize \(V(s) = 0 \), for all \(s \in S^+ \)
Repeat
\[\Delta \leftarrow 0 \]
For each \(s \in S \):
\[v \leftarrow V(s) \]
\[V(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V(s') \right] \]
\[\Delta \leftarrow \max(\Delta, |v - V(s)|) \]
until \(\Delta < \theta \) (a small positive number)
Output \(V \approx V^\pi \)
Policy Improvement

Suppose we have computed V^π for a deterministic policy π.

For a given state s, would it be better to do an action $a \neq \pi(s)$?

The value of doing a in state s is:

$$Q^\pi(s, a) = E_\pi \left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s, a_t = a \right\}$$

$$= \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right]$$

It is better to switch to action a for state s if and only if

$$Q^\pi(s, a) > V^\pi(s)$$

Policy Improvement Cont.

Do this for all states to get a new policy π' that is **greedy** with respect to V^π:

$$\pi'(s) = \arg\max_a Q^\pi(s, a)$$

$$= \arg\max_a \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right]$$

Then $V^{\pi'} \geq V^\pi$
Policy Improvement Cont.

What if $V^\pi' = V^\pi$?

i.e., for all $s \in S$, $V^\pi'(s) = \max_a \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right]$?

But this is the Bellman Optimality Equation.

So $V^\pi' = V^\pi$ and both π and π' are optimal policies.

Policy Iteration

$\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \cdots \pi^* \rightarrow V^* \rightarrow \pi^*$

- policy evaluation
- policy improvement
- “greedification”
Policy Iteration

1. Initialization
\[V(s) \in \mathbb{R} \text{ and } \pi(s) \in A(s) \text{ arbitrarily for all } s \in S \]

2. Policy Evaluation
Repeat
\[\Delta \leftarrow 0 \]
For each \(s \in S \):
\[\nu \leftarrow V(s) \]
\[V(s) \leftarrow \sum_a P_{ss'}^{a} \left[R_{s's}^{a} + \gamma V(s') \right] \]
\[\Delta \leftarrow \max(\Delta, |\nu - V(s)|) \]
until \(\Delta < \theta \) (a small positive number)

3. Policy Improvement
\[\text{policy-stable} \leftarrow \text{true} \]
For each \(s \in S \):
\[b \leftarrow \pi(s) \]
\[\pi(s) \leftarrow \arg \max_a \sum_{s'} P_{ss'}^{a} \left[R_{s's}^{a} + \gamma V(s') \right] \]
If \(b \neq \pi(s) \), then \[\text{policy-stable} \leftarrow \text{false} \]
If \[\text{policy-stable} \], then stop, else go to 2

Value Iteration

Recall the full policy evaluation backup:
\[V_{k+1}(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[R_{s's}^{a} + \gamma V_k(s') \right] \]

Here is the full value iteration backup:
\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P_{ss'}^{a} \left[R_{s's}^{a} + \gamma V_k(s') \right] \]
Value Iteration Cont.

Initialize V arbitrarily, e.g., $V(s) = 0$, for all $s \in S^+$

Repeat
 $\Delta \leftarrow 0$
 For each $s \in S$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \max_a \sum_{s'} P_{ss'} [R_{ss'} + \gamma V(s')]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$
 until $\Delta \approx 0$ (a small positive number)

Output a deterministic policy, π, such that

$\pi(s) = \arg \max_a \sum_{s'} P_{ss'} [R_{ss'} + \gamma V(s')]$

Asynchronous DP

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Can you select states to backup intelligently? YES: an agent’s experience can act as a guide.
Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

Efficiency of DP

- To find an optimal policy is polynomial in the number of states…
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called “the curse of dimensionality”).
- In practice, classical DP can be applied to problems with a few millions of states.
- Asynchronous DP can be applied to larger problems, and appropriate for parallel computation.
- It is surprisingly easy to come up with MDPs for which DP methods are not practical.
TD Prediction

Policy Evaluation (the prediction problem):
for a given policy \(\pi \), compute the state-value function \(V^\pi \)

Recall: Simple every-visit Monte Carlo method:
\[
V(s_t) \leftarrow V(s_t) + \alpha \left[R_t - V(s_t) \right]
\]

\underline{target}: the actual return after time \(t \)

The simplest TD method, TD(0):
\[
V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]
\]

\underline{target}: an estimate of the return

Simple Monte Carlo

\[
V(s_t) \leftarrow V(s_t) + \alpha \left[R_t - V(s_t) \right]
\]

where \(R_t \) is the actual return following state \(s_t \).
Simplest TD Method

\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

cf. Dynamic Programming

\[V(s_t) \leftarrow E_\pi \{r_{t+1} + \gamma V(s_{t+1}) \} \]
TD Bootstraps and Samples

- **Bootstrapping**: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps

- **Sampling**: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples

Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome
 - From incomplete sequences
- Both MC and TD converge (under certain assumptions to be detailed later), but which is faster?
Learning An Action-Value Function

Estimate Q^π for the current behavior policy π.

After every transition from a nonterminal state s_t, do this:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

If s_{t+1} is terminal, then $Q(s_{t+1}, a_{t+1}) = 0$.

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate:
Q-Learning: Off-Policy TD Control

One-step Q-learning:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

Initialize \(Q(s, a) \) arbitrarily

Repeat (for each episode):
- Initialize \(s \)
- Repeat (for each step of episode):
 - Choose \(a \) from \(s \) using policy derived from \(Q \) (e.g., \(\epsilon \)-greedy)
 - Take action \(a \), observe \(r, s' \)
 - \(Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] \)
 - \(s \leftarrow s' \)
- until \(s \) is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction