Claim: \((\forall x, y \in \mathbb{Z})[x^2 - 4y \neq 2]\)

Proof:

Let \(a, b \in \mathbb{Z}\), selected arbitrarily.
Suppose (BWOC) that \(a^2 - 4b = 2\). [1]
\[a^2 = 4b + 2 = 2(2b + 1)\]
Since \(\mathbb{Z}\) is closed under addition, \((2b + 1) \in \mathbb{Z}\), so \(a^2\) is even.
By our Lemma, that means \(a\) is even, so \(a = 2k\) (some \(k \in \mathbb{Z}\)).
Substituting into [1], we get:
\[(2k)^2 - 4b = 2\]
\[4k^2 - 4b = 2\]
\[4(k^2 - b) = 2\]
\[(k^2 - b) = 1/2.\]
But now the left side is an integer (since \(\mathbb{Z}\) is closed under multiplication and subtraction), but the right side is not. \(\times\)

Since \(a, b\) were selected arbitrarily, the proposition holds for all integers. \(\square\)
Claim: \(\sqrt{2} \) is irrational.

Proof:

Suppose (BWOC) that \(\sqrt{2} \) were rational.
\(\sqrt{2} = a/b \) for some \(a, b \in \mathbb{Z} \), with \(b \neq 0 \)

We may assume (WLOG) that \(a \) and \(b \) have no common factors. \(\quad [1] \)

\[2 = a^2/b^2 \]

\[2b^2 = a^2 \quad [2] \]

Since \(b^2 \in \mathbb{Z} \), we see that \(a^2 \) is even.

By our Lemma, this implies that \(a \) is even.

\[a = 2k, \text{ some } k \in \mathbb{Z} \]

Substituting into [2]:

\[2b^2 = (2k)^2 = 2(2k^2) \]

\[b^2 = 2k^2 \]

Since \(k^2 \) is an integer, we see that \(b^2 \) is even, hence \(b \) is even by the Lemma.

Since \(a \) and \(b \) are both even, they share a common factor, contradicting [1]. \(\square \).
Claim: $(\forall x, y \in \mathbb{N} > 1) [\text{if } x \mid y \text{ then } x \nmid (y + 1)]$

Proof:

Let $a, b \in \mathbb{N} > 1$ be selected arbitrarily.

Assume $a \mid b$. [I must show $a \nmid (b + 1).]

Suppose (BWOC) $a \mid (b + 1).

Since $a \mid b$, $(\exists k \in \mathbb{Z}) b = ak$ \hspace{1cm} [1]

Since $a \mid b + 1$, $(\exists m \in \mathbb{Z}) b + 1 = am$

$b = am - 1$

Combining with [1]:

$a k = am - 1$

$1 = am - ak$

$1 = a(m - k)$

[Note that $m > k$, else this contradicts].

$1/a = m - k$.

Since $m > k$, the R.H.S. is greater than or equal to 1.

Since $a > 1$, the L.H.S. is less than 1. \(\Box\)

Since a, b were selected arbitrarily, the proposition holds for all $x, y \in \mathbb{N} > 1$. \(\Box\)
Claim: There are infinitely many primes.

Proof:
Suppose (BWOC) that there were only finitely many primes. Then there we could enumerate them, like this:
\[p_1, p_2, p_3, p_4, \ldots p_{k-1}, p_k, \] where \(p_k \) is the last one.
Let \(n = (p_1)(p_2)(p_3)\ldots(p_{k-1})(p_k) + 1 \).
Note that \(n \) is a natural number (since \(\mathbb{N} \) is closed under multiplication and addition.).
By Lemma 3, \(n \) has a prime factor, \(p_i \), for some \(i \leq k \). \[1 \]
\[p_i \mid (p_1)(p_2)(p_3)\ldots(p_{k-1})(p_k), \]
So by Lemma 2, \(p_i \nmid n \).
But this contradicts [1]. \(\boxtimes \) \(\square \)
Claim: The “CodeAnalyzer” program cannot exist.

Proof:
Suppose (BWOC) that there is a “CodeAnalyzer” program.
We will construct another program that relies on CodeAnalyzer:

Program Test(A) { // A is sourcecode for a program
 String result = CodeAnalyzer(A, A)
 If result is ‘‘IT HALTS’’ then do an infinite loop
}

Take the sourcecode for Test and feed it to Test as input.

Case “Test(Test) halts”:
CodeAnalyzer would return “IT HALTS” and so Test(Test) runs forever. ☒

Case “Test(Test) runs forever”: CodeAnalyzer would return “IT RUNS FOR-EVER” and so Test(Test) would terminate. ☒

These cases are exhaustive. □
Claim: All natural numbers are interesting.

Proof:
Suppose (BWOC) that some natural numbers are not interesting. Let \(x \) be the smallest natural number that is not interesting.

\(x \) is the smallest natural number that is not interesting? Wow, that’s interesting!
\(\bigotimes \) \(\square \)