
An Empirical Methodology for Introducing Software
Processes

Forrest Shull
Fraunhofer Center - Maryland

University of Maryland
4321 Hartwick Road, Suite 500

College Park MD 20742
301-403-2705

fshull@fc-md.umd.edu

Jeffrey Carver
Experimental Software Engineering Group

Department of Computer Science
A.V. Williams Bldg.

University of Maryland, College Park
College Park MD 20742

301-405-2721
carver@cs.umd.edu

Guilherme H. Travassos
Computer Science Department

COPPE/UFRJ
C.P. 68511 - Ilha do Fundão

Rio de Janeiro – RJ – 21945-180,
Brazil

55 21 562-8712
ght@cos.ufrj.br

ABSTRACT
There is a growing interest in empirical study in software
engineering, both for validating mature technologies and for
guiding improvements of less-mature technologies. This paper
introduces an empirical methodology, based on experiences
garnered over more than two decades of work by the Empirical
Software Engineering Group at the University of Maryland and
related organizations, for taking a newly proposed improvement
to development processes from the conceptual phase through
transfer to industry. The methodology presents a series of
questions that should be addressed, as well as the types of studies
that best address those questions. The methodology is illustrated
by a specific research program on inspection processes for Object-
Oriented designs. Specific examples of the studies that were
performed and how the methodology impacted the development
of the inspection process are also described.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management –Software process.

General Terms
Measurement, Design, Experimentation, Verification.

Keywords
Empirical studies, OO design inspections, software process,
experimental process, software quality

1 CHALLENGES OF SOFTWARE
TECHNOLOGY INTRODUCTION

There is a growing interest in empirical study in software
engineering, as evidenced by the growing number of publications
incorporating empirical methods [23] and increasing investment

in empirical research (e.g. NSF’s CeBASE project [5]). Using
empirical studies to study software development under realistic
conditions can provide validation for mature technologies –
assessing the effectiveness of proposed development tools and
methods in various environments – and identification of the
problems present in less mature technologies.

This paper introduces an empirical methodology, based on
experiences garnered over more than two decades of work by the
Empirical Software Engineering Group at the University of
Maryland and related organizations, for taking a newly proposed
development improvement from the conceptual phase through
transfer to industry. This methodology represents what we have
learned about balancing the needs of research and industry
throughout the process. This methodology has been abstracted
from lessons learned on multiple research programs, for example
understanding Cleanroom techniques [3] and PBR techniques for
requirements inspections [2].

Although we claim this methodology will be useful for any
software development process (e.g. new improvements in
compilers and automated test methods), for the purpose of a
concrete discussion in this paper we restrict our discussion to
software processes1. In later sections of this paper, we present
examples of the methodology used to guide a specific research
program on inspection processes for Object-Oriented (OO)
designs.

Process definition is important

The argument for defining processes for specific software
development tasks should be a familiar one. A well-defined
process can be observed and measured, and thus improved.
Processes can be used to capture the best practices for dealing
with a given problem. The adoption of processes also allows for
dissemination of effective work practices to occur more quickly
than the building up of personal experience. An emphasis on
process helps software development become more like
engineering, with predictable time and effort constraints, and less
like art. [13]

1 By “process” we are referring to a set of procedural guidelines
for accomplishing specific development tasks, such as
inspections. The type of process that we discuss in this paper will
fit inside of development structures such as the waterfall lifecycle
or frameworks like the CMM.

Process definition requires iteration

No matter how good an idea is on its own merits, there are many
other factors that influence its usefulness: budget and effort
constraints, practical usefulness, etc. Many of these factors simply
can not be assessed in a laboratory environment.

These factors are exactly why technology transfer is not a trivial
task. They are also the reasons why studies of new software
development processes, inserted into industrial processes, are high
risk. If a new process does not demonstrate significant
improvement in an industrial environment, it is often difficult to
know which factor was the likely cause: whether the basic idea
itself was faulty, the new process did not fit into the industrial
process, or the process itself was correct but applied incorrectly.
In contrast, an iterative approach, in which an effort is made to
separate out these factors and test them one at a time, has a better
chance of resulting in real understanding.

A second reason for adopting an iterative approach is the
necessity of tailoring. Because each development environment is
unique, there is no such thing as a one size fits all process [16]. An
iterative approach ensures the fundamental issues are addressed
before a process is fine-tuned to a particular environment.

An iterative approach has value because it allows the use of
resources to get the most benefit out of a given study, and allows
studies to build upon each other more effectively. The alternative
is a one-shot or “big bang” approach, in which a new idea is
developed into a full-blown process and immediately tested. This
approach can allow a quick demonstration of a process’
effectiveness, or it can demonstrate that the process is unfit but
provide little indication for how to address the problems (or even
what the problems may be).

An iterative methodology for process definition

The Quality Improvement Paradigm (QIP) [1] has been
recommended as a model for continual, iterative process
improvement. The QIP is a set of six steps (characterize, set
goals, choose process, execute, analyze, package), based on the
scientific method, that are executed in a repeated cycle. The QIP
provides an improvement framework but does not describe how
exactly to study the process on any given iteration. The rest of this
paper addresses just this issue. On each cycle of the QIP, a goal
needs to be chosen, largely based on the results of the previous
cycle. Each time through, the process becomes better understood
and the improvements can be more effective.

2 EMPIRICAL STUDIES
Many types of empirical studies exist that are useful in software
engineering. However, our experience has been that certain types
of studies and strategies for data collection are more relevant to
process work than others, and even those can be better suited to
specific stages of process evolution.

The first important distinction to make is between qualitative and
quantitative data. Quantitative data (numerical) is useful for
measuring a particular aspect of a process, such as “number of
defects detected” , while qualitative data (expressed in words) is
useful for getting a much richer understanding. Both types of data
are necessary to evolve processes. Quantifying the effects of a
process supports decision-making, but much useful insight will
also come, in qualitative form, from the subjects executing the

process in ways that are not easily reducible to quantitative data.
The empirical methodology introduced in the next section is
concerned with getting the right kind of data necessary to support
the important decisions at a given time. Data collection should
always be focused on useful measures of effectiveness (which are
usually quantitative) but should include measures of feasibility or
fit to the environment (which may be qualitative) whenever
possible.

There are two types of lessons learned from empirical studies:
global lessons that affect the entire process, versus specific
lessons that affect individual process steps. Individual studies tend
to concentrate on one or the other, either validating the overall
focus and direction of a process or fine-tuning the individual steps
to increase effectiveness. An important feature of our
methodology is that global issues are addressed early, and specific
ones late in the process. This feature helps guarantee that
resources are conserved by making increasingly smaller
refinements over time.

The next distinction is using either real professionals or using
students in a classroom setting as subjects [8]. Students as
subjects introduce certain validity concerns into any experiment
since it is not clear which, if any, of their results hold for
professional developers. Also, experiments on students have to be
carefully designed for their pedagogical value. This means that
because typically all the students in the class must be taught the
new process, controlled experiments are not always possible.
However, where possible, student subjects are valuable for
debugging processes before introducing them in industry.
Software professionals' time is so valuable that extensive
measures are worthwhile to ensure that experiments in industry
yield as much value as possible. Data collection should always
include the past experience of the subjects applying the process.
Our own experiences have shown this to be one of the most
important factors influencing the effectiveness of a process.
Subjects almost always react differently to a process based on
their past experience.

Data collection of all types in empirical studies must address the
question of process conformance. Empirical results are not of
much use if the researcher cannot be sure of which process
produced them! Some strategies for addressing this issue are
found in [4].

And, data analysis has to be very sensitive to potential threats to
validity. That is, although not all external factors can be
controlled, a well-designed experiment will collect as much data
as possible on the external factors in order to reason about their
impact. Such threats cannot always be eliminated – but they do
have to be enumerated and taken into account during analysis.

3 A METHODOLOGY FOR EMPIRICAL
VALIDATION OF PROCESSES

In this section we provide a description of the methodology for
the incremental evaluation of a new process. This methodology
does not assume any particular origin for the new process, nor
does it include the creation of the new process, which we can only
emphasize must be based on observation of the real problems
being faced by industry as well as the effectiveness of existing
approaches in practice. This is not a trivial undertaking; many
conferences, panels, and workshops have focused on improving

this interaction [7,18,22].

The flowchart in Figure 1 provides an overview of this
methodology. The ordering of the questions in the flowchart

forces one to examine the larger issues first and discover the
larger problems early to avoid wasted effort later. Therefore, the
questions that appear early in the methodology explore the basic,
fundamental issues of the new process, which could prompt large
changes. Later questions address issues that are more detailed and
require smaller changes to fix. The remainder of this section
addresses each question in the flowchart in more detail.

3.1 Did the process provide usable results?
This question evaluates if the new process fulfilled the overall
goal for which it was created. At this level, researchers are
evaluating if it is worthwhile to spend the resources required to
continue through the methodology. In order to gather this type of
information, researchers should use feasibility studies
(sometimes referred to as “quasi-experimental designs” [6]) in
which data is collected according to some experimental design,
but full control over all possible variables is not achieved. Such
studies attempt to test the effectiveness of a process but are not
able to rule out all rival hypotheses that may still exist at the end
of the study. For example, we may observe changes in subject
effectiveness but cannot completely rule out the possibility that
they were caused by something other than the new process. The
goal here is to provide the researcher with enough information to
justify continued work.

In order to provide the information, the effectiveness of the new
process must be evaluated. Using qualitative data, rival
hypotheses can be addressed. For example, the subjects may be
asked if they think that their effectiveness improved because of
the new process or because of some other reason. Or, multiple
studies may be run such that no one study gives a definitive
answer but each study attempts to rule out a different set of rival
hypotheses. In either case, the objective is not to find a definitive
answer but to build up a body of knowledge that addresses the
plausibility of the process’ effectiveness [4].

At this point in the methodology, we are concerned with
generating rather than testing hypotheses about the new process
and its usefulness. Therefore, classroom environments are well
suited to feasibility studies. Although their results cannot be
applied directly to industrial developers, running studies in the
classroom allows new concepts to be tested before using them
with expensive developers from industry. And, given that
undergraduate and graduate students are bringing more and more
industrial experience with them, one of the major threats to
applicability of results is diminishing in importance [8].

3.2 Was the time well spent?
Once we have determined that the new process produces usable
results, the next step is to determine whether or not the return on
investment is reasonable, i.e. whether those results could have
been achieved in a more cost-effective way. This type of
information can be gathered based on questionnaires or interviews
that piggyback on feasibility studies. Questionnaires and surveys
are useful ways to collect both qualitative and quantitative data.
These methods require a relatively small time investment from the
experimenter, but sometimes cannot collect the information at the
desired level of detail. While designing effective questionnaires
does take some time, the fact that the same questions are sent out
to all subjects makes it easier to aggregate the answers to give a
quick snapshot of responses. Even with open-ended questions
where subjects are allowed to write free-form answers, the

§3.3

§3.4

Did process fit
into the

lifecycle?

N
Did the steps of the

process make sense?

§3.5

§3.2

§3.1

� � � � � � � � � � �
	 ��
���

N

Tailor process
and/or training

N

Y

Y

Y

Y

Y

Was the time
well spent?

Did process fit into
industrial setting?

Redesign
basic idea

Rework
process

N

N Tailor process
and/or training

Did the process
provide usable results?

� � � � � � � � � � � � �
��������

 � � � � � � � � ! " � � � �
�#�$�%�$�&�('#�$)��*)��+�

 � � � � � � � � !
",�-� �.� /0�*�%�-�1�2�0�

Figure 1: Methodology Overview

questions still provide a framework or initial categorization for the
qualitative responses.

The questions can range from multiple choice (requiring the least
subject time to answer, but providing less insight) to long answer
(in which the subject can explain his or her reasoning in more
depth, but answers are harder to compare across subjects). There
should be enough choices for the multiple-choice questions to
provide a reasonable degree of granularity, but not so many that
the subjects cannot easily understand the distinctions between the
choices. Having too many choices also runs the risk that few
subjects will fall into any given category, complicating the task of
abstracting patterns from the data. However, categories can be
designed so that they can be grouped together during analysis;
finding patterns across groups may be easier. Long answer
questions give the subjects a chance to express their thoughts in
more detail, but complicate the qualitative analysis (picking out
patterns from free-form responses can be difficult). Such
qualitative analysis is often the best way to gain insight into the
use of the process.

Interviews are another method for collecting qualitative data.
They are more time-consuming for experimenters, because they
have to schedule and spend time with each subject to collect the
data. However, the compensating benefits of interviews are that
they allow for more freedom in the responses than questionnaires
and surveys do. This freedom allows the interviewee to convey
information in a way that makes sense to him or her. Interviews
can also be dynamic because they allow the researcher to
investigate topics he or she might not have even known were
important prior to the interview. On the other hand, there are
problems with accuracy because the subject cannot be anonymous
and, consciously or not, the interviewee may want to “please” the
researcher with his or her answers.

3.3 Did the steps of the process make sense?
Because at this point we have determined that the process
produces useful results and also can be done with a reasonable
amount of effort, we can begin to make more detailed
modifications to the process. In order to do this, we begin by
evaluating the steps in the new process to ensure that each one is
effective and that the order in which they are executed makes
sense. The most effective way that we have found to gather this
type of information is through an observational study. We use
the term “observational” to define a setting in which an
experimental subject performs some task while being observed by
an experimenter. The purpose of the observation is to collect data
about how the particular task is accomplished. Observational
techniques can be used to understand current work practices that
can be incorporated into the new process. They are also useful for
getting a fine-grained understanding of how a new process is
applied. The observer is there to capture information about the
circumstances in which the subject experiences problems or has
trouble understanding the new process. The observer can also
take note of the time consumed by each step of the process and
whether or not the step was effective in achieving its goal.

An observational approach can be a bit more time-consuming for
the experimenter and less relaxed for the subject than interviews
or questionnaires. However, we have found that the observational
approach delivers more accurate qualitative results than such
retrospective methods. When retrospective methods are used
subjects may find it difficult to reconstruct their own thought

processes, or may (intentionally or accidentally) present their
thought processes in a more structured and coherent way than
actually occurred.

Data collection in an observational study can be split into two
subtypes, observational and inquisitive. Observational data is
collected while the process is being executed, but without
interference from the researcher. For instance, subjects are told to
think out loud as they execute a technique so that the researcher
can gain insight into how the process is executed. For example,
the researcher can record places that the subject becomes
confused or does not know what to do next. Because the
researcher should avoid interfering with the process, observational
data collection is mostly passive [17].

Inquisitive data is collected at the completion of a process step,
rather than during its execution. The researcher is required to be
more assertive and to solicit responses to predefined questions
rather than passively observe. For example, at the end of each
step, the researcher could ask the subject for qualitative feedback
as to whether that step was worthwhile or if the same results could
have been better achieved in a different way. This is not
information that the subject would normally think about while
executing the process, yet it is invaluable to collect at this time,
while it is still fresh in the mind of the subject.

3.4 Did the process fit into a particular
lifecycle?
After the previous step, we have some indication that the process
is effective. However, up to this point we have only used the
process in isolation. In order for the process to really be useful, it
has to be able to fit into a real development lifecycle. To find out
this information, we can make use of a case study. Case studies
examine a particular process in the context of a larger software
lifecycle. We introduce case studies at this point in our
methodology because they are not suitable vehicles for
understanding a completely new process. They are expensive –
subjects must be trained and must overcome the learning curve,
and their time is potentially costly. Also, if an untested process is
tried in the context of a lifecycle, it will be difficult when
problems arise to differentiate between problems with the process
itself versus problems with the interaction of the new process and
the lifecycle process.

Case studies can incorporate different levels of rigor, ranging
from more controlled studies (looking at a real lifecycle, but using
controls such as a replicated or “baseline” project to study
particular variables) to more realistic (done in industry with real
time and budget pressures and professional developers, as well as
many uncontrolled factors that can potentially influence events).
More about case studies can be found in an overview paper by
Kitchenham et al [9].

The goal of using a case study at this point in the development of
the new technology is to do some fine-tuning or tailoring of the
technology. Based on the previous steps in the methodology, we
have already determined that the new process is promising and
worth our effort to improve. At this point we begin to see how the
new process interacts with other aspects of a real development
lifecycle. This interaction can lead to issues that did not arise
when evaluating the process in isolation. It is also important to
remember that a process can be feasible and effective in some
environments but not others. This step is a necessary one for

354�6�7#8:928:;<8>=@?
7A=ABDC2?

E F G G H I J K�LNMOMQPSR HTINIVUEWFSG:G HTINI

X-YDZ0[]\(^D_D`Aa>bdcD_We
ZA`AfDg2h

iWj2k0lnm�oApDq2rts<u$oAvDl
m�wWxyo.znjW{@l}|]{+wW~#l2k�k

� � � � � � � � �

�W�2�0�n���A�D���}�<�
� � � � � � � � � � � � � � � � � �
� �+�W�#�2���

�N���*���¡ £¢}¤W¥+�D¦]§©¨2ª¬«2¢#]®2¯©ª
¥+ª�¢D«°¯ ±.¢$²�³S´ µ ¶ · ¸ ¹ · µ º ¹ » ¹ ¼ ¼

¶D½T¹]¾�·À¿

ÁSÂ,·A¸2¹Ã¶�·&¹W½D¶�Â2ÄNÅÅ%Æ¡Ç£¶
ºnÈ]É5¹Ã¶#¹W¾2¶#¹W¿

ÁSÂ�Å*Å%ÆÊÇË¶%ÄÀµ ·µÌ¾�·.Â,·A¸2¹
¼ÌµÍÄ+¹�Î�ÏDÎD¼©¹QÐ1ÑÓÒ%Ô]Õ+ÔÃÖD×]ØÚÙÛÔ�Ü5Ý.Ö
Þ ØWßÍÔ}Ý&àÓ×°á2â2Ô]Õ+Ö5Ý Þ á2âäã ÝÀå

æNà�çç%è¡é£Ö%ê&ãÍÝ*ãëáDÝ&à
ãëá�âd×2Ö�Ý0Õ&ã Þ ßDÖ#ÔTÝ@Ý0ãÌá2ì]å

í î ï ð ð ñ ò ó ô õ ö

Figure 2: Process evolution of OORTs

assessing compatibility with a particular development lifecycle –
e.g. whether the right information is available for input, and
whether the outputs are appropriate for later stages.

3.5 Did the process fit into an industrial
setting?
Once we have tailored the new process to be usable within a real
development lifecycle, the next step is to use the new process in
an industrial setting. We again use a case study to investigate if
the new process has any unforeseen negative interactions with the
industrial setting.

We have placed this step last in our methodology because
industrial developers are the most expensive of all the subjects
that we have discussed. Therefore, we want to make sure that our
new process is as good as possible before asking an industrial
partner to invest their time and money. We should also remember
as we begin to transfer this process to the organization that our
goal is to minimize the interruption or disruption in the normal
working environment.

For example, the researcher can spend time with the process
owner of the organization discussing the new process and how it
may or may not fit into the industrial setting. With the researcher
being the expert on the process and the process owner being the
expert on the industrial setting, some of the potential problems
can be discovered before the expensive developers use the
process. The more tailoring that can be done before the
developers use the process, the more time and effort can be saved
in this evaluation process.

4 APPLYING THE METHODOLOGY:
READING TECHNIQUES FOR OO
INSPECTIONS

We applied the methodology described in section 3 while building
techniques that allow high level object-oriented designs to be
inspected in order to detect defects. Previous research has shown
that inspections can be improved by reading techniques, which
assist inspectors to find defects while they individually review the
document [11,14,24]. Because OO designs are quite different
from structured designs, and increasing in popularity, new reading
techniques tailored to the OO world
are needed.

An OO design is a set of diagrams
representing real world concepts in
the problem domain, but built at a
different time, using a different
viewpoint and abstraction level than
the requirements. When high-level
design activities are finished, the
diagrams can be inspected to verify
whether they are consistent among
themselves (horizontal reading) and
if the requirements were correctly
and completely captured (vertical
reading) [19, 20]. We have
developed a family of 7 reading
techniques to compare various
design diagrams, 4 horizontal and 3
vertical.

Ensuring the quality of the high-level design has benefits for
software quality. First, by focusing the techniques on the high-
level design, we are ensuring that developers understand the
problem fully before trying to define the solution in the low-level
design. Secondly, it is important to locate and remove as many
defects as possible at the higher level, because they become more
difficult and more expensive to fix if they are allowed to filter
down into the low-level design, or even the code [10, 12].

The methodology from Section 3 was used to develop this new
family of Object-Oriented Reading Techniques (OORTs) via a
series of empirical studies at the University of Maryland
beginning in 1998. The sequence of studies and evolution of
goals illustrated in Figure 2, will be explained in sections 4.1-4.4.

4.1 Do OORTs provide usable results and is
the time well spent?
Based on lessons learned from studying requirements inspections
and different types of OO design defects, an initial set of reading
techniques was created. Using the methodology described in
Section 3, we first performed initial validation of the new
techniques by using a feasibility study [19] in the Fall of 1998.
This study addressed the questions asked in Sections 3.1 and 3.2
with feedback on form and content as a secondary goal.

Subjects: The subjects were students from a senior-level
undergraduate software engineering course. Of the 44 students in
the class, 32% also had previous industry experience in software
design.

Materials: The initial version of the reading techniques was
evaluated. All review teams applied them to the design of a small
system (11 classes in high-level design).

Procedure: After students read the requirements for a system, the
design was distributed to the class and subjects were asked to
inspect it. There was no control group. Therefore, we could not
compare the OORTs’ effectiveness to that of another OO
inspection method. There were two reasons for this decision. The
first was that we were aware of no other published methods for
reading OO designs. Secondly, it was a classroom environment.
Each team applied all seven of the reading techniques, divided up
among the members. After performing their individual reviews,
the team members met to compile their individual defect lists into

a final list that reflected the group consensus.

Data Collection: Questionnaires and interviews were used to
collect qualitative data. We also analyzed the artifacts produced
during the inspection as a control on the data quality and process
conformance. Using both questionnaires and interviews allowed
us to collect qualitative data at different times, under different
conditions; evaluating the consistency of answers provided a first
level of a check on data quality. The qualitative data included:

• Opinion of effectiveness of technique (measured by the
percentage of the defects in the document subjects thought
they had found)

• Subjective usefulness of different horizontal and vertical
reading techniques (open-ended question)

• How closely subjects followed the technique (collected
multiple ways for consistency checking)

• Practicality of the techniques (open-ended question)

The questionnaires were also used to capture limited quantitative
data, namely the time required for individual review. Analysis of
the subjects’ defect lists yielded quantitative data concerning the
number and type of defects detected by the techniques. (Because
this was mainly a feasibility study, we made the assumption in our
counting of defects that all defects reported were real problems
with the document, rather than spending the time to determine if
each reported defect was a real problem with the artifacts. This is
a trade-off that can be made during a feasibility study where the
main goal is to see if the new process can be used.)

Results and Lessons Learned: The quantitative data from this
experiment allowed us to answer the question posed in Section
3.1:

• Using the techniques did allow teams to detect defects (11
were reported, on average).

• Vertical techniques tended to find more defects of omitted
and incorrect functionality; Horizontal techniques tended to
find more defects of ambiguities and inconsistencies between
design documents, lending credence to the idea that the
distinction between horizontal and vertical techniques is real
and useful.

Thus, the data supported the conclusion that the techniques were
feasible: they could be used to detect defects, and moreover could
be used to target particular types of defects.

At the same time, the qualitative data showed that in general
subjects agreed that the techniques were helpful, and allowed us
to answer the question posed in Section 3.2. The data indicated
that while the techniques were worth the time that the subjects
spent on them, they were not as well specified as they could be.
We were able to learn three global lessons on how to improve the
techniques:

• OO reading techniques should concentrate on semantic, not
syntactic, issues.

• Reading techniques need to include not only instructions for
the reader, but some motivation as to why those instructions
are necessary.

• The level of granularity of the instructions needs to be
precisely described.2

These results led us to produce a second version of the techniques
that incorporated several global changes, such as a greater focus
on semantic checking, more explanation of the goals of the
process steps, and a new terminology to help discuss system
functionality in more detail.

4.2 Do the steps of OORTs make sense?
Because the previous study had shown us that the techniques were
feasible and that the time that it took to use them was well-spent,
next we evaluated the steps at a more detailed level. To answer
the question from Section 3.3 about whether the steps made sense,
we addressed the results from the previous section. This was done
using an observational study [15] during the Fall 1999 semester.
We also wanted some indication about the problem domains, and
the background of inspectors, for which the techniques could be
most useful.

Because the observational study was a new approach for us, we
first performed a pilot study to debug the observational approach
and get it to work in our setting. Only after the pilot study did we
perform a full-scale observational study, reported below. The
observational study was necessary to understand what
improvements might be necessary at the level of individual steps,
for example, whether subjects had problems while applying the
technique (and how these problems may be corrected), whether
each step of the technique contributes to the overall goal, and
whether the steps of the technique should be reordered to better
correspond to subjects’ own working styles.

Subjects: The 14 subjects were members of a graduate-level
Software Engineering class. Many were returning professionals;
86% had previous industry experience with OO design.

Materials: The materials consisted of a new version of the OO
reading techniques. They were applied to two designs: one for an
unfamiliar financial domain (7 classes in the high level design, 4
interaction diagrams and 3 state diagrams) and one for a more
familiar parking garage control system (6 classes in the high level
design, 5 interaction diagrams and 2 state diagrams).

Procedure: A quasi-experimental, factorial design was used in
which half of the class reviewed the design from the unfamiliar
domain, and the other half the design from the familiar domain. In
each of these groups, roughly half the teams had previously
inspected the requirements document for the same system. In this
scheme, we could look for any differences in performance due to
the reviewers’ familiarity with the system requirements or with
the problem domain.

Each subject was paired with another student who was trained as
an observer. Observers defined their own questions for eliciting

2 For instance, discussing functionality is a difficult but necessary
part of the reading techniques. The difficulty comes from the
many different levels of granularity at which system behavior can
be described, and just assuming that subjects will intuitively grasp
the correct level of granularity is naïve and causes frustration for
the reviewer.

observational and inquisitive data. After the execution of the
techniques, each team wrote an evaluation report discussing their
experience and the results of the observation.

Data Collection: We analyzed the artifacts produced by the
subjects to collect some quantitative data: the time to execute the
techniques and the number and type of defects detected. However,
observational techniques were the most important method used in
this study. A rich array of qualitative data was collected through
their use. The teams produced an evaluation report, which
included both a summary of the notes taken during observation as
well as retrospective data. The metrics collected from the
observations included:

• Users’ opinion of effectiveness of technique

• Problems encountered with specific steps of procedure

• How closely the techniques were followed

The retrospective data (collected via open-ended questions)
provided the following information:

• Usefulness of horizontal and vertical techniques

• Practicality of the techniques

• The problems found using the techniques

In addition to the data on the individual steps in the process that
was provided by the metrics, the retrospective data gave insight
into global issues. Also, some of the metrics collected here were
the same as in the previous feasibility study, allowing a
comparison of results across the two versions of the techniques.

Results/Lessons Learned: The qualitative data gathered during
observation provided us with some potential ways of improving
the techniques:

• Order of dealing with information (process steps) must match
the subjects’ own way of thinking about the problem.

• Amount and type of training needed to be modified.

• Differences in design approaches could affect design
inspection.

The quantitative data from this experiment allowed us to:

• Verify the difference between types of defects found by
horizontal and vertical techniques.

• Show that having domain expertise did not help in the design
inspection.

• Show that having been a participant in a requirements
inspection for a system did not improve performance in the
design inspection.

These results led us to produce a third version of the techniques,
using the data from the observations about the way that readers
applied the techniques. This version of the techniques also
focused more on the semantics behind the design models and less
on the syntax. Additional improvements were made regarding
training and data collection forms. The details of the process
evolution up to this point (along with the third version of the
techniques) are presented in [21]. These techniques can be
compared with the previous ones presented in [19] to observe the
evolution based on these study results.

4.3 Do OORTs fit into a development
lifecycle?
Now that we had improved the individual steps in the process, the
next step in the methodology was to perform a case study by using
the new process inside of a real lifecycle process. This study was
done during Spring 2000 semester.

Subjects: The subjects came from a senior level undergraduate
software-engineering course. Of the 42 students in the class,
14% had some previous experience with OO design in industry.

Material: The materials under study during this experiment
consisted of an evolved version of the techniques based on the
results from the previous study. They were applied in the
evolution of the familiar domain system used in the previous
study.

Procedure: The subjects used a waterfall development process, to
create an enhanced version of an existing system.

Once the initial design had been created, all teams used the
horizontal reading to inspect their own designs. After correcting
any defects, each team then performed the vertical reading
techniques on a design for another team.

In the overall scope of the software development process there
was no control group. This lack of a control group occurred for
two reasons: first, the design inspection was one small part of a
larger experiment, and the overall experimental design did not
allow for a control group. Secondly, it was in a classroom
environment.

Data Collection: Questionnaires and analysis of created artifacts
were used to evaluate the effectiveness of the techniques in the
development process. The questionnaires were used throughout
the development cycle to collect both qualitative and quantitative
data. The quantitative data collected include both background
information and the amount of time taken to use the techniques,
used to evaluate the use of the techniques in the lifecycle process.
The qualitative data collected by the questionnaires concerned:

• Opinions of the helpfulness of the techniques.

• Problems encountered using the techniques, or extra
knowledge that was needed to use the techniques.

• Opinions of effectiveness of training.

Analysis of the defect lists provided quantitative data about the
number and types of defects found by the teams. The data was
useful in determining if the output of the reading process
uncovered defects and was useful for continuing the development
process.

Results/Lessons Learned: The qualitative data from this, our
first case study, provided us with some lessons about the
techniques and how they fit with other development processes.
First, we found that subjects were able to apply the techniques
inside of a lifecycle and in combination with other processes
(specification, design, implementation, and testing). The
techniques were useful for inspections, as they resulted in defects
that were corrected to improve system quality; but, in the context
of system development they also turned out to have another use:
The vertical techniques helped students to gain a better
understanding of the system functionality and how it should be
represented in the design. Also, the techniques were feasible to

use during development, as the effort required was not prohibitive
compared to other system tasks; the design inspections required
on average 20 hours per team, or 24% of the overall effort spent
on design. Outside of the training in the techniques, the subjects
required no special knowledge that was not previously gained
during the development of the system.

4.4 Do OORTs fit into an industrial setting?
At this point in time, having run a case study in a classroom
environment, our next step is to run an industrial case study to
make sure these ideas can be tailored and transferred to an
industrial environment. For this study we are currently seeking an
industrial partner. The series of studies run to date has provided a
body of evidence that, first, yielded a proof-of-concept of the
usefulness of the process and second, identified a set of issues that
we know will be important for tailoring this process for effective
industrial use. For example, we have already observed the effects
of subject training and of previous subject experience (with
inspections in general, with the problem domain, and with OO
concepts) and how they can influence the effectiveness of the
process.

Every pilot study of a new process in an industrial environment
needs a back-out plan, i.e. a way of responding with minimal
disruption to the success of the project if the process turns out to
be ineffective in the environment. However, the studies run to
date have formed a responsible approach for developing
confidence in the process under study and for demonstrating that
we can tailor it to the industrial environment.

5 CONCLUSIONS
In this paper, we have outlined an approach for evolving
processes, from the early concept phase to the tailoring and use of
the process on an industrial project. We have illustrated how a
body of evidence concerning process effectiveness can be built
up, using different types of studies to address different questions
of interest about a process. We believe that such an approach is
helpful for a responsible interaction with industry.

For researchers, we have provided a methodology for planning
such an iterative approach to evolve and study processes. We have
given some indication, based on our own experience, of heuristics
for deciding what type of study and what type of data collection is
best suited for a given stage of process evolution.

For practitioners, we have discussed a process for addressing an
important development task, OO design inspection. We have
illustrated the series of studies used to build up confidence in the
process and understand the relevant variables, so that readers can
understand and judge for themselves the evidence regarding the
process’ effectiveness. We have argued that the process can
continue to be adapted, adopted, and studied in an industrial
environment without undue risks to the project.

We invite interested readers to our web page,
www.cs.umd.edu/projects/SoftEng/ESEG/manual/OORTs/, which
contains pointers to information on the studies referenced in this
paper, a particular OORT at various stages of evolution, and
further references.

ACKNOWLEDGEMENTS
This work was partially supported by UMIACS and by NSF grant
CCR9706151. We wish to thank Prof. Victor Basili for his

support and our subjects for their hard work. Dr. Travassos also
recognizes the partial support from CAPES-Brasil.

REFERENCES
[1] Basili, V. R. and Caldiera, G. “ Improve Software

Quality by Reusing Knowledge and Experience,”
Sloan Management Review 37, 1 (Fall 1995), 55-64.

[2] Basili, V.R., Green, S., Laitenberger, O., Shull, F.,
Sorumgaard, S.L., and Zelkowitz, M.V. “The
Empirical Investigation of Perspective-based
Reading.” Empirical Software Engineering, An
International Journal, Volume 1, Number 2, pp. 133-
164, Kluwer Academic Publishers, October 1996.

[3] Basili, V.R. “Evolving and Packaging Reading
Technologies.” Special Issue, The Journal of Systems
and Software, Volume 38, Number 1, pp.3-12, July
1997.

[4] Basili, V. R.; Shull, F.; and Lanubile, F. Building
Knowledge through Families of Experiments. IEEE
Transactions on Software Engineering 25, 4 (July
1999), 456-473.

[5] Boehm, B. and Basili, V. “Software Defect Reduction
Top 10 List” , IEEE Computer, 34, 1, (January 2001)
135-137. www.cebase.org

[6] Campbell, D.; and Stanley, J. Experimental and
Quasi-Experimental Designs for Research. Houghton
Mifflin Company, Boston 1963.

[7] “Concluding Panel: Metrics Faceoff – What Industry
Needs from Researches: What Researchers need from
Industry.” Software Metrics Symposium, Bethesda,
MD, Nov 1998.

[8] Höst, M.; Regnell, B. and Wohlin, C. Using Students
as Subjects: A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment. In
Empirical Software Engineering – An International
Journal. Vol. 5, No. 3, Nov 2000

[9] Kitchenham, B.; Pickard, L.; and Pfleeger, S.L. Case
Studies for Method and Tool Evaluation. IEEE
Software 12, 4 (July 1995), 52-62.

[10] Pfleeger, S.L. Software Engineering: Theory and
Practice. Prentice-Hall, 1998.

[11] Porter, A.; Votta Jr., L.; and Basili, V. R. Comparing
Detection Methods for Software Requirements
Inspections: A Replicated Experiment. IEEE TSE 21,
6 (June 1995), 563-575.

[12] Pressman, R. Software Engineering: A Practitioner’s
Approach, 4th ed., McGraw-Hill, 1997.

[13] Rombach, D. “Fraunhofer: The German Model for
Applied Research and Technology Transfer.” In Proc.
ICSE’00 (Limerick, Ireland, Apr. 2000), 531-7.

[14] Shull, F. Developing Techniques for Using Software
Documents: A Series of Empirical Studies. PhD Thesis,
Computer Science Dept., University of Maryland.
1998.

[15] Shull, F.; Travassos, G.; Carver, J.; and Basili, V. R.
Evolving a Set of Techniques for OO Inspections.
University of Maryland Technical Report CS-TR-
4070. October 1999.

[16] Shull, F.; Rus, I.; and Basili, V.R. How Perspective-
Based Reading Can Improve Requirements
Inspections. IEEE Computer 33, 7 (July 2000), 73-79.

[17] Singer, J.; and Lethbridge, T. Methods for Studying
Maintenance Activities. In Proc. of the Workshop for
Empirical Studies of Software Maintenance (Monterey
CA, Nov. 1996), 105-110.

[18] “Software Past, Present, and Future: Views from
Government, Industry, and Academia.” Panel
Discussion, NASA Software Engineering Workshop,
Greenbelt, MD, 1999.

[19] Travassos, G.; Shull, F.; Fredericks, M.; and Basili, V.
R. Detecting Defects in Object-Oriented Designs:
Using Reading Techniques to Increase Software
Quality. In Proc. OOPSLA’99 (Denver CO, Nov.
1999), ACM Press, 47-56.

[20] Travassos, G.; Shull, F.; Carver, J.; and Basili, V. R.
Reading Techniques for OO Design Inspections. In
Proc. of the 24th Annual Software Engineering
Workshop (Greenbelt MD, Dec. 1999), NASA
Goddard Space Flight Center (SEL-99-002).

[21] Travassos, G.H., Shull, F. and Carver, J. “A Family of
Reading Techniques for OO Design Inspections.” In
Proceedings of the WQS'2000 – Software Quality
Workshop, (October 2000), Brazilian Symposium on
Software Engineering, p.225-237.

[22] Werner, C.M.L., Travassos, G.H., Rocha, A.R.C. “An
OO Software Engineering Training Experience within
a Collaboration Project between Academia and
Industry.” In Proceedings of TOOLS27 – Technology
of Object Oriented Languages and Systems, IEEE
Computer Society, pp.290-294, Beijing, China, 1998.

[23] Zelkowitz M. V. and D. Wallace, Experimental models
for validating computer technology, IEEE Computer
31, 5 (May, 1998) 23-31

[24] Zhang, Z.; Basili, V. R.; and Shneiderman, B. An
Empirical Study of Perspective-Based Usability
Inspection. In Proc. of Human Factors and
Ergonomics Society Annual Meeting (Chicago IL, Oct.
1998).

