ATP: Autonomous Transport Protocol

Tamer Elsayed, Mohamed Hussein, Moustafa Youssef, Tamer Nadeem, Adel Youssef and Liviu Iftode

Department of Computer Science
University of Maryland, USA
To conserve energy, target is tracked using only one camera.

Data is transmitted through a streaming application (Src) to a mobile command center (Dst).

Active camera changes as target moves (streaming application migrates).

Cannot tolerate data loss during camera change.
What is ATP?

- Autonomous Transport Protocol
- Why autonomous?
 - Decoupled from physical network
 - Decoupled from the physical location of application endpoints
- Provides reliable communication between mobile endpoints
Features I

- Application-specific naming
 - Connection endpoints are defined as contents in the P2P network

- Dynamic endpoints relocation on different end hosts without disrupting the connection
 - ATP is responsible for forwarding segments to the destination and acknowledgments to the source regardless of their current location
Features II

- Reliable transmission between users *not* end-hosts
- Established connections maintained independent of intermediate node availability
- TCP-like interface
 - Easy to write new ATP-aware applications
 - Current applications can be made ATP-aware with minor modification
System Architecture

- Mobile applications
- TCP-like interface
- Reliable transmission over IBN
- Transparent mobility
- Network of “contents”
- Location-independent addressing
- Communication infrastructure
- IP/MANET
Content-Based Network (CBN)

- Network of endpoint entities "Contents"
 - **Active Contents**
 - communicates together by messages
 - performs a lookup for other contents
 - e.g. application service, network connection agent, ..
 - **Passive Contents**
 - stored in the network
 - e.g. document, ..
- **Location-independent addressing**
 - Extends P2P lookup services (e.g. CAN, Chord,..)
 - Maps a content to a specific node
IBN=CBN++

- Allows different instances of same content
- Instance Publishing
 - Self (active) / Free (passive)
 - Reliable
 - Leased
- Instance Routing
 - Decoupled from instance physical location
 - Routes to specific or closest instance
- Replicates contents for fault-tolerance
- Caches info for future queries
IBN Routing Example

User request

Published file

Query request

Query response

User request
ATP over IBN

- IBN Content/Instance Addressing
- Contents are the communication endpoints
- Instances are agents working on behalf of mobile entities
- \textit{AS}:i : ATP agent for the source S with index \(i\)
- Index \(i\) means the agent is responsible for sending packets starting from sequence number \(i\)
Design Issues

- **Reclaiming Network Resources**
 - Enforcing a lifetime or using a leasing mechanism for publishing in the IBN

- **Acknowledgement Mechanism**
 - Cumulative vs Range Acks

- **Fault tolerance**
 - Relies on IBN route discovery service and/or on ATP mechanism to alleviate the node failure and link failure problems

- **Security**
 - How to handle privacy, authenticity, and trust?

- **End-to-End Semantics**
 - Shifts the burden of waiting from the source endpoint which allows the source to terminate earlier.
Related Work

- TCP over Mobile IP
- TCP Connection Migration
- I3
- Mobile Tapestry

Shortcomings

- User is bound to a single host during connection lifetime
- Communication endpoints must exist simultaneously
Current Status

- Implemented a Java prototype of the ATP protocol over Pastry
 - The prototype is deployed over a set of independent nodes at University of Maryland.
 - A simple ATP-aware application runs on each node of the network
- Simulation in progress
- Further information