Towards Petaflop Architectures

Application Emulators and Simulation

University of Maryland
Syracuse University
Rutgers University
University of California, Santa Barbara
Architectural Design using Application Emulators

• Characterize performance of important applications on future architectures
 – Assumptions
 • application belongs to a targeted application class
 • behavior of processor architecture/compiler interaction has been characterized for application class
 – project behavior of processor pipeline, cache using empirical characterizations from current architectures
 – assume that programmer and compiler will use known optimizations
 – not interested in “dusty deck” performance predictions
Driving Applications

- Sensor data and land cover characterization
- Visualization and analysis of very large microscopy datasets
- Bay and estuary simulation
- Circuit simulation
- Stealth aircraft design
- MSTAR
- Combustion simulation
- Data mining
- Data cube
Active Data Repository Design

Objectives

• Integrate and overlap a wide range of user-defined operations, in particular, order-independent operations with the basic retrieval functions

• **Support optimized associative access and processing of multiresolution and irregular persistent data structures**

• Targets *parallel and distributed architectures* that have been configured to support high I/O rates

• Applications -- *Titan*: Satellite sensor data; Virtual Microscope Server, Bay and Estuary Simulation
Sensor data processing -- data intensive applications

- Data products generated from disk based datasets
 - datasets are usually irregular
 - indexed by spatial location (position on earth, position of microscope stage)
- Spatial query used to specify iterator
 - computation carried out on data obtained from spatial query
 - computation aggregates data - resulting data product size significantly smaller than results of range query
Application Emulators

- Parameterized programs designed to mimic application computation and data movement patterns
- Focus is on memory hierarchy, computational details are abstracted
 - generally also abstract L1 and L2 cache
- Coarse grained, executable description of patterns of data movement and computation
- Generates type of dynamic task graph
Spatial Irregularity
AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks.
Example Projection Query

Output grid onto which interpolation is carried out

Specify portion of raw sensor data corresponding to some search criterion
Application Emulators

• Computation and data movement can be decomposed into a sequence of phases or *epochs* (loosely synchronous computational pattern)

• *Demand driven generation (POEMS terms)*
 – iterator specifies a number of independent computations
 – dependencies can exist within each iteration and between phases
Application Emulators

- Data product may itself be used or may be used as part of a more complex calculation
 - land cover classification
 - data assimilation
 - bay and estuary simulation
 - virtual microscope -- morphometry, 3D reconstruction
Current Application Emulators

• Scientific I/O intensive (Application Domains Supported by Active Data Repository)
 – Titan
 • Satellite data processing
 – Pathfinder
 • Satellite data processing
 – Virtual Microscope
 • Microscope image database server
 • data server (multiple simultaneous queries)
Current Applications Emulators

• Scientific irregular
 – Sparse Gaussian
 – Fast multipole method (Vortex dynamics)

• Database
 – Data Cube
 – Data Mining
 – External Sort
Simulators

- Suite of simulators - varying degrees of fidelity
- All simulators abstract pipelining
- Howsim - detailed architectural simulation using empirical and published device characteristics
- Petasim - rough analysis to account for costs of moving data between memory hierarchy levels
- Block level data driven simulators -
 - Data driven simulators -- Fastsim, Gigasim, Dumbsim -- trace chunks of data through retrieval, data movements, processing and storage (or output to network)
- Emulators coupled to simulators by incremental generation and consumption of work flow graphs
Coupling to Simulators
(Work flow Graphs)

Titan
- DISK READ
 - MESSAGE SEND
 - MESSAGE SEND
 - COMPUTE
 - MESSAGE RECEIVE
 - MESSAGE RECEIVE
 - COMPUTE

Pathfinder
- I/O nodes
 - DISK READ
 - MESSAGE SEND
 - MESSAGE SEND
 - MESSAGE RECEIVE
 - MESSAGE RECEIVE
 - COMPUTE
 - COMPUTE

Virtual Microscope
- DISK READ
 - COMPUTE
 - SEND
Compiler Support for Generating Application Emulators

- Used to generate work flow description used in petasim and block level simulators.
- Programmer uses knowledge of application domain to write computational component of application emulator.
 - Compiler generates code that, at runtime, produces work flow description.
 - Estimate computational costs and amount of data communicated between nodes in workflow graphs.
 - High level directives used to control granularity of work flow description.
General Overview of Performance Prediction Framework

Applications

- Petasim
 - *Initial Design*
 - *Simple hardware*

- Gigasim
 - *Large Scale Machines*
 - *Simple hardware*

- Fastsim
 - *Simple hardware*

- Dumbsim

Emulators

- Howsim
 - *Refinement*
 - *Detailed Hardware*

Machine Configuration

- *Initial Design*
- *Simple hardware*

- *Refinement*
- *Detailed Hardware*

Applications

- *Abstract, simple*
- *Hand-coded*

Emulators

- *Automated*

Work flow graph, Dependency Graph Generation Tools

Execution Specification
Evaluation of Candidate Architecture: Active Disks

- Disks with embedded CPU and memory
- Application-specific code executes on disk
- Processing partitioned: disk and host
 - Active disk performs bulk of the processing
 - Host coordinates/schedules/combines

- #CPUs increase with #Disks
- Processing power evolves with disks
Active Disk Architecture

- Processing power scales naturally with storage capacity
- Processing power evolves with storage

- Restructure apps
- Disk-resident code
 - bulk processing
 - disklet
- Host-resident code
 - coordination
 - communication
 - combination

Serial link

M P

M P

M P

M P
Experiments

• Compared algorithm-architecture combinations
 – current and future configurations

• Evaluated scalability
 – configuration: 4-32 disks
 – dataset size

• Evaluated impact of host upgrades