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Abstract

We use clustering to derive new relations
which augment database schema used in au-
tomatic generation of predictive features in
statistical relational learning. Clustering im-
proves scalability through dimensionality re-
duction. More importantly, entities derived
from clusters increase the expressivity of fea-
ture spaces by creating new first-class con-
cepts which contribute to the creation of
new features. For example, in CiteSeer, pa-
pers can be clustered based on words or ci-
tations giving “topics”, and authors can be
clustered based on documents they co-author
giving “communities”. Such cluster-derived
concepts become part of more complex fea-
ture expressions. Out of the large num-
ber of generated features, those which im-
prove predictive accuracy are kept in the
model, as decided by statistical feature selec-
tion criteria. We present results demonstrat-
ing improved accuracy and scalability when
predicting publication venues using CiteSeer
data.

1. Introduction

Statistical relational learning and related methods
search a space of database queries or logic expressions
to find those which generate new predictive features. A
given schema, describing background data, is used to
structure a search over database queries. Each query
generates a table, which in turn is aggregated to pro-
duce scalar feature candidates. The process produces
a stream of features, from which statistically signifi-
cant predictors are selected. The expressivity of the
generated features is determined by the set of central
relational entities participating in the search.

Considerably more powerful models can be built when
the original schema is augmented with new relations
which are derived via clustering (cluster-relations).

Clustering can be used to create first-class relational
concepts which are not derivable otherwise from the
original relations. The addition of cluster-relations
to the schema results in the creation of richer, more
expressive, feature spaces, resulting in more accurate
models than those built from the original relational
concepts. Perhaps surprisingly, this approach can also
lead to the more rapid discovery of predictive fea-
tures. In addition to summarizing information (e.g.
“Is this document on a given topic?”), cluster de-
rived concepts participate in more complex relation-
ships (e.g., “Does the database contain another doc-
ument on the same topic and published in the same
conference?”). The creation of these new high-level
concepts allows more accurate and robust modeling
from complex data sources not simply through infor-
mation reduction, but, more importantly, through the
increased expressivity of the language used to describe
patterns in the data (0).

2. Methodology

We use a form of statistical relational learning which
integrates regression with feature generation from re-
lational data. In this paper we use logistic regression,
giving a method we call Structural Logistic Regression
(SLR). SLR combines the strengths of classical statis-
tical modeling with the high expressivity of features
automatically generated from a relational database.

Cluster-relations enter the formulation of the search
space used to generate predictive features exactly as
the original relations. The original database schema
is used to decide which entities to cluster and what
sources of attributes to use, for example documents
clustered by words or by citations create alternative
clusterings of the same objects. Once the schema is
expanded by adding derived cluster relations to it, the
underlying statistical relational learning methodology
is repeated, i.e. database queries of the feature gener-
ation search space are evaluated, and the resulting ta-
bles per observation are aggregated to produce scalar
feature columns, Figure 1. The new relations added



are treated exactly the same as the original relations.

Section 2.1 briefly presents SLR; the reader is referred
to (0) for a more detailed description.

2.1. Structural Logistic Regression

SLR is an extension of logistic regression to model-
ing relational data. It combines the strengths of clas-
sical statistical models with the higher expressivity
of features automatically generated from a relational
database. SLR dynamically couples two main com-
ponents: generation of feature candidates from rela-
tional data and their selection using statistical model
selection criteria. Relational feature generation is a
search problem. It requires formulation of the search in
the space of, possibly complex, queries to a relational
database. At each search node, feature candidates are
constructed and considered for model inclusion. Thus,
the process incrementally learns predictive data pat-
terns, possibly encoding complex regularities in a do-
main. The process results in a statistical model where
each selected feature is the evaluation of a database
query encoding a predictive data pattern.

As mentioned above, relational feature generation is
a search problem. We use top-down search of refine-
ment graphs (?; ?) as our main search space speci-
fication method. Each node in the refinement graph
is a database query. The search starts with simpler
queries about learning examples and progresses by re-
fining its nodes, i.e. adding more relation instances
and conditions to a parent query. Since we are building
statistical models, rather than logic clauses as is the
case in inductive logic programming where refinement
graphs are used, we are not limited to searching in the
space of binary logic-valued clauses. In our case, each
node of the graph is a query evaluating into a table
of all satisfying solutions. Within each node we ap-
ply a number of aggregate operators to produce both
boolean and real-valued features. Thus, each node of
the refinement graph produces multiple feature can-
didates. Although there is no limit to the number of
aggregate operators one may try, e.g. square root of
the sum of column values or logarithm of their prod-
uct, we find count, ave, max, min, and empty to be
particularly useful. Aggregations can be applied to a
whole table or to individual columns, as appropriate
given type restrictions, e.g. ave cannot be applied to
a column of a categorical type.

The use of aggregate operators in feature generation
makes pruning of the search space more involved. Cur-
rently, we use a hash function of partially evaluated
feature columns to avoid fully recomputing equivalent
features. In general, determining equivalence among

relational expressions is known to be NP-complete.
Polynomial algorithms exist for restricted classes of
expressions, e.g. (?; ?). Equivalence determination
based on the homomorphism theorem for tableau query
formalism, essentially the class of conjunctive queries
we look at before aggregation, is explained in detail
in (0), page 115. However, deciding the equivalence
of two arbitrary queries is different from the simpler
problem we face of avoiding duplicates when we have
control over the way we structure the search space.

Top-down search of refinement graphs allows a number
of optimizations, e.g. i) the results of queries (prior to
applying the aggregations) at a parent node can be
reused at the children nodes, ii) a node resulting in an
empty table for each observation should not be refined
any further as its refinements will also be empty.

3. Task and Data

We explore the task of classifying CiteSeer documents
into their publication venues, conferences or journals.
The target concept pair is <Document, Venue>. The
value of the response variable is one if the pair’s venue
is a true publication venue of the corresponding doc-
ument and, it is zero otherwise. The search space
contains queries based on several relations about doc-
uments and publication venues, such as citation in-
formation, authorship and word content of the docu-
ments. Modeling of latent structure of entities in this
domain, such as topics of documents or communities of
authors, is capable of producing more accurate predic-
tive models that the original relational representation.
Clusters can be derived by clustering entities in the
domain based on the variety of alternative sources of
attributes.

Publication venues were extracted by match-
ing information with the DBLP database,
http://dblp.uni-trier.de/. Publication venues
are known for 60,646 CiteSeer documents.We use
these documents and information about them in the
experiments described below. Table XXX shows the
basic relations we use,

• PublishedIn(doc:Document, vn:Venue).
60,646 (60,646, 1,560)

• Author(doc:Document, auth:Person). 131,582
(53,660, 26,740)

• Citation(from:Document, to:Document).
There are 173,410( 42,749,31,603)

• HasWord(doc:Document, word:Word. 6,894,712
(56,104, 1,000) (The vocabulary was limited to
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Figure 1. Cluster-relations augment database schema used to produce feature candidates.

the top 1,000 count words in the collection after
Porter stemming and stop word removal).

We use k-means to derive cluster relations; any other
hard clustering algorithm can be used for this purpose.
The results of clustering are represented by binary re-
lations
<ClusteredEntity, ClusterID>.

The original database schema contains several entities
which can be clustered based on a number of alterna-
tive criteria. Each many-to-many relation in the orig-
inal schema presented above can produce two cluster
relations. Three out of four relations are many-to-
many (with the exception of PublishedIn), this re-
sults in six new cluster-relations. The following is the
list of these six cluster relations which we add to the
relational database schema:1

• Author(doc:Document,auth:Person) produces:

ClusterDocsByAuthors(doc:Document,clust:Clust0)
53,660 documents are clustered based on the
identity of their 26,740 authors.

ClusterAuthorsByDocs(auth:Person,clust:Clust1)
26,740 authors are clustered based on 53,660
documents they wrote.

• Citation(from:Document,to:Document) pro-
duces:

1See Future Work section for the discussion of how the
expressivity of the cluster types can be further increased
when attribute vectors of clustered entities are derived
from compound relationships.

ClusterDocsByCitingDocs(doc:Document,clust:Clust2)
31,603 documents are clustered based on 42,749
documents citing them.

ClusterDocsByCitedDocs(doc:Document,clust:Clust3)
42,749 documents are clustered based on 31,603
documents cited from them.

• HasWord(doc:Document,word:Word produces:

ClusterDocsByWords(doc:Document,clust:Clust4)
56,104 documents are clustered based on the
vocabulary of top 1,000 words they contain.

ClusterWordsByDocs(word:Word,clust:Clust5)
The vocabulary of 1,000 words is clustered based
on their occurrence in this collection of 56,104
documents.

Throughout the experiments in this paper we use k-
means clustering algorithm (e.g. (?)) with vector-
space cosine similarity (0), a widely used similarity
measure in text analysis. The search can be extended
to include more similarity measures and a search over
k, the number of groups in clustering. These simply
results in more features tested in the regression. If
needed, on-the-fly optimization using subsampling and
efficient linear time clustering algorithm could be used,
but in this paper we did not find them necessary.

An important aspect of optimizing cluster utility in
general, and of the use of cluster relations in our set-
ting in particular, is the choice of k, the number of
groups into which the entities are clustered. In our
case, for each potential value of k we would ideally



compute separate clusters. For simplicity and speed
in the experiments presented here we fix k to be equal
to 100 in all cluster relations except for the last one,
ClusterWordsByDocs, where the number of clusters is
10. The latter is clustered into fewer groups because
there is roughly an order of magnitude fewer objects,
words, to be clustered; we selected the vocabulary of
size 1,000 to make the size of HasWord relation smaller
and more manageable.

4. Results

The results presented below demonstrate the advan-
tages of including cluster relations in the statistical
relational learning framework. First, including cluster
relations in the search space increases the expressivity
of the feature space and achieves higher classification
accuracy. Second, cluster-based features are cheaper
to generate since cluster relations contain fewer tuples
than the original relations from which they were de-
rived.

The training set contains 1,000 observations: 500 posi-
tive examples of <Document, Venue> target pairs uni-
formly sampled from the PublishedIn relation, and
500 negative examples where document is uniformly
sampled from the remaining documents and the venue
is uniformly sampled from the domain of all venues,
such that the sampled venue is not a true venue of the
corresponding document. Sampled positive pairs are
removed from the background relation PublishedIn,
as well as the tuples involving documents sampled for
the negative set. The test set contains 2,000 exam-
ples: 1,000 positive and 1,000 negative, sampled and
removed from PublishedIn in the same manner as the
training set examples. We know the citation structure,
authorship and content of the documents for which we
are learning to predict publication venues.

To demonstrate the utility of using cluster relations
within our statistical relational learning framework
we compare two models. One model is learned from
the feature space generated from four original non-
cluster relations, PublishedIn, Author, Citation and
HasWord. The other model is learned from the orig-
inal four relations plus six derived cluster relations,
DocsByAuthors, AuthorsByDocs, DocsByCitingDocs,
DocsByCitedDocs, DocsByWords and WordsByDocs.
Models are learned with sequential BIC feature selec-
tion, i.e. as each feature is generated it is added to the
model permanently if the BIC statistic improves, or
is permanently dropped otherwise. Sequential feature
selection is different from standard step-wise model se-
lection. Standard step-wise model selection is infeasi-
ble within this framework because it is not known in
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Figure 2. Learning curves show test set (Ntest=2,000) ac-
curacy changing with the number of features generated and
selected from the training set (Ntrain=1,000). Balanced
positive/negative priors.



Table 1. Six features in each model which improve test accuracy by at least 1.0 percentage point after being selected.
Target: publishedIn

′
(D, V )

Feature Model
size[publishedIn( , V )] both
exists[citation(D, D1), publishedIn(D1, V )] both
exists[citation(D1, D), publishedIn(D1, V )] both
exists[citation(D, D2), citation(D1, D2), publishedIn(D1, V )] both
exists[author(D, A), author(D1, A), publishedIn(D1, V )] both
exists[citation(D, D3), citation(D3, D2), citation(D1, D2), publishedIn(D1, V )] clusterNO
exists[publishedIn(D1, V ), docsByWords(D, C), docsByWords(D1, C)] clusterYES

advance which features will be generated next in the
feature stream; it is also computationally much more
demanding for very large feature streams. Step-wise
feature selection needs to check all available feature
candidates before adding/dropping one; sequential fea-
ture selection re-trains only one additional model per
one generated feature.

We learn two models (clusterNO and clusterYES)
using sequential feature selection from the feature
streams of size 3,500 of numerically unique features
each. A numeric signature of partially evaluated fea-
tures is maintained to avoid fully generating numer-
ically equivalent (or rather, at least, nearly collinear
within hashing error bound) features; note that this is
different from avoiding syntactically equivalent nodes
of the search space: two different queries can produce
numerically equivalent feature columns, e.g. all ze-
ros, which is a common case as feature generation pro-
gresses deeper in the search space.

Figure 2 presents learning curves for the two models,
learned with and without cluster relations. The curves
show test set accuracy changing with the number of
features generated and sequentially selected from the
training set. The x-axis is the number of features
generated from the background relations; points on
the curves correspond to the selected features. The
model with clusters, clusterYES, contains 31 features
at the end of the process; 24 features are selected
into clusterNO from equally many feature candidates
(3,500). The number of positive and negative exam-
ples is equal in both cases; the curves start from the
first added non-intercept feature. Empty models, i.e.
only with an intercept, would be 50% accurate. The
test set accuracy of the cluster based model after ex-
ploring the entire feature stream is 87.55%, which is
3.0 percentage points higher than the accuracy of the
model not using cluster relations. The figure suggests
that there is no significant overfitting, represented by
a decrease in test accuracy when adding a new fea-
ture. The largest single drop in accuracy after adding

next feature is 0.45 percentage points. Thus, the
clusterYES model achieves a significant improvement
in accuracy and with fewer resources, as the genera-
tion of the same number of features for the cluster-
based model is cheaper, as the size of cluster relations
is smaller that the size of the original relations from
which they were derived.

Not all of the cluster relations are equally useful. As
Figure 2 shows, the improved accuracy of the cluster-
based model comes mostly from a single cluster-based
feature, 1540-th in the stream, which made test set
accuracy jump by 3.75 percentage points. This fea-
ture is a binary feature involving latent document top-
ics, i.e. the cluster relation of documents clustered by
their word content. The feature is ON for target docu-
ment/venue pair <D,V>, if there exists a document D1
in the cluster where D belongs such that D1 is published
in the same venue as D.

Table 1 shows the most significant features learned.
Post factum, these features are fairly obvious, which is
good news for the purposes of validating the method-
ology and its potential application to less well under-
stood domains. The last item in the table shows the
most important cluster-based feature, which translates
to English as “if there exists another document which
is on the same latent topic as D and is published in V.”

4.1. Cluster-First Search

The cost of database query evaluation used in fea-
ture generation dominates the complexity of the SLR
methodology. Up to this point we presented models
learned when searching the feature space in breadth-
first manner. In this section we explore an alterna-
tive search strategy which places cluster-based fea-
tures earlier in the stream. In our venue prediction
setting, this strategy achieves the same accuracy as
the breadth-first clusterYESmodel with far fewer fea-
tures tested.

To test the cluster-first search strategy we split the
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Figure 3. Learning curves show test set (Ntest=2,000) ac-
curacy changing with the number of features generated and
selected from the clusterYES training set (Ntrain=1,000)
following two search strategies: breadth-first and cluster-
first. The latter pushes cluster-based features earlier in the
stream. Balanced positive/negative priors.

stream of 3,500 features generated by breadth-first
traversal of the clusterYES search space into two con-
secutive substreams. The features of the first “clus-
ter” substream are presented for statistical feature se-
lection first, followed by the features from the second
substream. The features in each substream appear in
the same relative order as in the original breadth-first
stream.

The first stream includes features which involve only
cluster-relations and the PublishedIn relation. The
second stream includes all other features, some of
which are based only on Citation, Author and
HasWord relations, and others involve cluster relations
and PublishedIn relation together with Citation,
Author and HasWord relations. The PublishedIn re-
lation is pushed earlier in the stream together with
cluster-based relations because of its special status -
this relation serves as a structural core background re-
lation being of the same type as the response concept.
It provides background reference essential for learning,
similarly to the role of the Citation relation when
learning models for link prediction (0; ?). Because it
is not a many-to-many relation there are no “proxy”
cluster-relations derived from PublishedIn.

Figure 3 presents learning curves for two search strate-
gies, and show test set accuracy a function of the num-
ber of features generated and tested in the model.

5. Related Work and Discussion

Clustering and other latent space modeling methods
such as PCA often used in propositional predictive
modeling as a means for dimensionality reduction. Di-
mensionality reduction is achieved by replacing the
original flat features with the identifiers of clusters
they are elements of, or by the coordinates of their pro-
jections onto a lower dimensional space. For example,
words can be clustered into groups which replace in-
dividual words for document classification. structure
together with the flat features resulting in more accu-
rate predictive models, for example in the context of
maximum entropy modeling (0).

One research direction in relational learning addresses
clustering of relational entities with novel distance
metrics defined over the interlinked relational repre-
sentation. Many people have address clustering from
relational representation (see e.g. (0)).

It is not our goal to find a single “best” data par-
titioning. Instead, we identify a number of alterna-
tive clusterings which are involved in more complex
features improving predictive accuracy of statistical
models. Objects may be clustered based on different



attributes, usin different similary measures, and with
different numbers of clusters found The usefulness of
a grouping can be assessed only in relation to a par-
ticular set of predictions being made.

Cluster-based concept and relation invention, as de-
scribed in this paper, differs importantly from using
aggregation, in a sense commonly used in databases,
as a means of summarization. Aggregation is essen-
tial in statistical relational learning and is also used to
create new, rich types of features from relational repre-
sentation (?). Using aggregates creates richer features
than modeling a boolean, table empty/non-empty fea-
ture as is the case in classical logic-based relational
learning approaches (0). The need for aggregates in
relational learning comes from the fact that the cen-
tral type of relational representation is a table (set);
the data is represented by a number of tables, and
database queries result in tables. Statistical models,
on the other hand, work with scalar values, real num-
bers, integers, or categorical variables. Aggregation
allows summarizing information in a table per given
observation into a scalar value which can be included
in a statistical model, for example, average of a word
count in all cited documents, or a citing document with
max number of incoming links. Aggregates are essen-
tial to our approach; each node in our search space
evaluates into a table, which in turn is aggregated to
produce a number of scalar feature candidates. The
advantage of clusters comes at another level to create
central relational entities from which features are gen-
erated; aggregates are applied at the next step to the
tables resulting from queries which can involve both
the cluster relations and the original relations, for ex-
ample, the number of documents in the same cluster
and published in the same conference is a count or size
aggregate of a corresponding derived view.

The idea of augmenting the existing representation
with new relations or predicates is, of course, not new.
In inductive logic programming it is known as “predi-
cate invention”. For example, Statistical Predicate In-
vention (0) which was proposed for learning in hyper-
text domains, represents classifications produced by
Naive Bayes as a new predicate added to FOIL (?).
Statistical Predicate Invention preserves FOIL as the
central modeling component and calls statistical mod-
eling from within the inner structure navigation loop
to supply new predicates. Our approach differs in that
we use statistics rather than logic as a modeling com-
ponent, and more importantly in this context, we ad-
vocate the use of cluster-based relation invention as a
means to enrich feature spaces by adding to schema
many types of clusters, not only those of a response
concept, thus creating first-class relational concepts,

such as “topics” or “communities”, which have a clean
“identity” as the world representation entities.

Concept invention could also, in theory be done in
other types of relational learning, such as in those
using graphical models, e.g. Probabilistic Relational
Models (PRMs) (?; 0), which are generative models
of joint probability distribution capturing probabilis-
tic influences between entities and their attributes in
a relational domain. However, such generative models
are not condusive to searching for complex features, as
is done in ILP and in this paper.

6. Conclusions and Future Work

We presented a framework for learning predictive
statistical models from relational data where new
concepts and relations are derived by clustering
items in the original database schema. Adding
these new relations to the database schema (as
opposed to just using them as aggregates to derive
new features) allows a more efficient search of a
richer feature space. Including new relations such as
docsByWords allows discovery of new features such as
exists[publishedIn(D1, V ), docsByWords(D, C), docsByWords(D1, C

We applied cluster-relation invention to the task of
predicting the publication venue of scientific papers
from the CiteSeer database, which contains citations,
paper authorship, and word content. We used cluster-
ing to derive new first class relational entities reflecting
hidden topics of papers, author communities and word
groups. New cluster relations included into the feature
generation process, in addition to the original rela-
tions, resulted in the creation of richer cluster-based
features, where clusters enter into more complex re-
lationships with existing background relations rather
than only provide dimensionality reduction. Using re-
lation invention gives more accurate models than those
built only from the original relational concepts.

Two models, with and without cluster relations, were
compared on feature streams of 3,500 unique fea-
tures. Relation invention gave accuracy improvement
of about 3.0 percentage points over the non cluster-
based model. Enriching the schema with more com-
pact cluster relations can also lead to a more rapid
discovery of predictive features. Cluster relations are
smaller than the original relations from which they are
derived; this translates into lower costs of generating
cluster-based features. Focussing search on relations
containing clusters, we get high accuracy in fewer than
100 features, in contrast to the breadth-first strategy
which achieved the same accuracy only after consider-
ing more than 1,500 features. This is important, as the



most computationally demanding process in the SLR
methodology is database query evaluation for feature
generation.

We envision several improvements to the relation in-
vention methodology. Richer types of clusters can be
derived from more complex sets of attributes than
those immediately available in a single relation. For
example, publication venues and authorship data are
in two separate relations which both can be used to
cluster publication venues based on the authors who
publish in them. Also, clustering can be performed
lazily as a corresponding depth in the feature search
space is reached by the feature generation process. In
contrast to “propositionalization” (?), which implies a
decoupling of relational feature generation and mod-
eling, SLR is dynamic and allows for a more natural
introduction of this extension.
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