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1. Introduction

The Delaunay Triangulation, Voronoi Diagram, Convex Hull, and Upper (or Lower)
Envelope are widespread geometric structures seen in many fields such as computational
geometry and computer graphics. Their ubiquity and usefulness in various scenarios
make them important constructs to examine and study if possible, but they can be
difficult to visualize or draw without some sort of aid. In addition, there are some
important and intuitive relationships between the different structures that are most
easily conveyed with a cohesive and complete visualization.

The Dual and Projection Visualizer is a program that provides an interactive visu-
alization of the above structures; more specifically, the program provides the delaunay
triangulation and voronoi diagram of a set of points in the plane, along with the three
dimensional convex hull and upper envelope of these same points projected onto a sur-
face. Programmed in C++ and utilizing OpenGL (see [5]) and GLUT (see [3]), the
essential function is to give the user various modes of interacting with the structures
drawn in the interface in order to probe both the relationships between them and the
individual structures themselves. The program is available for download here.

The remainder of this article is organized as follows. Section 2 introduces the basic
structures in computational geometry explored in this program, as well as how they are
related to one another. Section 3 covers the interface and design of this program. The
algorithms used to produce these geometric structures in the form of pseudocode are
presented in Section 4. Finally, a discussion of the merits of this program along with
some potential improvements can be found in Section 5.
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Figure 1: A voronoi diagram (in yellow) generated from an input set of sites

2. Some Geometric Structures

From [4, p. 68], given a set of points in the plane, P = {p1, p2, p3, . . . , pm} (called
sites), the Voronoi Cell V (pi) is the set of points q in the plane where q is closer to pi
than any other site:

V (pi) = {q | ‖piq‖ < ‖pjq‖,∀j 6= i}

The Voronoi Diagram is then the convex subdivision of the plane formed by the union of
the voronoi cells. Edges of the diagram are simply the points q equidistant from both pi
and pj, and the vertices are the single point q equidistant from pi, pj, and pk (assuming
no set of four cocircular points in P ). See Figure 1 for a visualization.

Moving onward, the Delaunay Triangulation DT (P ) of a set of points in the plane,
P = {p1, p2, p3, . . . , pm} (called sites) is a planar graph where an edge exists between
two sites pi and pj if and only if there exists a circle passing through pi and pj that
contains no other sites (also from [4, p. 75]). See Figure 2 for a visualization (note that
the circles in the right image reflect the empty circumcircle property described below).
As a corollary to this definition, the triangles in the delaunay triangulation also have a
property known as the empty circumcircle property. That is, for a triangle to exist in
the delaunay triangulation, its circumcircle must contain no other sites in P .

Proof of Empty Circumcircle Property: Given the empty circumcircle of a
triangle in the delaunay triangulation, for each edge we can perturb the circumcir-
cle’s center infinitesimally away from the third vertex of the triangle to obtain the
empty circle required by the original condition (assuming no four sites cocircular).
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Figure 2: Two delaunay triangulations, one with circumcircles drawn

This proves the forward direction; now we look at the reverse direction. Now, for
each edge ab in the triangle, we have to have an empty circle passing through the
edge’s endpoints. Call the other vertex of this triangle c and the other vertex of the
other triangle sharing this edge v. If v was positioned on or inside of this triangle’s
circumcircle, there could not exist an empty circle passing through only a and b
because c and v bound the possible circles on either side. Therefore, v must lie
outside of the circumcircle of this triangle, and since this is true for all edges, there
must be an empty circumcircle around this triangle.

Now that these two structures are fully defined, their relationships can be established
and explored. As it happens, the voronoi diagram and delaunay triangulation are what
are called dual structures of each other. In mathematics, a duality relationship is, loosely,
any function that transforms an entity A to the result B, while also transforming B back
to A ([7]). In computational geometry, the input sets usually involve points, lines, or
planes, so duality in this context attempts to relate these entities to one another (see
[2] for more detail). In this case, lines in the voronoi diagram separating two sites are
related by a dual relationship to lines in the delaunay triangulation connecting those two
sites. Similarly, every triangle in the delaunay triangulation corresponds to a vertex in
the voronoi diagram, which lies at the center of the triangle’s circumcircle. With these
relationships established, it turns out that it is easy to calculate one of these structures
from the other, a property that is very nice to have in practice. Both structures are
visualized together in Figure 3.

The Convex Hull (Conv(P )) of a set of points P = {p1, p2, p3, . . . , pm} in dimension
n is defined as the intersection of all convex sets that contain all points in P , where a
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Figure 3: A voronoi diagram and its dual delaunay triangulation, overlaid

convex set is a set of points S | ∀p, q ∈ S, pq ∈ S [1, p. 2]. Alternatively, the convex hull
is the intersection of all n-dimensional halfspaces that contain every point in P , where a
halfspace is merely an n-dimensional plane and all of the space to one side. To illustrate
this concept a bit more intuitively, consider a convex hull in two dimensions. The set of
points is limited to the plane, and the so-called halfspaces are now just the section of
the plane to one side of a given line. Imagine the points are pegs in a pegboard; then
the convex hull is the shape a rubber band snapped around all of the pegs would take
([4, p. 12]). This respresentation can actually be seen in Figure 2; the outer boundary of
the delaunay triangulation is the convex hull of that set of points. In three dimensions,
you can imagine picking the rightmost three points, pressing a piece of paper to their
triangle, and then folding it down across each edge until it hits another point, continuing
until the paper completely encloses a finite space (in reality, the paper would need to be
cut to allow arbitrary folds and then taped back together along an edge). A visualization
is presented in Figure 4. Sometimes, it is useful to divide the convex hull into a lower and
upper section. For dimension n, the nth component of the normal vector for each face
determines which classification it receives; a positive value indicates the upper convex
hull and a negative value indicates the lower convex hull. Notice that the upper hull is
colored orange and the lower hull is colored yellow in Figure 4.

The Upper Envelope (UEnv(P )) of a set of planes in n-dimensional space, P =
{p1, p2, p3, . . . , pm}, is just the intersection of the set of halfspaces above each of these
planes ([4, p. 117]). The Lower Envelope is defined similarly, except that the halfspaces
are below each of the planes instead of above. Figure 5 visualizes an upper evelope.
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Figure 4: A convex hull of a set of points, which are projected down to the grid to
emphasize depth.

Figure 5: An upper envelope, viewed from below
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Figure 6: A convex hull, upper envelope, and the paraboloid used in the dual
transformation

Now it’s time to present another relationship involving duality. The convex hull and
upper envelope are also dual structures. More specifically, the lower convex hull is the
dual of the upper envelope, and the upper convex hull is the dual of the lower envelope.
The duality this time is between points and planes in three dimensions. Once a duality
relation transforming points into planes and planes into points is established, the points
that form the upper or lower convex hull are transformed into the planes that compose
the corresponding envelope. An easy way to establish a dual relationship between points
and planes is to take a surface defined in space and take the tangent plane at the given
point. For example, the image of a given point could be the tangent plane at that point
to a sphere (of the proper radius) centered at some arbitrary point (this is known as
polar reciprocation [6]). In the visualizations provided thus far, the duality relation is
actually the tangent plane to the paraboloid z = x2 + y2 + c, where c is a free variable
set so that the point pi = (xi, yi, zi) lies on the surface. So we have the relation:

(xi, yi, zi) => z = 2(xi)x + 2(yi)y + (zi − (x2
i + y2i ))

Lines can also be related to lines by this dual relationship by considering that the line
between two points in the primal should correspond to the line where the two planes
in the dual intersect. Other interesting relations develop once these connections are
established, such as a plane rotating about a line being dual to a point moving along
that line’s dual. A side-by-side illustration of the convex hull, upper envelope, and
paraboloid is shown in Figure 6.

So why is a paraboloid used here as the basis of the dual transformation between the
convex hull and upper envelope? There is another relationship to be explored here, which
we will call projective equivalence. A structure in n dimensions is projectively equivalent
to another structure in n − 1 dimensions if the projection of the first structure down
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Figure 7: A convex hull and delaunay triangulation, viewed from the side and from below
to display projective equivalence

to n− 1 dimensions is equivalent to the second structure. This is easily checked in the
case of n = 3 (and an orthogonal basis established by cartesian coordinates), where
simply looking at both structures vertically from below will effectively perform this
projection. When the set of input points used in the plane for the delaunay triangulation
is projected up on to a paraboloid and then used as the input for the convex hull, the
(three dimensional) convex hull will be projectively equivalent to the (two dimensional)
delaunay triangulation. The same applies to the upper envelope and voronoi diagram.

In order to demonstrate why these structures should be projectively equivalent to their
respective pair under this construction, a parallel must be drawn between the unique
conditions that define each structure. Now, the unique condition for the existence of
a face on the three dimensional convex hull is that all of the points in the input set
must lie on or to one side of the plane defined by the face’s vertices. Equivalently, there
must not be any points on the other side of the plane. This is similar to the empty
circumcircle property that can be used to define the delaunay triangulation. A proof
of the projective equivalence of the convex hull and delaunay triangulation under this
construction follows (paraphrased from [4, p. 115]):

Proof: Given the paraboloid z = x2 + y2, a point p = (a, b, a2 + b2) on the
paraboloid will produce the tangent plane z = 2ax + 2by − (a2 + b2). Then add
a constant r2 to perturb this plane upward so that it intersects the paraboloid at
more than just one point. The plane’s intersection with the paraboloid would be

x2 + y2 = 2ax + 2by − (a2 + b2) + r2

(x2 − 2ax + a2) + (y2 − 2by + b2) = r2

(x− a)2 + (y − b)2 = r2
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Figure 8: An upper envelope and voronoi diagram, viewed from the side and from below
to display projective equivalence

So with z eliminated, this is the projection down onto the xy-plane, demonstrating
that any plane’s intersection with the paraboloid projects down onto the xy-plane
as a circle! Now look at any face of the convex hull. It is composed of three vertices
p, q, and r, which uniquely define a plane. The intersection of this plane and the
paraboloid projects down to the xy-plane as a circle, with the projections of p,
q, and r all lying on the circle. If a fourth point s on the paraboloid lies below
this plane, its projection must lie within the projected circle. Thus the conditions
required for the delaunay triangulation and convex hull are the same under this
construction.

The voronoi diagram and the upper envelope are also projectively equivalent. Given
that the voronoi diagram is the dual of the delaunay triangulation, and the upper en-
velope is similarly related to the lower convex hull, it is elegant that these two dual
transformations preserve the projective equivalence of these structures. Here, it is suf-
ficient to show that the intersection of two planes in the upper envelope projects down
onto the perpendicular bisector between the two points used to generate the planes. If
this is true for all pairs of planes in the upper envelope, then its projection will be the
voronoi diagram. The proof follows (also from [4, p. 117]):

Proof: Take any two points p = (a, b), q = (c, d) in the plane. If they are projected
up onto a paraboloid, they generate the tangent planes z = 2ax + 2by − (a2 + b2)
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and z = 2cx + 2dy − (c2 + d2). Now find the intersection:

2ax + 2by − (a2 + b2) = 2cx + 2dy − (c2 + d2)

x(2a− 2c) + y(2b− 2d) = (a2 + b2)− (c2 + d2)

Now since z was eliminated, this is the projection of the line at the intersection
of the two planes down to the xy-plane. Note that this is also the perpendicular
bisector between p and q. First, the midpoint of a and b lies on this line:

a + c

2
(2a− 2c) +

b + d

2
(2b− 2d) = (a2 + b2)− (c2 + d2)

(a2 − c2) + (b2 − d2) = (a2 + b2)− (c2 + d2)

Second, its slope is the negative reciprocal of ( b−d
a−c

), i.e. it is perpendicular to the line
connecting p and q:

x(2a− 2c) + y(2b− 2d) = (a2 + b2)− (c2 + d2)

y = −x2a− 2c

2b− 2d
+

(a2 + b2)− (c2 + d2)

2b− 2d

=> slope : −a− c

b− d
= − 1

b−d
a−c

Note that the paraboloid z = x2 + y2 was selected for simplicity. If desired, the
proofs could have been completed with a more general formula for paraboloids, z =
m((x−x0)

2+(y−y0)2)+z0. In other words, the steepness and location of the paraboloid
are irrelevant to the needed properties in these proofs, although the steepness in the x
and y directions must be equivalent.

So now the various relationships between these structures have been demystified. The
delaunay triangulation is dual to the voronoi diagram in the plane and the convex hull is
dual to the upper envelope in space. Then, when the set of points used as input for the
two dimensional structures is projected up onto a paraboloid for the three dimensional
structures, and the dual relationship between the convex hull and upper envelope is the
tangent plane of that paraboloid, the convex hull and upper envelope are projectively
equivalent to the delaunay triangulation and voronoi diagram, respectively. When this
somewhat complicated construction is put in place, all four of these structures become
closely interrelated.

3. Program Design and Interface

This program provides various functions aimed at the general goal of visualizing these
four structures and their relationships. There are two windows in the interface: an input
window on the left (see Figure 9), and an output window on the right (see Figure 10). The
input window visualizes the xy-plane, drawing the delaunay triangulation and voronoi
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Figure 9: The input window of the program

diagram along with a grid and the input points themselves. Interaction is mostly limited
to the ability to add a new input point at the location of a click. The output window
shows all four structures drawn in a three dimensional scene. The convex hull and upper
envelope surround the parabola used for projection, the voronoi diagram and delaunay
triangulation are drawn clipped to the grid in the xy-plane, and the input points are
drawn on both the xy-plane and the parabola with dotted lines indicating the projection
transformation. Various controls change the viewpoint from which the scene is viewed
or mutate the paraboloid being used for projection.

The basic workflow of the program is as follows. When the user adds a point p =
(a, b, 0) by clicking on the input window, a point q is also defined by projecting p
up onto the paraboloid. At any given point, the paraboloid is defined as P (x, y) =
m((x− x0)

2 + (y− y0)
2) + z0, so q would be (a, b,m((a− x0)

2 + (b− y0)
2) + z0). Once p

and q are determined, p is input into the delaunay triangulation incremental algorithm,
and q is input into the convex hull incremental algorithm. These actions trigger the
recalculation of the voronoi diagram based on the new delaunay triangulation and the
upper envelope based on the new convex hull. The other change that triggers a recalcu-
lation of these various structures is a change in any of the paraboloid’s parameters. The
user may change m, x0, and y0 in order to demonstrate that these parameters do not
affect the relationships described above. Note that z0 is dynamically updated so that the
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Figure 10: The output window of the program.
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paraboloid is always drawn slightly above the xy-plane. If any of these inputs change,
the entire set of projected input points is recalculated based upon the new paraboloid
equation and run through the convex hull incremental algorithm one by one. Once this
is completed, the upper envelope is recalculated as usual. Note that the voronoi diagram
and delaunay triangulation are unaffected by this type of change.

As far as the actual visualization of the structures, the code mostly consists of standard
openGL polygon calls with a static color applied. Lighting was added to make the angles
of the faces of the various polytopes more distinguishable, and the paraboloid is blended
so that the convex hull can still be seen with the paraboloid drawn. The lines indicating
the projection between points in the plane and on the paraboloid were drawn using a line
stipple. Also notable was the use of clipping planes to restrict the voronoi diagram and
upper envelope to the grid, as the true structures would have lines or planes continuing
to infinity in various directions. Any other occlusions that could get in the way of
examining each structure were dealt with by adding the ability to toggle almost every
drawn component of the program.

4. Algorithms and Pseudocode

Since the set of input points is specified one at a time by the user, an incremental
algorithm for calculating these structures would be beneficial for visualizing these struc-
tures as points are added. Also, the size of the input set is restricted, so the simpler and
less efficient algorithms may be used without too many consequences. In particular, the
simple algorithms for convex hull and delaunay triangulation generation are incremen-
tal. Then, the upper envelope and voronoi diagram are calculated using their respective
dual structures. Thus, the dual relationships described above are taken advantage of by
these algorithms, but the projective equivalence relations are purely coincidental as far
as the code used to visualize these structures is concerned.

Four algorithms in pseudocode follow this paragraph, each describing how one of the
structures is computed. Assume a standard DCEL representation of these structures,
although in actuality the code uses custom data structures with less functionality and
specification than a full DCEL.

Most of these algorithms are straightforward, but there is a somewhat lengthy caveat
in the upper envelope algorithm. Note that the upper envelope is the dual of the lower
convex hull. Since all points in the convex hull lie on a paraboloid, they all lie on the
lower convex hull. However, some of the faces incident on some of those points will be
part of the upper convex hull. Intersecting the tangent planes of each of these three
vertices actually gives a point on the lower envelope, which isn’t quite the point at in-
finity needed to accurately represent the upper envelope. Taking advantage of some of
the properties of dual transformations, however, an appropriate point can be found:
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Algorithm 1 Convex Hull Incremental Algorithm (from [1, p. 246])

1: if exactly 4 points have been specified so far then
2: Form a tetrahedron from these four points
3: else if more than 4 points have been specified then
4: Find all faces visible to this point (p)
5: Create a polytope P out of these faces
6: for each edge e in the ring of edges around P do
7: Make a new face by connecting e and p and add to the convex hull
8: end for
9: for each face f in P do
10: Remove all references to this f
11: end for
12: end if

Algorithm 2 Upper Envelope Algorithm

1: for each vertex v = (a, b,m((a− x0)
2 + (b− y0)

2) + z0) on the convex hull do
2: Find the tangent plane:
3: T (v) ≡ (z = 2m(a− x0)x + 2m(b− y0)y + m((x0)

2 + (y0)
2 − a2 − b2) + z0)

4: end for
5: for each face f on the convex hull do
6: Find the corresponding upper or lower envelope vertex
7: (i.e. find the intersection of the planes corresponding to f ’s vertices)
8: end for
9: for each vertex v on the convex hull do
10: Find all faces on the convex hull that share v
11: Sort these faces in CCW order relative to T (v)’s normal vector
12: Convert each of the faces in this list to its corresponding envelope vertex
13: Create a face of the upper envelope by connecting each of these vertices in order
14: end for
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Algorithm 3 Delaunay Triangulation Incremental Algorithm (from [1, p. 199])
Def: Given a vertex v in a triangle T1, there is an edge e in T1 that does not contain v
and another triangle T2 that shares e with T1. Then the opposite vertex, as used below,
is the vertex in T2 not shared with T1.
Require: Start with an arbitrarily large triangle
1: for each point p added thereafter do
2: Find the triangle in the delaunay triangulation that contains the new point
3: Connect each vertex of the container triangle to p
4: Add these three new triangles and remove the old container triangle
5: for each new triangle T created do
6: Find the opposite vertex v and its containing triangle Tv given p and T
7: if v is in T ’s circumcircle then
8: Perform an edge flip:
9: Remove the edge shared by T and Tv

10: Add an edge between p and v
11: Remove the two old triangles and add the two new triangles
12: end if
13: end for
14: end for

Algorithm 4 Voronoi Diagram Algorithm

1: for each triangle T in the delaunay triangulation do
2: Calculate the center of T ’s circumcircle
3: Add a vertex in the voronoi diagram at this location
4: end for
5: for each triangle T in the delaunay triangulation do
6: Get the associated voronoi vertex
7: Connect this vertex to all neighboring triangles’ voronoi vertices
8: end for
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On line 13 of the upper envelope algorithm, a vertex v on the convex hull has
been selected, and a sorted list of its incident faces is being traversed to create the
dual list of vertices forming a face of the upper envelope. An edge on this face
(e) is actually the dual of the intersection (i) between the two faces in question
(f1 and f2) on the convex hull. Translating a point along e is dual to rotating a
plane from f1 to f2 about i. So for the sake of visualization, given adjacent faces
f1 on the lower convex hull and f2 on the upper convex hull, it is sufficient to find
the line connecting the dual points of f1 and f2, select a point on the line with
an arbitrarily large z-component, and use that as the effective point at infinity.
Therefore, when a face on the upper convex hull is reached in the traversal, this
method is applied.

In addition, these algorithms make some basic assumptions about their input. In
particular, all of these algorithms make the simplifying assumption of general posi-
tion.General position simply states that no three points in the input set are collinear
and no four points are cocircular. Therefore, in order to account for this assumption
in practice, either the algorithms have to be made more robust in their handling of
edge cases, or some method of perturbation must be applied to the input set of points
in order to (at least probabilistically) ensure that the requirements of the assumption
are met. Since the granularity of the input set in this program is limited to the finite
number of pixels on the input screen, it is possible to perturb each point in the input
set some amount smaller than the size of a single pixel. This adds some randomness to
the input set, reducing the chance that three collinear points or four cocircular points
will be entered. In addition, this program prevents points that are too close (within a
distance threshold) to another point from being added to keep the screen from becoming
too cluttered.

Another issue is worrying about the limited accuracy of floating point computations
on the computer. Some amount of correction needs to be made to computed values
such as determinants of matrices when they stray slightly from their expected values. A
simple example is checking that the absolute value of a determinant is below some epsilon
instead of checking for equality with zero. These corrections can be found throughout
the code in an attempt to keep all inputs and intermediate values for the algorithms in
valid ranges.

Efficiency is another obvious concern. The convex hull and delaunay triangulation
algorithms perform well, easily finishing before the user has time to input another point.
The upper envelope and voronoi diagram calculations are a bit slower since they are
calculated from scratch every time their dual structure changes. Stress testing the
application led to some slowdown for very dense input sets, especially when changing the
paraboloid and rebuilding the convex hull from scratch, but for normal use performance
was smooth.
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5. Conclusions

This program aims to facilitate the user’s exploration of these structures and their
relationships. The drawing is modular so that the user may choose which components of
the scene he or she wants drawn at any given time. Typical camera manipulation is also
provided so that the three-dimensional structures can be viewed from any angle. All in
all, this program provides high quality rendered images of voronoi diagrams, delaunay
triangulations, convex hulls, and upper envelopes for a dynamic input set of points, as
well as illustrating how the structures are related to each other.

Beyond this base functionality, there is a laundry list of potential improvements that
could make this program more interactive and perhaps more informative. The input
set is static except for adding more points and clearing the entire list. Adding the
ability to select given points and either delete them or move them around could add to
the intuition gained by potential users. Better algorithms for calculating and keeping
track of the various geometric structures could also be implemented for a potential
performance boost. Other more aesthetic options that could be implemented include
the ability to modify the base colors used for each structure or customization and better
use of blending techniques. However, this program in its current state provides a solid
implementation for the desired functionality.

16



References

[1] Mark de Berg et al. Computational Geometry: Algorithms and Applications. 3rd ed.
Santa Clara, CA, USA: Springer-Verlag TELOS, 2008.

[2] Partha P Goswami. Duality Transformation and its Applications to Computational
Geometry. 2008. url: http://www.tcs.tifr.res.in/~ghosh/partha1-lecture.
pdf.

[3] Mark J Kilgard. The OpenGL Utility Toolkit (GLUT) Programming Interface API
Version 3. Silicon Graphics Inc. 1995. url: http://www.opengl.org/resources/
libraries/glut/spec3/spec3.html.

[4] David Mount. CMSC754 Lecture Notes. Mar. 2013. url: http://www.cs.umd.
edu/~mount/754/Lects/754lects.pdf.

[5] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification (Ver-
sion 1.1). Ed. by Chris Frazier. Silicon Graphics Inc. 1995. url: http://www.
opengl.org/documentation/specs/version1.1/glspec1.1/.

[6] Wikipedia. Dual polyhedron — Wikipedia, The Free Encyclopedia. [Online; accessed
28-March-2013]. 2013. url: http://en.wikipedia.org/w/index.php?title=
Dual_polyhedron&oldid=539351748.

[7] Wikipedia. Duality (mathematics) — Wikipedia, The Free Encyclopedia. [Online;
accessed 28-March-2013]. 2013. url: http://en.wikipedia.org/w/index.php?
title=Duality_(mathematics)&oldid=544248126.

17

http://www.tcs.tifr.res.in/~ghosh/partha1-lecture.pdf
http://www.tcs.tifr.res.in/~ghosh/partha1-lecture.pdf
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html
http://www.opengl.org/resources/libraries/glut/spec3/spec3.html
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf
http://www.cs.umd.edu/~mount/754/Lects/754lects.pdf
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/
http://en.wikipedia.org/w/index.php?title=Dual_polyhedron&oldid=539351748
http://en.wikipedia.org/w/index.php?title=Dual_polyhedron&oldid=539351748
http://en.wikipedia.org/w/index.php?title=Duality_(mathematics)&oldid=544248126
http://en.wikipedia.org/w/index.php?title=Duality_(mathematics)&oldid=544248126


Appendix A. Controls

All input is handled through key/mouse interaction: To provide input to a specific win-
dow, make sure it is selected before providing any input!

Input Window (left)
Add a new input point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left click
Quit the program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q
Refresh the window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r
Clear out all input points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R
Toggle drawing the delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d
Toggle drawing circumcircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c
Toggle drawing the voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Toggle drawing the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g

Output Window (right)
Change camera viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left click + drag
Kick off a rotation of the scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left click + flick
Zoom in or out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right click + drag
Quit this program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .q
Reset the paraboloid’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r
Clear out all input points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R
Toggle drawing the delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d
Toggle drawing circumcircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c
Toggle drawing the voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Toggle drawing the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g
Toggle drawing the convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .h
Toggle drawing the upper envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e
Toggle drawing the paraboloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p
Toggle drawing the dashed projection lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l
Increase the slope of the paraboloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+
Decrease the slope of the paraboloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
Move the paraboloid along the +y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . up arrow
Move the paraboloid along the -y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . down arrow
Move the paraboloid along the +x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right arrow
Move the paraboloid along the -x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . left arrow
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