
Randomized and deterministic algorithms for geometric spanners of

small diameter

Sunil Aryay David M� Mount� Michiel Smidy

Abstract

Let S be a set of n points in IRd and let t � � be a real
number� A t�spanner for S is a directed graph having
the points of S as its vertices� such that for any pair
p and q of points there is a path from p to q of length
at most t times the Euclidean distance between p and
q� Such a path is called a t�spanner path� The spanner
diameter of such a spanner is de�ned as the smallest
integer D such that for any pair p and q of points there
is a t�spanner path from p to q containing at most D
edges�

Randomized and deterministic algorithms are given
for constructing t�spanners consisting of O�n� edges and
having O�logn� diameter� Also� it is shown how to
maintain the randomized t�spanner under random in�
sertions and deletions�
Previously� no results were known for spanners with

low spanner diameter and for maintaining spanners un�
der insertions and deletions�

� Introduction

Given a set S of n points in IRd and a real number
t � �� a t�spanner for S is a directed graph on S such
that for each pair p and q of points of S there is a path
from p to q having length at most t times the Euclidean
distance between p and q� We call such a path a t�
spanner path� The problem of constructing t�spanners
has received great attention� In 	
� �� ��� ��� ��
� e�cient
algorithms are given for constructing a t�spanner with

�Department of Computer Science and Institute for Advanced
Computer Studies� University of Maryland� College Park� Mary�
land� E�mail� mount�cs�umd�edu� This author was partially sup�
ported by the National Science Foundation under grant CCR�
��	
�
��

yMax�Planck�Institut f
ur Informatik� Im Stadtwald� D���	��
Saarbr
ucken�Germany� E�mail� farya�michielg�mpi�sb�mpg�de�
These authors were supported by the ESPRIT Basic Research
Actions Program� under contract No� �	�	 �project ALCOM II��

O�n� edges� In 	�

� it is shown how a t�spanner can be
computed having O�n� edges such that each point has
a degree that is bounded by a constant� This result was
extended in 	�� �
� In these papers it is shown how to
e�ciently construct a t�spanner with O�n� edges� such
that each point has bounded degree and the total length
of all edges is bounded by O�logn� �resp� O���� times
the length of a minimum spanning tree for S�
All spanners referred to above have a disadvantage

in comparison with the complete Euclidean graph� Al�
though the Euclidean lengths of t�spanner paths are
within a constant factor of the Euclidean distance be�
tween points� the number of edges in these paths may
generally be as large as ��n�� The resulting ine�ciency
of computing spanner paths� storing them� and travers�
ing them is a signi�cant limitation in their usefulness�
In this paper� we consider the problem of constructing

t�spanners with O�n� edges and small spanner diameter�
The latter is de�ned as the smallest numberD such that
for any pair p and q of points there is a t�spanner path
from p to q containing at most D edges� Moreover� it
should be possible to compute such a t�spanner path
e�ciently� To our knowledge� this natural problem has
not been considered before�
We also consider the problem of maintaining a t�

spanner if points are inserted and deleted in S� All
spanners referred to above are static�

��� Summary of results

Given a t�spanner for a set S� de�ne a path query to be a
pair of points p� q � S� The answer to a path query is a
t�spanner path from p to q� that is� a path whose length
is at most t times the Euclidean distance between p and
q�
Intuitively� our results may be viewed as one way of

generalizing skip lists to higher dimensions �also see 	�
��
Assume that the points of S are one�dimensional� Con�
sider a skip list 	��
 for the points of S� We can regard
this data structure as a directed graph� This graph has



an expected number of O�n� edges� For each pair p and
q of points� there is a path from p to q having length
jp� qj and containing an expected number of O�logn�
edges� In fact� even the expected maximum number
of edges on any such path is bounded by O�logn��
�See 	�
�� As a result� the skip list is a ��spanner with
expected spanner diameter O�logn�� This spanner can
be maintained in O�logn� expected time per insertion
and deletion�
In the �rst part of this paper� we generalize this idea

to the d�dimensional case� for any �xed d� by combining
the ��graph of 	�� ��
 with skip lists and range trees 	��
�
� This gives a randomized spanner�

Theorem � Let t � �� and let S be a set of n points
in IRd�

�� There exists a t�spanner for S having an expected
number of O�n� edges and whose expected spanner
diameter is bounded by O�logn��

�� Using an associated data structure of size O�n�� the
expected maximum time to answer any path query
is bounded by O�logn�� Such a path query computes
a t�spanner path containing an expected number of
O�logn� edges�

�� Using O�n logd�� n� expected space� we can build
this t�spanner in O�n logd�� n� expected time�

�� Using O�n logd n� expected space� we can maintain
this t�spanner under random insertions and dele�
tions �	
� in O�logd n log logn� expected amortized
time per random update�

�� In all these bounds� the expectation is taken over
all coin �ips that are used to build the t�spanner�
Moreover� all bounds hold with high probability�

The constant factors are of the form �c��t � ���d��

�for a suitably chosen constant c�� except in the bound
on the number of edges on the path from p to q �where
the constant factor is independent of t and d� and in
the time for constructing a t�spanner path �where the
constant is proportional to log�c��t � �����

In the second part of the paper� we consider deter�
ministic spanners� This construction is based on a well�
separated pair decomposition of the point set 	�
� Con�
struction of spanners is asymptotically more e�cient�
but path query processing is slower� and updates are
not considered�

Theorem � Let t � �� and let S be a set of n points
in IRd�

�� There exists a t�spanner for S having O�n�
edges and whose spanner diameter is bounded by
O�logn��

�� Using an associated data structure of size O�n�� we
can answer any path query in O�log� n� time� Such
a path query computes a t�spanner path containing
O�logn� edges�

�� Alternatively� using an associated data structure of
size O�n logn�� we can answer any path query in
O�logn� time� Such a path query computes a t�
spanner path containing O�logn� edges�

�� Using O�n� space� we can build this t�spanner in
O�n logn� time�

Regarding the constant factors in these results� the
size of the spanner is O��c��t� ���dn�� the construction
time is O�n logn � �c��t � ���dn�� and query time is
O�d log� n� d� log�c��t� ��� logn�� As before� constant
factors for path length are independent of t and d�

� Spanners� simplicial cones and

the ��graph

In this section we review some results that we will later
use to construct randomized spanners� Let S be a set
of n points in IRd� We will consider graphs having the
points of S as their vertices� For convenience� we assume
that all graphs are directed� The weight of an edge �p� q�
is de�ned as the Euclidean distance between p and q�
The weight of a path in a graph is de�ned as the sum
of the weights of all edges on the path� If �p� q� is an
edge� then p is called its source and q is called its sink�
The Euclidean distance between the points p and q in
IRd is denoted by jpqj� Let t � �� A graph G � �S�E�
is called a t�spanner for S if for any pair p� q of points
of S there is a path in G from p to q having weight at
most t times the Euclidean distance between p and q�
Any path satisfying this condition is called a t�spanner
path from p to q�
We introduce the notion of cones� A 
simplicial� cone

is the intersection of d halfspaces in IRd� The hyper�
planes that bound these halfspaces are assumed to be
in general position� in the sense that their intersection
is a point� called the apex of the cone� In the plane� a
cone having its apex at the point p is a wedge bounded
by two rays emanating from p that make an angle at
most equal to ��
Let C be any cone in IRd having its apex at the point

p� The angular diameter ofC is de�ned as the maximum
angle between any two vectors ��pq and ��pr � where q and



r range over all points of C � IRd� For d � �� this is
exactly the angle between the two rays that form the
boundary of C�
Let � be a �xed real number such that � � � � �� Let

C be a collection of cones such that �i� each cone has its
apex at the origin� �ii� each cone has angular diameter
at most �� �iii� all cones cover IRd�
In Yao 	��
� it is shown how such a collection C� con�

sisting of O��c���d��� cones for a suitable constant c�
can be obtained� In the plane and for � � ���k� we just
rotate the positive x�axis over angles of i � �� � � i � k�
This gives k rays� The wedge between two successive
rays de�nes a cone of C�
For each cone C � C� let lC be a �xed ray that em�

anates from the origin and that is contained in C�
Let C be any cone of C and let p be any point in IRd�

We de�ne Cp �� C�p �� fx�p � x � Cg� i�e�� Cp is the
cone obtained by translating C such that its apex is at
p� Similarly� we de�ne lC�p �� lC � p� Hence� lC�p is a
ray that emanates from p and that is contained in the
translated cone Cp�
Now we can introduce ��graphs� Keil and Gutwin 	�


de�ned these for the case d � �� Ruppert and Seidel 	��

de�ned them for arbitrary dimensions d � �� The fol�
lowing technical result is needed to prove the spanner
bounds� A proof can be found in 	��
�

De�nition � ���� ��	
 Let k � � be an integer and
let � � ���k� Let S be a set of points in IRd� The
directed graph ��S� k� is de�ned as follows� The vertices
of ��S� k� are the points of S� For each point p of S
and each cone C of C such that the translated cone Cp

contains points of S n fpg� there is an edge from p to
the point r in Cp �S n fpg whose orthogonal projection
onto lC�p is closest to p�

Lemma � Let k � � be an integer� let � � ���k� let
p and q be any two distinct points in IRd� and let C be
the cone of C such that q � Cp� Let r be any point in

IRd � Cp such that the projection of r onto the ray lC�p
is at least as close to p as the projection of q onto lC�p�
Then jrqj � jpqj � �cos � � sin ��jprj�

We introduce some notation� Let C be any cone of
C� Recall that C is the intersection of d halfspaces�
Let h�� h�� � � � � hd be the hyperplanes that bound these
halfspaces� and let H��H�� � � � �Hd be lines through the
origin such that Hi is orthogonal to hi� � � i � d�
We give the line Hi a direction such that the cone C is
�above� hi� Let L be the line that contains the ray lC �
We give L the same direction as lC �
Let p be any point in IRd� We write the coordinates

of p with respect to the standard coordinate axes as
p�� p�� � � � � pd� For � � i � d� we denote by p�i the

signed Euclidean distance between the origin and the
orthogonal projection of p onto Hi� where the sign is
positive or negative according to whether this projec�
tion is to the �right� or �left� of the origin� Simi�
larly� p�d�� denotes the signed Euclidean distance be�
tween the origin and the orthogonal projection of p
onto L� In this way� we can write the cone C as
C � fx � IRd � x�i � �� � � i � dg� For p � IRd�
we can write the translated cone Cp with apex p as

Cp � fx � IRd � x�i � p�i� � � i � dg� We de�ne
�Cp �� �C � p �� f�x � p � x � Cg� Then we have

�Cp � fx � IRd � x�i � p�i� � � i � dg�
Let p be a point of S� Computing the edge of ��S� k�

with source p and sink in the cone Cp is equivalent to
�nding among all points q � S n fpg such that q�i � p�i�
� � i � d� a point with minimal q�d���coordinate� This
problem can be solved using a d�layer range tree TC
�	�
�� Note that this data structure depends on the cone
C�

Lemma � ���	
 Let S be a set of n points in IRd� and
let C be a cone of C� The d�layered range tree has size
O�n logd�� n� and can be built in O�n logd�� n� time�
We can maintain this data structure in O�logd n� amor�
tized time per insertion and deletion� Given any point
p � IRd� we can compute in O�logd n� time a point q in
Cp � S n fpg for which q�d�� is minimal� or determine
that such a point does not exist�

Hence� we can construct the graph ��S� k� in
O�n logd n� time by building the above data structure
for each cone C separately and by querying it with each
point of S� We can save a factor of logn by using a
sweep algorithm� The result is as follows� �We remark
that this result was proved already in 	�
 for the planar
case and in 	��
 for the case where d � �� Our algorithm
uses a factor of O�logn� less space than the algorithm
of 	��
��

Theorem � ���� ��	
 Let k � � be an integer� let
� � ���k� and let S be a set of n points in IRd� The
graph ��S� k� is a t�spanner for t � ���cos �� sin ��� It
contains O��c���d��n� edges� for some constant c� Us�
ing O��c���d��n � n logd�� n� space� this graph can be
constructed in time O��c���d��n logd�� n��

� The skip list spanner

We have seen that the graph ��S� k� is a t�spanner for
t � ���cos �� sin ��� Suppose that all points of S lie on
a line� Then� ��S� k� can be seen as a list containing
the points of S in the order in which they occur on this
line� Clearly� this graph has spanner diameter n� ��



In this section� we construct a t�spanner whose span�
ner diameter is bounded by O�logn� with high proba�
bility� The basic idea is to generalize skip lists 	��
�
Let S be a set of n points in IRd� We construct a

sequence of subsets� as follows� Let S� � S� Let i � �
and assume that we already have constructed the subset
Si� For each point of Si� we �ip a fair coin� �All coin
�ips are independent�� The set Si�� is de�ned as the set
of all points of Si whose coin �ip produced heads� The
construction stops if Si�� � �� Let h denote the num�
ber of iterations of this construction� Then we have sets
� � Sh�� 	 Sh 	 Sh�� 	 Sh�� 	 � � � 	 S� 	 S� � S�
It is well known that �i� h � O�logn� with high prob�
ability� in particular� E�h� � O�logn�� �ii� E�jSij� �

n��i��� � � i � h� and �iii�
Ph

i�� jSij � O�n� with high

probability� in particular� E�
Ph

i�� jSij� � O�n��

De�nition � Let k � � be an integer and let � � ���k�
Let S be a set of n points in IRd� Consider the subsets
Si� � � i � h� that are constructed by the given coin
�ipping process� The skip list spanner� SLS �S� k�� for
S is de�ned as follows� For each � � i � h� there is a
graph ��Si� k�� and a reversed graph ���Si� k�� which
is obtained from ��Si� k� by reversing the direction of
each edge� We say that the points of Si are at level i
of the data structure� We will regard SLS �S� k� as a
directed graph with vertex set S and edge set the union
of the edge sets of the graphs ��Si� k� and ���Si� k��

Now we give the algorithm for solving path queries�
That is� given points p and q of S� we show how to
construct a t�spanner path from p to q� Of course� we
can construct such a path by using only edges of ��S� k��
In order to reduce the number of edges on the path�
however� we do the following�
We start in the occurrence of p at level one of the

skip list spanner and construct a path from p towards
q� Suppose we have already constructed a path from p
to x� If x � q� then we have reached our destination�
Assume that x 
� q� We check if x occurs at level two�
Assume this is not the case� Then we extend the path
as follows� Let C be the cone of C such that q � Cx� Let
x� be the point of Cx�S� such that �x� x�� is an edge of
��S�� k�� Then x� is the next point on the path from p
towards q� i�e�� we set x �� x�� We keep on growing this
path until x � q or the point x occurs at level two of the
skip list spanner� In the latter case� we start growing
a path from q towards x� Suppose we have already
constructed a path from q to y� We stop growing this
path if y is equal to one of the points on the path from p
to x� or y occurs at level two� If y is equal to the point�
say� p� on the path from p to x� then we report the path
in ��S�� k� from p to p�� followed by the reverse of the
path in ��S�� k� from q to p�� Otherwise� if y occurs

at level two� then we move with x and y to the second
level of the skip list spanner and use the same procedure
to extend the paths� The formal algorithm is given in
Figure ��

Algorithm walk�p� q�
�� p and q are points of S� This algorithm

constructs a t�spanner path in the skip list
spanner SLS �S� k� from p to q�

��
begin
p� �� p� q� �� q�
a �� b �� r �� s �� ��
i �� ��
�� p� � p� p�� � � � � pr� � � � � pa and

q� � q� q�� � � � � qs� � � � � qb are paths in SLS �S� k��
r � minfj � pj � Sig� s � minfj � qj � Sig�
and pr � pr��� � � � � pa� qs� qs��� � � � � qb � Si�

��
stop �� false�
while stop � false
do while pa 
� qb and pa 
� Si��

do C �� cone of C such that qb � Cpa �
pa�� �� point of Cpa � Si such that

�pa� pa��� is an edge of ��Si� k��
a �� a� �

od�
�� pa � qb or pa � Si�� ���
while qb 
� fpr� pr��� � � � � pag and qb 
� Si��
do C �� cone of C such that pa � Cqb �

qb�� �� point of Cqb � Si such that
�qb� qb��� is an edge of ��Si� k��

b �� b� �
od�
�� qb � fpr� pr��� � � � � pag or both pa and

qb occur in Si���
��
if qb � fpr� pr��� � � � � pag
then l �� index such that qb � pl�

output the path p�� p�� � � �
� � � � pl� qb��� qb��� � � � � q��

stop �� true
else i �� i� �� r �� a� s �� b
�

od
end

Figure �� Constructing a t�spanner path from p to q in
the skip list spanner�



Lemma � Let k � � and � � ���k� For any pair p and
q of points in S� this algorithm constructs a t�spanner
path in SLS �S� k� from p to q� for t � ���cos � � sin ���

Proof
 Consider the paths p� � p� p�� p�� � � � and
q� � q� q�� q�� � � � that are constructed by the algorithm�
Then� by Lemma �� we have jpa��qbj � jpaqbj� �cos ��
sin ��jpapa��j � jpaqbj and jqb��paj � jqbpaj � �cos � �
sin ��jqbqb��j � jqbpaj� This proves that the algorithm
terminates� Using the two given inequalities� it can be
shown that it constructs a t�spanner path from p to q�

Remark � Consider the t�spanner path p� �
p� p�� � � � � pl � qb� qb��� � � � � q� � q that is computed by
algorithm walk�p� q�� In the full paper it is shown that
for each �xed i� all p�points and all q�points that are
added during the iteration of the outer while�loop that
takes place at level i are pairwise distinct�

In the rest of this section� we analyze the expected
behavior of algorithm walk � Let p and q be two �xed
points of S� Consider again the paths p� � p� p�� p�� � � �
and q� � q� q�� q�� � � � that are constructed by the algo�
rithm� Let i� � � i � h� be �xed� We estimate the
expected number of points that are added to the paths
at level i of the skip list spanner�
Intuitively� the expected number of points added at

level i is bounded by a constant� During the �rst inner
while�loop� the p�path is extended until it meets the q�
path or the last point on it occurs at level i � �� Since
each point of Si occurs at level i � � with probabil�
ity ���� we expect that�at level i�at most a constant
number of points are added to the p�path� During the
second inner while�loop� the q�path is extended� By a
similar argument� we expect that�at level i�at most
a constant number of points are added to this path�
To make this rigorous� we have to show that each

point added to one of these paths indeed occurs at level
i � � with probability ���� In particular� we have to
show that it is not the case that the coin �ips that are
used to build the skip list spanner cause the algorithm
to visit points at level i for which it is more likely that
they do not occur at level i� ��
Fix the sets S�� S�� � � � � Si� Let r and s be the minimal

indices such that pr � Si and qs � Si� respectively� Note
that r and s are completely determined once p� q and
S�� � � � � Si are �xed�
For the sake of analysis� assume that we have not yet

�ipped our coin for determining the set Si��� Consider
the path p�r � pr � p

�

r��� p
�

r��� � � � � p
�

m � qs that the algo�
rithm would have constructed if all points of Si did not
occur at level i � �� �By Remark �� all points on this
path are distinct�� Now let z be the number of points

that are added�at level i�to the p�path by the actual
algorithm� Note that z is a random variable�

Let l � � and assume that z � l� It is easy to see that
p�r � pr � p

�

r�� � pr��� � � � � p
�

r�l � pr�l� It follows from
the actual algorithm that p�a 
� Si�� for all a� r � a �
r � l � �� Therefore�

Pr�z � l� � Pr

�
r�l���
a�r

�p�a 
� Si���

�
�

Since the path p�r� p
�

r��� � � � � p
�

m is completely deter�
mined by the points p and q and the sets S�� � � � � Si�
each of the points on this path is contained in Si��
with probability ���� Therefore� using the fact that all
coin �ips are independent� it follows that Pr�z � l� �Qr�l��

a�r Pr�p�a 
� Si��� � �����l� That is� the random
variable z has a geometric distribution with parameter
����

Again� for the sake of analysis� consider the following
experiment� We assume that we have not yet �ipped our
coin for determining the set Si��� Now we �ip the coin
for the points p�r� p

�

r��� p
�

r��� � � �� in this order� stopping
as soon as we obtain heads or after having obtained
m�r times tails� Clearly� the number of times we obtain
tails has the same distribution as the random variable
z above�

Let l� � � l � m � r� be �xed and assume that z �
l� If l � m � r� then the p�path constructed by the
actual algorithm has reached point qs and the algorithm
terminates� So assume that l � m � r� Then� at this
moment� we know that p�r� p

�

r��� � � � � p
�

r�l�� do not occur
at level i��� p�r�l occurs at level i��� and for all points
of S�i �� Si nfp�r� p

�

r��� � � � � p
�

r�lg we have not yet �ipped
the coin� Let q�s � qs� q

�

s��� q
�

s��� � � � be the path that
would have been constructed during the second inner
while�loop if all points of S�i did not occur at level i���
Let y be the number of points of Si that are added�at
level i�to the q�path by the actual algorithm� Then� y
is a random variable�

Let t � � and assume that y � t� Then� q�s �
qs� q

�

s�� � qs��� � � � � q
�

s�t � qs�t� By Remark ��
all points p�r� p

�

r��� � � � � p
�

r�l� q
�

s� q
�

s��� � � � � q
�

s�t�� are pair�
wise distinct� In particular� q�b � S�i for all b� s � b �
s� t��� As a result� we can say that in the actual skip
list spanner� each q�b occurs at level i� � with probabil�
ity ���� Since q�b 
� Si�� for all b� s � b � s � t � �� it
follows that

Pr�y � t� � Pr

�
s�t���
b�s

�q�b 
� Si���

�



i�e��

Pr�y � t� �
s�t��Y
b�s

Pr�q�b 
� Si��� � �����t�

We have shown that� conditional on �xed subsets
S�� S�� � � � � Si and a �xed value of the random variable z�
the random variable y has a geometric distribution with
parameter ���� Since this distribution does not depend
on z� y also has a geometric distribution conditional on
S�� � � � � Si only�

To summarize� we have shown that� conditional on
�xed subsets S�� S�� � � � � Si� the random variables that
count the number of points that are added�at level
i�to the p� and q�paths both have a geometric distri�
bution with parameter ���� Since both distributions
do not depend on S�� � � � � Si� this statement also holds
unconditionally�

Now we can analyze the expected behavior of algo�
rithm walk�p� q� in exactly the same way as for standard
skip lists� �See e�g� Section ��� in Mulmuley 	�
�� Let N
denote the number of edges on the t�spanner path from
p to q that is constructed by the algorithm�

For � � i � h� let Mi �resp� Ni� denote the num�
ber of edges that are added at level i to the p�path
�resp� q�path�� Then N �

Ph

i���Mi � Ni�� Moreover�
M�� N��M�� N�� � � � �Mh� Nh are random variables� and
each one is distributed according to a geometric distri�
bution with parameter ���� Each of these variables is
independent of the ones that come later in the given
enumeration� Using the Cherno� bound and the fact
that h � O�logn� with high probability� it follows that
N � O�logn� with high probability� �See e�g� 	�
�� It is
clear that the time for constructing this t�spanner path
is proportional to N � h� Therefore� the running time
of algorithm walk�p� q� is also bounded by O�logn� with
high probability�

These bounds hold for �xed points p and q of S� Since
there are only a quadratic number of such pairs� it fol�
lows that the maximumrunning time of algorithmwalk �
and the maximum number of edges on any t�spanner
path computed by this algorithm are both bounded by
O�logn� with high probability� �See Observation ��
��
on page �� of 	�
�� That is� with high probability� the
skip list spanner has spanner diameter O�logn�� In par�
ticular� this proves that there exists a t�spanner for S
having O�n� edges and O�logn� spanner diameter�

Let k � � be an integer� let � � ���k and let t �
���cos ��sin ��� Then the skip list spanner SLS �S� k� is
the t�spanner for which parts ��� �� and 
� of Theorem �
hold�

� Maintaining the skip list span�

ner

In this section� we consider the problem of maintain�
ing the skip list spanner when points are inserted and
deleted in S� Unfortunately� it is not possible�for our
spanner�to achieve polylogarithmic update time for ar�
bitrary insertions and deletions� Since there may be
points in ��S� k� having ��n� in�degree� the worst�case
update time is doomed to be ��n��
We will see� however� that in the model of random

insertions and deletions� we can obtain polylogarithmic
expected update time� For a detailed description of this
model� see 	�
�
Consider a set V of points and a sequence of updates

involving these points� For each i� let pi denote the
point of V that is involved in the i�th update� let Vi
denote the set of points in V that are �present� at the
start of the i�th update� and let ni denote the size of Vi�
If the update sequence is random in this model� then
for each i �i� pi is a random point of V � and �ii� Vi is a
random subset of V of size ni�
We �rst show how to maintain the graph ��S� k� un�

der insertions and deletions� Among other things� we
need a data structure solving the following query prob�
lem� Given any point q � IRd n S� �nd all points p of S
such that the graph ��S�fqg� k� contains an edge from
p to q�
Let q � IRd n S� and let C be a cone of C� Let p

be any point of S such that q � Cp� Then the graph
��S�fqg� k� contains an edge from p to q i� �a� there is
no edge �p� r� in ��S� k� such that r � Cp� or �b� there
is an edge �p� r� in ��S� k� such that r � Cp� and the
projection of q onto lC�p is closer to p than the projection
of r onto lC�p�
This suggests the following data structure� Fix any

cone C of C� Recall the coordinates p��� p
�

�� � � � � p
�

d�� that
we de�ned in Section �� �These coordinates depend on
C�� We store the points of S in a �d����layer data struc�
ture T �

C � where each layer�j tree stores points sorted by
their p�j�coordinates� � � j � d� With each node u of
any layer�d tree� we store the following additional infor�
mation� Let Su be the subset of S that is stored in the
subtree of u� We store with u two layer��d� �� trees�

�i� A balanced binary search tree Tu
� storing all points

p of Su such that ��S� k� does not contain an edge
with source p and sink in Cp� These points are
stored in the leaves of the tree� sorted by their p�d���
coordinates�

�ii� A balanced binary search tree Tu
� for the points in

the set frp � Cp � S � p � Su and ��S� k� contains
an edge from p to rpg� These points are stored



in the leaves of the tree� sorted by their �rp�
�

d���
coordinates�

Given this data structure� we can query it with any
point q � IRd n S� as follows� We compute a set of
O�logd n� canonical nodes of layer�d trees such that all
subsets stored in the subtrees of these nodes partition
the set of all points of S n fqg that are contained in
the cone �Cq � For each of these nodes u� we report
all points stored in its layer��d � �� tree Tu

� � Also� we
walk along the leaves of its layer��d� �� tree Tu

� � from
right to left� and report all points p � Su for which
�rp�

�

d�� � q�d���
It follows from the above discussion that we report

exactly the set of all points p such that q � Cp and the
graph ��S � fqg� k� contains an edge from p to q�
The following data structure is used for maintaining

the graph ��S� k��

�i� We store the graph G � ��S� k�� With each point
of S� we store a list of all points q of S such that
�p� q� is an edge� and a list of all points r of S such
that �r� p� is an edge�

�ii� For each cone C of C� we store the data structure
TC of Lemma � for the points of S�

�iii� For each cone C of C� we store the above �d � ���
layer data structure T �

C for the points of S�

In the full paper� the complete insertion and deletion
algorithms are given� Let D be the in�degree of the new
point q in the graph ��S � fqg� k�� Then� the inser�
tion algorithm takes O���c���d�� � D� logd n log logn�
amortized time� �Here� dynamic fractional cascading 	�

is used�� In a symmetric way� the amortized deletion
time can be bounded by the same quantity� but now D
is the in�degree of the point to be deleted before the
operation� Note that these update times hold for any
update� In the worst�case� the value of D can be n� ��
The following lemma shows that for a random update�
the expected value of D is small�

Lemma � Let V be a set of points in IRd and let S
be a random subset of V of size n� Let q be a random
point of V � Then the expected in�degree of q in the graph
��S �fqg� k� is at most equal to the number of cones in
C�

Proof
 Let m denote the number of cones and let n�

denote the size of S �fqg� Note that n� is equal to n or
n � �� The graph ��S � fqg� k� contains at most mn�

edges� Hence� the average in�degree in this graph is at
most m� Since q is a random point in S�fqg� the claim
follows�

Lemma � Using a data structure of size
O��c���d��n logd n�� we can maintain the graph ��S� k�
in O��c���d�� logd n log logn� expected amortized time
per random update�

Recall that the skip list spanner� SLS �S� k�� consists
of ��graphs at levels� � � i � h� For each level i of
SLS �S� k�� we maintain the structure of Lemma � for
the points of Si�
To insert a point q� we �ip our coin and determine

the number of levels into which q has to be inserted�
If this number is l� then we insert q into the ��graphs
corresponding to the levels �� �� � � � � l� To delete a point
q� we delete q from all ��graphs in which it occurs�
To analyze the update time� suppose we update the

��graph of level i� Since Si is a random subset of S�
which in turn is a random subset of V � Lemma � also
holds for the graph that is stored at level i� Also� note
that during an update� we update a constant expected
number of levels� Therefore� Lemma � implies that the
expected amortized update time of the skip list spanner
is bounded by O��c���d�� logd n log logn� per random
update�
Let k � � be an integer� let � � ���k and let

t � ���cos � � sin ��� Then the dynamic skip list span�
ner SLS �S� k� is the t�spanner for which part �� of The�
orem � holds�

� Deterministic Construction

In this section we consider deterministic approaches to
constructing t�spanners of small diameter� As men�
tioned earlier� the construction is not based on a deran�
domization of the construction presented in the previous
section� but rather on a well�separated pair decomposi�
tion of the point set� Callahan and Kosaraju introduced
this structure as a mechanism for solving a number of
problems on point sets in d�dimensional space 	�� 

� and
in 	

 they show that such a decomposition can be used
to compute t�spanners� �Vaidya gave a similar construc�
tion� with a slightly slower running time 	��
�� They did
not consider the issues of the diameter of the resulting
spanners� or the time needed to answer path queries
�and indeed� the t�spanner paths that result may have
as many as n � � edges�� In this section we present a
proof of Theorem �� by showing that low diameter span�
ners can be constructed with the same time and space
bounds�
We begin with a short review of relevant de�nitions

from 	�
� Let S be a set of n points in IRd� Let s � � be a
real value called the separation� We say that two point�
sets A and B are well�separated if and only if they can
each be enclosed in d�spheres of radius r� whose distance



of closest approach is at least sr� A well�separated pair
decomposition is a set of pairs of nonempty subsets of
S� ffA�� B�g� fA�� B�g� � � �fAm� Bmgg� such that

��� Ai �Bi � �� for all i � �� �� � � ��m�

��� For each unordered pairs of distinct elements fa� bg
of S� there exists a unique pair fAi� Big in the de�
composition such that a � Ai and b � Bi�

�
� Ai and Bi are well�separated� for all i � �� �� � � ��m�

In 	�
� Callahan and Kosaraju show that a well�
separated pair decomposition of size O�sdn� can be com�
puted for S in time O�n logn� sdn�� In 	

� they show
that a t�spanner can be computed from the decompo�
sition� We present a simpli�ed explanation of the con�
struction� which su�ces for our purposes� Given S and
t � �� construct a well�separated pair decomposition
of S with separation s � ���t � ��� For each set Ai

�or Bi� in the decomposition� select a representative
point rep�Ai� � Ai� For each pair fAi� Big in the de�
composition� include in the spanner the undirected edge
frep�Ai�� rep�Bi�g between their respective representa�
tives�
Given a path query �a� b�� we construct a path from

a to b in the spanner as follows�

��� If a � b� then return the empty path�

��� Otherwise� there is a unique pair of sets fAi� Big
with a � Ai and b � Bi in the decomposition� Con�
struct a path �a recursively from a to the repre�
sentative rep�Ai�� Construct a path �b recursively
from b to the representative rep�Bi��

�
� Return the concatenation of �a� the edge
�rep�Ai�� rep�Bi��� and the reversal of �b�

Recall that the weight of a path is the sum of the Eu�
clidean lengths of its edges� It is an easy induction proof�
that the resulting path is of weight at most tjabj� �See�
for example� Lemma ��� in 	

 with 	 � ��s� Any point
in Ai �and Bi� may be used as a representative��
As it stands� this construction does not provide up�

per bounds on the number of edges in each path� but
we can establish such bounds by a careful choice of the
representative points� Before presenting details of the
construction of the low diameter spanner� we need to
consider the structure of the well�separated pair decom�
position in greater detail�
The well�separated pair decomposition for the point

set S is derived from a binary tree T � called the fair�split
tree� The tree T is of size O�n�� but it need not be bal�
anced� and may have depth as large as ��n�� The leaves
of the fair split tree correspond � � with the points of

S� and each internal node of the tree is associated with
d�dimensional rectangle that contains all the points con�
tained within the leaves of the subtree rooted at this
node� We refer to nodes by the associated subset of
points of S� Each pair fAi� Big in the well�separated
pair decomposition is represented as an unordered pair
of nodes in T � Since each node of T is associated with
a subset of S� this node can also be associated with the
representative point for this subset�
The structure of T will determine the choice of repre�

sentative points� For each internal node u in T � consider
the two subtrees rooted at the children of u� The edge
going to the subtree having the larger number of leaves
is labeled as heavy and the other is labeled as light �ties
may be broken either way�� Since every internal node
has exactly one heavy edge from one of its children�
there is a unique maximal chain of heavy edges leading
up from each leaf in T � These chains partition the nodes
of T into n subsets� one associated with each leaf� For
each node u in T � let l�u� denote the leaf whose chain
contains u� The representative point associated with u
is the point associated with l�u�� The resulting assign�
ment of representative points is called the heavy�subtree
assignment� Observe that this provides a valid assign�
ment of representative points� because each node is as�
sociated with a leaf contained within its subtree� and
hence each subset is associated with a member point�
We can now present the main result of this choice of
representatives�

Lemma � If we apply the above path �nding algorithm
to the t�spanner that results from the heavy�subtree as�
signment of representative points� then the path gener�
ated has at most � logn edges�

Proof
 De�ne the length of a path to be the number
of edges in the path� Consider any two points a� b � S�
and let fA�� B�g denote the pair in the well�separated
pair decomposition containing this pair� Since these sets
are disjoint� jA�j � jB�j � n� It su�ces to show that
the path from a to the representative of its ancestor�
rep�A��� has length at most log jA�j �and a similar result
will follow for b��
Let a� � rep�A��� If a � a�� then the length of the

path is zero� and the conclusion follows trivially� Oth�
erwise� consider the pair fA�� B�g in the decomposition
such that a � A� and a� � B�� By the structure of the
well�separated pair decomposition� A� and B� are both
disjoint subsets ofA�� and hence both of the correspond�
ing nodes in T are descendents of A�� and neither is a
descendent of the other� We claim that a� � rep�B���
This is because a� is a descendent of B�� and hence the
maximal chain leading from the leaf a� to B�!s ances�
tor� A�� must pass through B�� Thus� the path from



rep�A�� to rep�B�� has length zero�

Next� we claim that jA�j � jA�j��� The reason is
that otherwise� all the edges between A� and A� in the
fair split tree would have to be heavy edges� implying
that the representative point for A� would be a mem�
ber of A�� contradicting the disjointness of A� and B��
By induction� the length of the path from a to the rep�
resentative of A� is at most log jA�j� which is at most
log jA�j � �� Adding to this the single edge from A�!s
representative to a� �B�!s representative� gives a total
path length of at most log jA�j� as desired�

We claim that we can implement the path �nding al�
gorithm in O�log� n� time� We have argued that the al�
gorithm outputs O�logn� edges� and hence it su�ces to
show that each recursive invocation can be implemented
in O�logn� time� The only nontrivial step is that of de�
termining for a pair of distinct points� fa� bg � S� the
pair fA�Bg in the well�separated pair decomposition
containing this pair� Call this a pair query� To see how
to answer these queries� we need to take a closer look
at the construction of the well�separated pair decompo�
sition �rst�

Following Callahan and Kosaraju!s development in
	�
� each internal node u of the fair�split tree T � has
exactly two children� called A and B� The recursive
procedure for constructing a well�separated pair decom�
position of the set of pairs in the cross�product A 
 B�
can be viewed as a binary computation tree� C�A�B��
associated with u� Each node of this computation tree
is associated with a pair fA�� B�g� where A� 	 A and
B� 	 B� If this pair is well�separated� then this is a leaf
in the computation tree� and otherwise it is an internal
node �see 	�
 for details�� The size of all the computa�
tion trees is asymptotically equal to the size of the �nal
well�separated pair decomposition�

Although computation trees are not necessarily bal�
anced� each computation tree can be represented in bal�
anced form by computing a centroid decomposition of
this tree� The centroid decomposition tree comes about
by recursively �nding a centroid edge� that is� an edge
whose removal splits the tree into two connected sub�
trees of size at most a factor of roughly �"
 the size of
the original tree� Then each of these subtrees is recur�
sively decomposed� This results in a binary decomposi�
tion of depth O�logm�� where m is the size of the com�
putation tree� Each internal node of the resulting binary
tree is associated with an edge of the computation tree�
We assume that each subset in the computation tree is
associated with its enclosing rectangle� The tree will
be searched in the usual top�down manner� From the
disjointness of these rectangles �see 	�
�� it follows that
for a given pair� fA�Bg� we can determine in O�d� time
whether a � A and b � B �or vice versa�� This is done

by testing membership in the corresponding rectangles�
As a consequence� given any edge of the centroid de�
composition� in O�d� time we can determine in which
subtree of the computation tree to continue the search
for the pair �a� b�� Details will be given in the full paper�

We also augment the fair�split tree with any data
structure for answering lowest common ancestor queries
in O�logn� time �e�g� 	��
 is more than su�cient��
These augmentations can all be computed within the
same asymptotic time bound as the construction of the
well�separated pair decomposition�

To answer a pair query fa� bg in O�logn� time� we
begin by �nding the lowest common ancestor of a and
b in the fair�split tree� We know that the desired pair
will lie within the computation tree for this node� Next
we search the computation tree �using its centroid de�
composition� for the desired pair� Since each such
query to the centroid decomposition tree can be an�
swered in O�d� time� and the size of the computation
tree is at most �c��t � ���dn� the time for this search
is O�d logn � d� log�c��t � ���� � O�logn�� Repeating
this for each of the O�logn� edges of the path� yields
the desired complexity�

In the current spanner� it takes O�log� n� time to an�
swer a path query� We can reduce this to O�logn�� by
using an associated data structure of size O�n logn��

We know that there are at most O�logn� distinct rep�
resentative points on the path from a leaf to the root of
the box decomposition tree� For each point x� we main�
tain the list of these O�logn� representative points� say
x�� x�� � � � � xr� Here� x� equals the representative point
of the root of the tree and xr equals the representative
point of the leaf� namely x� Each point xi in this list
keeps one pointer to another point xj� The point xj
is selected according to the following rule� Let fX�Y g
denote the well�separated pair for the pair of points x
and xi� such that x belongs to X and xi belongs to Y �
Then point xj is the representative point of X� �Since
node X must be an ancestor of leaf x� the representative
point of X is in the above list��

To compute the t�spanner path between a and b� we
proceed as follows� First we �nd the well separated
pair fA�� B�g separating a and b� This can be done
in O�logn� time using the previous method� Let a�
�resp� b�� be the representative point of A� �resp� B���
Then we have to construct paths between a and a�� and
between b and b�� To construct the path between a
and a�� we look at the list stored with a� We can �nd
a� in this list in O�logn� time� To compute the path
between a and a�� we simply follow the pointers in this
list� starting from a� and ending when he have reached
a� This computes the same path as above�



	 Conclusion

We have presented randomized and deterministic algo�
rithms for constructing t�spanners of O�n� edges and
O�logn� diameter� The randomized spanner takes
O�n logd�� n� time to construct while the deterministic
spanner can be constructed faster in O�n logn� time�
After augmenting these spanners with an additional
O�n� size data structure we can e�ciently determine
the spanner path between any two given points� These
path queries can be answered in O�logn� time for the
randomized spanner and O�log� n� time for the deter�
ministic spanner� We have also shown how to main�
tain the randomized spanner in expected polylogarith�
mic time per random update�
Our work suggests many interesting open problems�

Perhaps the most important question is whether there
exist t�spanners of O�n� edges having o�logn� diameter
in high dimensions �in one dimension� there do� and how
e�ciently these can be constructed� Finally� it would
be interesting to provide dynamic spanners that can be
e�ciently updated for arbitrary updates�

References

	�
 S� Arya and M� Smid� E�cient construction of a
bounded degree spanner with low weight� Proc� �nd
ESA� LNCS� Springer�Verlag� Berlin� �����

	�
 P�B� Callahan and S� Rao Kosaraju� A decompo�
sition of multi�dimensional point�sets with appli�
cations to k�nearest�neighbors and n�body poten�
tial �elds� Proc� ��th Annu� ACM Sympos� Theory
Comput� ����� pp� ��� ����

	

 P�B� Callahan and S� Rao Kosaraju� Faster al�
gorithms for some geometric graph problems in
higher dimensions� Proc� �th ACM�SIAM Sympos�
on Discrete Algorithms� ���
� pp� ��� 
���

	�
 G� Das and G� Narasimhan� A fast algorithm for
constructing sparse Euclidean spanners� Proc� ��th
Annu� ACM Sympos� Comput� Geom�� ����� pp�
�
� �
��

	�
 J�M� Keil and C�A� Gutwin�Classes of graphs which
approximate the complete Euclidean graph� Dis�
crete Comput� Geom� � ������� pp� �
 ���

	�
 G�S� Lueker� A data structure for orthogonal range
queries� Proc� ��th Annu� IEEE Sympos� Found�
Comput� Sci�� ����� pp� �� 
��

	�
 K� Mehlhorn and S� N#aher� Dynamic fractional cas�
cading� Algorithmica � ������� pp� ��������

	�
 K� Mulmuley� Computational Geometry� an Intro�
duction through Randomized Algorithms� Prentice
Hall� Englewood Cli�s� �����

	�
 F�P� Preparata and M�I� Shamos� Computational
Geometry� an Introduction� Springer�Verlag� New
York� �����

	��
 W� Pugh� Skip lists� A probabilistic alternative to
balanced search trees� Commun� ACM �� �������
pp� ��� ����

	��
 J� Ruppert and R� Seidel� Approximating the
d�dimensional complete Euclidean graph� Proc�

rd Canadian Conf� on Computational Geometry�
����� pp� ��� ����

	��
 J�S� Salowe� Constructing multidimensional span�
ner graphs� Internat� J� Comput� Geom� Appl� �
������� pp� �� ����

	�

 J�S� Salowe� On Euclidean spanner graphs with
small degree� Proc� �th Annu� ACM Sympos� Com�
put� Geom�� ����� pp� ��� ����

	��
 B� Schieber and U� Vishkin�On �nding lowest com�
mon ancestors� Simpli�cations and parallelization�
SIAM J� Comput� �� ������� pp� ���
 �����

	��
 P�M� Vaidya� A sparse graph almost as good as the
complete graph on points in K dimensions�Discrete
Comput� Geom� � ������� pp� 
�� 
���

	��
 A�C� Yao� On constructing minimum spanning
trees in k�dimensional spaces and related problems�
SIAM J� Comput� �� ������� pp� �����
��


