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ABSTRACT

Pattern matching in point sets is a well studied problem
with numerous applications. We assume that the point sets
may contain outliers (missing or spurious points) and are
subject to an unknown translation. We define the distance
between any two point sets to be the minimum size of their
symmetric difference over all translations of one set relative
to the other. We consider the problem in the context of
similarity search. We assume that a large database of point
sets is to be preprocessed so that given any query point
set, the closest matches in the database can be computed
efficiently. Our approach is based on showing that there is a
randomized algorithm that computes a translation-invariant
embedding of any point set of size at most n into the L,
metric, so that with high probability, distances are subject
to a distortion that is O(log®n).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems— Pattern match-

ing

General Terms
Algorithms, Theory

Keywords

Point pattern matching, similarity search, embedding, ran-
domized algorithms.

1. INTRODUCTION

Geometric pattern matching is a well studied computa-
tional problem with a wide variety of formulations and appli-
cations. The most common formulation considered in com-
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putational geometry involves determining the degree of sim-
ilarity between two given point sets, subject to some group
of allowable geometric transformations. The literature on
this topic is vast. The interested reader is referred to the
survey by Alt and Guibas [2]. An important formulation
for many modern applications involves viewing the problem
from the perspective of similarity search. We are given a
large database of point sets, which is to be preprocessed so
that, given a query set, it is possible to efficiently compute
its closest neighbor(s) in the database.

We consider this problem in a relatively simple context
but one that still leads to quite an interesting computational
problem. We assume that point sets have integer coordi-
nates, that they are to be matched subject to an unknown
translation, and that there is a significant fraction of out-
liers, that is, points from one set may not match any point
of the other set. We assume, however, the points that do
match (subject to the optimum translation) identically. This
is in contrast with measures such as the partial Hausdorff
distance [11], where both outliers and near misses are tol-
erated. Outliers are challenging because global properties
of the point sets, based for example on the identification of
reference points such as centroids [1] are not applicable. The
distance metric we use is the size of the symmetric differ-
ence of the two point sets, which is to be minimized through
some translation of one set relative to the other. (Formal
definitions are given below.)

Our approach is based on finding an embedding function
that maps a point set into a metric space [12]. The distortion
of such an embedding is the maximum multiplicative varia-
tion that distances might suffer in the mapping process. The
objective is to produce an embedding of low distortion into a
space in which similarity search can be performed efficiently
(in particular, its dimension should be low).

In the context of database search for point sets undergoing
transformations, a well-known solution is based on geometric
hashing [20] which is to store all possible transformed sets so
that the search will be processed efficiently. This approach is
notably inefficient when outliers are present. A common ap-
proach in computer vision is to compute some property that
is invariant under motion. A popular choice is the histogram
of colors appearing in the image. These can be compared
using, for example, the Earth-Mover’s distance (EMD) [2,6].
The problem of computing low distortion embeddings of
variants of EMD has been studied by Indyk and Thaper [13]
and Wang, et al. [19]. Unfortunately, similarity of two color
histograms provides no guarantees on the similarity of the



underlying images. The distance histogram is one example
of a more general approach that is widely studied in com-
puter vision based on computing some invariant feature of
the underlying objects [5,15]. Although some invariants can
provide good practical performance, they generally cannot
provide guarantees on the quality of the match. One pop-
ular example is the set of inter-point distances, called the
distance histogram [3,8]. Although one would expect that
similar sets would have similar distance histograms, there
exist so called homometric sets [16,18], which have identical
distance histograms but which may not be at all similar to
one another. For example, the following two sets are homo-
metric: P =4{0,1,4,10,12,17} and Q = {0, 1,8,11,13,17}.

Our objective here is to compute a translation invariant of
guaranteed performance. More formally, consider a point set
consisting of at most n points on the d-dimensional integer
grid, where d is a constant. We assume that the coordinates
of each point are bounded above by a polynomial function
of n. As usual, let Z denote the set of integers, and let
Zy denote {0,1,2,...,u — 1}. (We do not assume that u
is prime.) Let Z¢ denote the set of d-element vectors over
Z, and define Z<¢ analogously for Z,. Let Z2(< n) denote
the collection of point sets over Z¢ that contain at most n
points. Given two finite sets P and @, let PAQ denote their
symmetric difference, that is,

PAQ = (P\Q)U(Q\P).

The cardinality of the symmetric difference is a well known
metric on finite sets, which we denote by |PAQ|. This
can be generalized to multisets by summing the absolute
differences of the multiplicities of corresponding elements.

Given a point set P and any t € Z¢, the translate P+t
is defined to be {p +t | p € P}. Extending the symmetric
difference, we define the symmetric difference distance under
translation, denoted (P A @), to be

(PAQ) = min|(P+1)AQ.

It is easy to verify that this is a metric. (See Lemma 2.1
below.) Throughout, we will assume that P and @ are taken
from Z2(< n).

Let £¢ denote metric space consisting of real d-dimensional
space R? endowed with the L; metric. Given z,y € %, we
denote their L; distance by ||z —y||;. We use the terms
randomized embedding and randomized function throughout
to denote a function computed by a randomized algorithm
that satisfies the given probability bounds. We also use log
to denote logarithm base 2 and In to denote the natural
logarithm. Our main result is presented below.

Theorem 1. Given sufficiently large integers n and u,
where u < n°W | a constant d, and failure probability 3,
there exists a randomized embedding V: ZL(< n) — L7,
where m = O(nlog®nlog(1/3)), such that for any P,Q €
Z3(< n):

(1) (WP —wQl, < (2logn) (PAQ).

(i) WP —¥Q,
1—0, and

Y

> m (P AQ), with probability at least

This embedding can be computed in time O(nlog* nlog(1/3)).

Note that part (i) of the above theorem holds irrespective
of randomization. It follows that the resulting embedding

achieves a distortion of at most 34 logZn (with probability
at least 1 — ().

We know of no prior work on this problem. In a 1-
dimensional discrete setting, this problem is related to a
version of edit distance on bit strings, where the number of
replacements corresponds to the symmetric difference in the
sets, but it is possible to shift one set relative to the other
without cost. The most closely related work to ours is that
of Cormode and Muthukrishnan [7], on embedding strings
under edit distance with moves. They present an embedding
with distortion O(lognlog® n) into L; with an exponential
number of dimensions.

Here is a brief outline of our algorithm. First, we observe
that it is possible to reduce our problem to one involving
1-dimensional point sets of over Z,s, where u’ = nP@ . We
then apply a low distortion linear hash function, which maps
the point set to Z,, where s = O(nlogn). The linearity of
the hash function is critical, since it preserves distances un-
der translation. Such a set can be viewed as a bit-vector in
Z5. In order to obtain an embedding that is invariant under
translations, we select various sized probes, each of which is
a random subset of Zs. The application of a probe of size
p to a single placement of the vector produces an integer in
Zae , where this integer is based on the bit pattern appearing
in the bit-vector at each of the probed positions. We apply
the probe at each of the s positions, and take the union of
the probe results. The result can be viewed as a vector in
Zgil. We then apply another hash function to reduce the
dimension from Z%,; to ZSOJS). We show that, if p is chosen
in a manner that is sensitive to the actual distance between
the original point sets, then the distance between these vec-
tors is related to the distance between the original point sets
under translation. Since this distance is not known, we ap-
ply the construction to a series of exponentially increasing
distance estimates. We show that, through an appropriate
weighting of the components of this series, we obtain the
desired distortion bounds in expectation. In order to pro-
duce results that apply with high probability, we repeat the
process some number of times, using different random hash
functions and different random probes.

2. PRELIMINARIES

Recall that a nonnegative function d(P, Q) is a metric if
d(P,P) = 0, d(P,Q) — d(Q, P) and d(P,R) < d(P,Q) +
d(Q, R). The last condition is the well known triangle in-
equality.

Lemma 2.1. The symmetric distance under translation
18 a metric.

PROOF. It is easy to see that the first two requirements of
a metric hold. To establish the triangle inequality, let t1,t2,
and t3 denote the optimal translations for (P A Q), (Q A R),
and (P A R), respectively. We have
(PAQ)+(QAR)—(PAR)

= [(P+t)AQI+(Q+1t2) AR — (P +13) AR|

= [(P+t)AQI+|QA(R—t2)| — (P +13) AR|

> [(P+t)AQ[+[QA(R—t2)] — (P +t1) A(R —t2)|

> 0,

where the last implication follows from the triangle inequal-
ity for symmetric difference (which is well known to be a
metric). [



Next, we observe that the problem of computing distances
for point sets in the d-dimensional space Z¢ under transla-
tion can be reduced to computing distances under transla-
tion in a 1-dimensional space Zg,q4). The result is based on
the simple observation that we can unravel the d-dimensional
grid into a sufficiently large 1-dimensional grid to avoid wrap-
around effects. Since the mapping is linear it preserves sim-
ilarity under translation.

Lemma 2.2. Consider a positive integer u and constant
d. There exists a function g: 22 — 7./, where u' = O(u?)
such that for any sets P,Q C Z. we have (gP A gQ) =
(PAQ). This function is computable in O(1) time (assuming
that arithmetic operations on numbers of magnitude O(u)
can be computed in constant time).

The proof of Lemma. 2.2 follows directly from the next
two lemmas. Given integers a < b, let [a,b] denote the set
of integers from a to b, and let +Z,, denote [1 — u,u — 1].

Lemma 2.3. Forv = (vo,v1,...,04-1) € [1—u,2u—1]%,
let g(v) = vo +v1(3u) +v2(3u)? + ... +va_1(3u)?" . Then,
g is linear and injective.

PROOF. It is obvious that g is linear, that is, g(v +v') =
9(v) + 9(o").

Now, we show that g is an injective function over the
domain [1 — u, 2u — 1]%. Suppose to the contrary that there
existed x and z’ from this domain such that x # z’ and
g(x) = g(z'). Let i denote the largest coordinate index such
that z; # z}. Then,

d—1
g@) =g = 2,60 =Y af(Buy

(]

x;(3u)’ — Z:c; (3u)’ =0.
7=0

Jj=0

zj] < 3u—1, and so

i—1 i—1
S 23wy — 3 o (3u)’
Jj=0 7=0

Clearly, |z; —

(i — ) (3u)i

|
-

< (3u—1)(3u)’ = (3u)’ —1.

J

Since ; # x4, the left side is at least (3u)® which yields the
desired contradiction. [

Il
o

Lemma 2.4. Given P,Q and g as defined above

(PAQ) = (gPAgQ).

PROOF. Let t € Z? denote an optimal translation between
P and Q. We observe that each coordinate ¢; satisfies 1 —
u < t; < u— 1 since an optimal translation will succeed
in aligning at least one point. Thus, we can assume that
t € +72. Analogously, let ty denote an optimal translation
between gP and ¢g(). Similarly, we can assume that t; €
+Z3,)a. In order to prove that (PAQ) = (gPAgQ) it
suffices to show that

(P+t)AQ| = , nin

9€EL3,)d

min | l(gP +tg) AgQl.
te+zd

Let G denote a set of images from the valid translations,
that is, G = {g(t) |€ +Z%}. Let G denote the complement

of G, that is, G = £Z,ya \ G. For any t;, € £Z3,ya we
consider two cases, t, € G and t, € G.

If t, € G then there exists ¢ such that t; = g(¢). From
Lemma. 2.3, since g is linear and injective on [1 —u, 2u—1]¢,
we have

I(P+1)AQ

lg(P +t) AgQ|

I(gP +g(t)) AgQ)|

I(gP +tg) AgQl. (1)
Otherwise, if t, € G, then there is no match between

gP +t4 and gQ. Suppose to the contrary that there existed

at least one matched pair (g(p),g(q)) under translation ¢4,
that is,

g(q) = g(p)+tg.

Clearly p € P and g € @ are the preimages of g(p) and g(q),
respectively. Then there exists t' € +£Z< such that ¢ = p+t'.
By linearity of ¢ (from Lemma 2.3),

9(q) = glp+t) = g(p)+g(t),

and ty = g(t') € G, a contradiction.

Since the optimal translation has at least one matched
point, the optimal translation ¢4 for gP and ¢@ is in G.
Combining this with (1), we have

PA = min
(9P AgQ) weld

= minl(gP +t9) AgQ

=  min [(P+t)AQ| by (1)
+7d

[(gP +1t4) AgQ)|

te
= (PAQ).
|

Next we present a couple of utility results. The first is
a straightforward observation that a randomized function
with a low collision probability produces a low distortion
with respect to the size of the symmetric difference.

Lemma 2.5. Let 0 < v < 1, and suppose that we are
given a randomized function h: Z — Z such that for all
distinct ©,y € Z, Prh(z) = h(y)] < v. We are also given
a positive integer m, multisets P,Q € Z(< n), and failure
probability 5. Then

(7) |hPARQ| < |PAQ)|, and

(i) |hP ARQ| > (1 - 2%) |P A Q| with probability at least
1-5.

PRrROOF. Part (i) is trivial, since applying any function
(which need not be 1-1) can only decrease the size of the
symmetric difference. To prove (ii), let § = |P A Q|. Define
a collision to be any distinct pair z,y € Z, such that h(z) =
h(y). Observe that this collision can affect the size of the
symmetric difference only if both z and y are in PU @, and
at least one is in PAQ.

Let K denote the distinct elements in P U Q, and let k
be |K|. Observe that k < 2n. Let us consider a case for a
fixed element = in K. Let 0, denote the absolute difference
between the multiplicities of x in P and Q. Let I, denote
a random variable whose value is 1 if A(z) = h(y) and 0
otherwise. Let

Co = Y min(d,0y) ey

yeEK,x#y



Then,

E[C.] = Z min(dz,d,) Pr[h(z) = h(y)] < kdéz7y.
yeEK 27y

Each collision involving x can cause the symmetric difference
to decrease by at most 0. (This occurs, for example, if
xz € P\Qorz € Q\Pand y € PUQ, causing the mismatches
to disappear.) It is easy to see that

IPAQ|—[hPARQI< Y Ch.
rzeEPAQ
Thus, we have

E[|PAQ| - [hP ARQ]]
< z E[C:] < ky Z 0 = kvd < 2nvd.

zEPAQ zEPAQ

By Markov’s inequality,

B

Recalling that § = |P A Q)|, it follows that with probability
at least (1 — 3), we have

Pr {|PAQ|—|hPAhQ| > M] < 8.

|hPALQ| > < —2%> IPAQ|,

as desired. [

The following lemma will be useful for compressing space.
As mentioned in the introduction, because of the need to
maintain invariance under translation, we will make use of
a hash function that is linear, and in particular h(xz +t) =
h(z)+h(t), for all x and ¢. Common choices for low-collision
hash functions (such as the universal hash function h(z) =
(az +b mod u) mod s) do not satisfy this condition. Our
next lemma presents such a function for the domain of values
in interest. Note that a similar approach has also been used
in the context of string pattern matching [14].

Lemma 2.6. Consider positive integers n and u, where
u < n° for some constant ¢ > 1. For all o and 3, where 0 <
a, B < 1, there exists s = O((nlogn)/(aB)) (with constant
factors depending on ¢) and a randomized linear function
h: Zy — Zs such that for any sets P,Q € Z.(< n) we have

(i) [hP ARQ| < [PAQ), and
(i) |hPARQ| > (1 — a)|P AQ| with probability at least
1-3.

The function h is computable in O(1) time (assuming that
arithmetic operations on numbers of magnitude max(n,1/(af))
can be computed in constant time).

PROOF. As before (i) is trivial, and so we concentrate on
proving (ii). Let f = 6 + (8¢/(af)) and let r = fnln(fn).
Let R denote the set of prime numbers in the range nlnn to
r. The Prime Number Theorem (see, e.g., [17]) implies that,
for all sufficiently large n the number of primes less than or
equal to n is at least n/(2Inn) and at most 3n/(2Inn). It
follows that for all sufficiently large n we have

fnln(fn) 3nlnn fnln(fn) 3n
= 2In(fnln(fn)) 2Ikn(nlnn) 2

%] 41n(fn) 2
> (%) n = z—;n.

For any s € R, define hs(x) = z mod s. Linearity follows
since hs(z+t) = (z+t) mod s = (x mod s)+(t mod s) =
hs(z) + hs(t) (where addition before the mapping is done
over Z, and addition after mapping is done over Z,). For
any distinct @,y € Z, observe that hs(z) = hs(y) if and
only if |x — y| has s as a factor. Since z,y < u < n°, and
s > n, it follows that this can be true for at most ¢ choices of
s. We define h(z) to be hs(z), where s is a random element
of R. Observe that for any fixed z,y € Z,

c af
—h) < = 2.
By applying Lemma 2.5(ii) with v = «8/(2n) and failure
probability 3, it follows that

_
1= )|PAQ|

_(,_ 20(aB/Cn) .
_ (1 y >|PAQ| — (1-a)|PAQ

holds with probability at least (1 — 3), as desired. [

IhPAKQ| > <

The linearity of the hash function implies that the results
of the previous lemma hold under translation.

Corollary 2.1. The results of Lemma 2.6 apply to the
symmetric difference distance under translation. That is,

(i) (hPAKQ) < (PAQ), and
(#1) (hRPARQ) > (1—a) (P AQ) with probability > 1— (.
PROOF. It is easy to see that for every x € Zs, h(z) = =z,

and therefore the preimage hil(ZS) is Z,. Combining this
with the linearity of h and Lemma 2.6(i) we have

(hPARQ) = min|(hP +1) AQ)
ELs
= hg;lenzsl(hPJrh(t))Ath
= i hP+t)Ah
te}gulr(lzs)l(( +t) ARQ|
< min|(P+1)AQ| = (PAQ).

Part (ii) follows analogously. [J

The following lemma will be applied in a context where
the linearity of the hash function is not required, and this
additional flexibility allows us to remove the restriction in
the size of u. It follows by applying Lemma 2.5 to a suitable
universal hash function [4]. The choice of the hash function
given in the proof will be discussed later when we consider
execution times. This lemma applies more generally to mul-
tisets. We may readily generalize the symmetric difference
distance to multisets by counting not just the number of
mismatched elements, but counting the absolute differences
in the multiplicities of each distinct element. We extend the
definition of Z, (< n) to include multisets in which the total
cardinality (counting multiplicities) is at most n.

Lemma 2.7. Consider positive integers n and u. For all
a and B, where 0 < a, 3 < 1, there exists s = O(n/(afB))
and a randomized function h: Z., — Zs such that for any
multisets P,Q € Z.(< n) we have

(i) InP AKQ| < |PAQ), and
(i) |hPARQ| > (1 — ) |PAQ| with probability > 1 — (.



PROOF. Let s be the smallest power of 2 that is at least as
large as 2n/(af). For the purposes of defining the function,
it will be convenient to express each element of Z, (resp.,
Zs) as a bit vector of length [logu] (resp., logs). Thus, P
and @ can be viewed as multisets of cardinality at most n

1
where elements are drawn from Z'°"1.

Given a matrix M € {0,1}"°8 ¥[8l and a vector b €
{0,138 %1 define hasp: Z1°B"T — 7182 to be

hMyb(:Z?) = Mz +b,

where arithmetic operations are performed over Zso. It is well
known that if M and b are randomly generated, the resulting
randomized function h = hasp is a universal hash function
[4,9], and for any fixed z,y € Zu, Prih(z) = h(y)] < 1/s <
af/(2n). Given this bound on the collision probability, the
rest of the proof follows the same structure used in the proof
of Lemma 2.6. [

3. TRANSLATION-INVARIANT MAPPING

The purpose of the section is to present a transformation
of a point set to a vector that is invariant under translations
of the point set. In the next section we will apply the results
of this section to produce the embedding function described
in Theorem 1.

Before presenting this transformation, it will be conve-
nient to explain that we may interpret the point sets P and
Q in Zs(< n) as bit-vectors in an s-dimensional space, in
particular, as elements of Z35. That is, for 1 < p < s we set
the point’s component of the bit-vector to 1 if p € P and 0
otherwise.

For a translation t € Zs, we will still use the notation
P + t to denote the translation of P by ¢, which in this
context involves a right circular shift of the elements of this
bit vector by t positions.

Given a positive integer p, define an (s, p)-probe to be
a p-element vector m = (i1,42,...,%,), where i; € Zs for
1 < j < p. We say that such a probe is random if each
element i; is sampled independently at random from Zs.
(Note that duplicates are possible.) Consider P € Z3, where
P = (p1,p2,...,ps). Define P[r] to be the integer whose bit
representation is <pi1pi2 .. .pip>. Define the multiset

®-P = {(P+1)[r]|t€Zs}

(This is a multiset because different translations may gener-
ate the same bit pattern. See Fig 1) The cardinality of P
(counting multiplicities) is s, and its elements are from Zap.
Because the probe is applied uniformly to all translations in
Zs we have:

Lemma 3.1. Given any (s, p)-probe , O, is invariant
under translation. That is, for allt € Zs, P (P+t) = - P.

Our first observation regarding this invariant transforma-
tion shows that the distance between the transformed ob-
jects is a function of the relationship between the probe
length and the actual distance between the point sets under
translation. Intuitively, as the probe length p increases, the
likelihood of encountering a mismatch increases (depending
on the distance between the point sets). Part (i) asserts that
if p is sufficiently small, the distance between the resulting
vectors will also be small. Part (ii) asserts that if p is suffi-
ciently large, the probability of encountering a mismatch is

so high that the distance between the resulting vectors will
be almost as high as the maximum possible value of 2s.

Lemma 3.2. Consider a positive integer s and two sets
P,Q € Zs(< n), and let §* = (PAQ). Given a positive
integer p, let ™ be a random (s, p)-probe. Then

(7) HCBWP — &)ﬁQH < 2p6*, and
1

(#) if p > (3slns)/0™ then HEI;TFP - @WQH > 2s — 2 with
1
probability at least ( - %

PROOF. Since §* = (P AQ), this means that for some
translation of P there are 6* elements of Z in the symmet-
ric difference PAQ. Because d is invariant under transla-
tions, there is no loss in generality if we assume that this
translation is the identity. Since 7 has p elements, there are
at most pd™ choices of translations ¢ such that the result of
(P + t)[r] accesses one of these mismatched elements. Each
of these may produce a probe value that fails to match any
of the probe results of ﬁﬂQ. All the others placements will
match the corresponding probe of Q). Similarly, there are pd™
choices of r such that (@ + r)[n] fails to match any probe

value of &)WP7 but all others will match. Thus we have
H(f),rP—ZISWQH < 2067,
1

which establishes (i).

In order to establish (ii), given any translations ¢, r € Zs,
let 0sr = [(P4+t)A(Q+7)|. Clearly, for any ¢,r € Zs,
d¢,r > 0*. For any particular probe placement 7, the probe
values (P + t)[r] and (Q + r)[n] match if and only if each
of the selected positions match. Since the indices of 7 are
chosen at random from Zs, each position matches with prob-
ability (1 — d¢,»/s). Since the elements of 7 are chosen inde-

pendently, we have
P *\ P
(-5 < (-2)
s s

< efé*p/s.

Pr{(P+t)[r] = (Q +r)[x]]

By the union bound we have
Pr [(P—l—t)[ﬂ'] S ‘/ISWQ] < Z R I
r€lLs

Let X be a random variable whose value is the number of
probe placements ¢t such that (P + t)[r] € ®.Q. By the
linearity of expectation and since p > (3s1ns)/6", we have

EX] = Y Pr [(P+t)[7r] € <f>,TQ] < 20/
tELs
< 8267(351ns)p/sp — 82673lns — 1

— 8 -

By Markov’s inequality, it follows that Pr[X >1] < 1.
By symmetry, the number of probe placements such that
®(Q + r)[r] € P satisfies the same bound. Since ®P

and ®,Q each contain s values (including multiplicities),
their L1 distance is 2s minus the number of matches. And
so with probability at least (1 - %) we have

H%,TP—&QH — 252X > 252,
1

as desired. [



PeZu(<n) | u=24 [{3,6,10, 14, 22}

WPeEZ(<n)| s=11 |[[1JOJO[1JOJO[1IJOJOJO]1]

™ C ZLs p=4 |{0,3,6,7}

o, |Bx| = s | {1110,0000, 0000, 1101, 0011, 0010, 1000, 0101, 0110, 0000, 1001}
'’ s’=2" |[B]JOJIJIJOJIJIJOJ1IJ1IJOJOJOJ1J1]O]

Figure 1: Example of our invariant transformation. (For simplicity we have chosen 1" to be the identity)

Using the above lemma, we present next the main utility
result upon which our translation invariant transformation
is based. This lemma shows that given two points sets over
Z,, each containing at most n elements and an estimate 6 on
their distance, there exists a function ® that maps a point
set to a vector. The function has the property that, after ap-
plying this function, the distance between the two resulting
vectors reveals whether ¢ is significantly greater or signifi-
cantly smaller than the optimal distance §*. Intuitively, this
is done by randomly probing the point sets such that, under
the assumption that 6 = §*, the probability of encountering
a mismatch will be a constant. Thus, if ¢ is either signif-
icantly larger or significantly smaller than 6™, the distance
between the resulting vectors will reflect this.

As mentioned in the introduction, the process involves
three stages, first the application of a randomized linear hash
function to reduce the domain size to O(nlogn), then the
application of a random probe sequence to produce transla-
tion invariance, and finally the application of a second hash
function to again reduce the domain size. The entire process
is repeated and the results are averaged in order to obtain
the desired distortion bounds with sufficiently high proba-
bility of success.

Lemma 3.3. Consider positive integers n and u, where
u < n° for some constant ¢ > 1, a distance estimate 1 <
0 < 2n and failure probability 0 < B < 1. There exists s =
O(nlogn) and a randomized function ®: Z,(< n) — 17,
where m = O(nlognlog(1/B)) that satisfies the following
property. Given any two sets P,Q € Z.(< n), and letting
0" denote (P A Q) we have

(1) [|@P — @Q||, < s6"/6, and

(it) if § < g2 then |®P — ®Q||, > s, with probability at

least 1 — (3.

For any P, ®P can be computed in O(nlog®nlog(1/3))
time.

The remainder of this section is devoted to proving this
lemma. We first establish (ii). Let us assume that § <
(PAQ)/(8Ins), and let ag = By = 1/16. We begin by
applying Lemma 2.6 with o = ap and 3 = Bo. Let h': Z,, —
Zs denote the resulting function, where s = ©(nlogn). We
may assume that s > 40. If we let P = h'P and Q' = h'Q,
by Corollary 2.1(ii) we have

(PPAQ) = (1-a0)(PAQ),

with probability at least 1 — (.

Next, we wish to apply Lemma 3.2 to the sets P’ and Q’
with p = |s/(28)]|. Observe that since s = O(nlogn) and
0 < 2n, we have p = Q(logn). We may assume, therefore

that p > 6. Letting &, denote the resulting translation

invariant transformation, and let P =3,P and @ = EI;TFQ.
Each is a multiset of cardinality s over Zs2», which can be
interpreted as a vector in R?” in which the ith component
is the number of occurrences element i. Observe that the
(multiset) symmetric difference distance is equivalent to the
L, distance in this vector interpretation. Applying these
two different interpretations of P and @, we have

Padl-|7-al,

Since p > 6, with probability at least 1 — Gp we have:

(PFAQY > (1-a0)(PAQ) > £<PAQ> > 76Ins
7slns 3slns
20+1) — p

Therefore, we may apply Lemma 3.2(ii) to obtain that with
probability at least (1 — Bo) (1 — 2):

|-l > -2

Given our assumption that s > 40, the probability of this
holding is at least (1 — (o)>.

Finally, we apply Lemma 2.7 to the multisets P and @,
where n = s, u = 2°, a = ap and B = [o. Let the resulting
function be h": Zz» — Zo(s), and let P = R'P and Q" =
R'Q. (Given that p may be as large as O(nlogn), we will
not compute this function explicitly. Computational issues
will be discussed later.) We have

17 =@l = a-an[P-Qf, > 1 -ae-2),

with probability at least (1 — 8o)®.

To summarize, given point sets P and @, by composing
the three randomized functions we have shown the existence
of a randomized function ®”: Z,(< n) — €9, such that
with probability at least (1 — 8o)®

|@" P — <I>”QH1 > (1 —ao)(2s —2),

To increase the probability of success to 1 — 3, we repeat
the above procedure for k = [81n(1/3)] trials. (Each trial is
performed with different random choices, but the overall se-
quence of random choices is the same for all point sets.) We
then concatenate the resulting vectors. There is a subtlety
to be noted. Thus far, we have assumed that there is a fixed
value of s. Each invocation of Lemma 2.6 generates differ-
ent random prime s (although all are ©(nlogn)). To correct
for the bias to the distance resulting from larger or smaller
values of s, we take s to be maximum possible value pro-
duced by the lemma, and for any smaller value s’ produced
by invoking lemma, we weight the associated vector by s/s’.
For simplicity, we may assume that all invocations of this



lemma produce a results of uniform length s. We define
®: Zu(<n) — 7", where m = O(sk) = O(nlognlog(1/3)),
to be

oP = o (2,04, f).

Because our upper bound on ||®”P — ®”Q||, holds uncon-
ditionally (irrespective of the randomization), assertion (i)
follows immediately.

To establish (ii), consider the random variables X; =
|®7 P — ®7Q||,, for 1 <4 < k. Clearly these variables i.i.d.,
and 0 < X; < 2s. With probability at least (1 — 5o)° we
have X; > (1 — aw)(2s — 2). Therefore we have
(1= o) (1= (25—2) > %
where the last inequality holds by our definitions of ao and
Bo and of our assumption that s > 40. Let X = % Zle X;.
By Hoeffding’s inequality [10], for any € > 0 we have

EX]=E[|®"P - <I>”QH

PriE[X]- X >¢] < exp<—2k52>.

(25)?
By setting € = s/2, and by our choice of k we have
Pr[||[®P —®Q|, <s] = Pr[X <]

< Pr [E[X] - g]

\_/

IN

which establishes (ii).

Next, we establish (i). By part (i) of both Lemmas 2.6
and 2.7, the functions that they produce cannot increase
distances. By Lemma 3.2 therefore, we have

. S ox 86~
|oP —aQll, < 295" < 225" < 2,
as desired.

Finally, we present the time complexity to compute the
function. The first hash function h': Z, — Zo(n1ogn) takes
time O(n) for a set P € Z,(< m). A naive implementa-
tion of the construction of ®P would require excessive time
and space. (To see this, observe that each probe involves
O(s) elements and must be applied to O(s) distinct posi-
tions, which would yield a total time bound of O(n?log? n)
to compute the results of even a single probe.)

To achieve greater efficiency, we perform the probing and
the second hashing functions as a single operation. Recall
that P’ denotes the point set after h’, and recall that s =
O(nlogn) is the size of its domain. Let 7 denote a probe of
some size p. The invocation of Lemma 2.7 in this context
maps points from Zae to Zy where s’ = ©(s) and is a power
of 2. This involves a random matrix M € {0,1}°#*** and
random column vector b € {0,1}”.

Constructing P’ for each t € Zs involves computing x; =
(P’'+1t)[n], and then applying the function h”(z:) = Mx:+b
(with operations performed over Zz). To do this, we decom-
pose this operation into logs’ operations. Let m; denote
the i-th row of M, and let r; + be the value of the boolean
inner product (m; - ). Our objective is to compute r;; for

i € {1,2,-- ,logs’}. Since m; is a boolean bit-vector we
have

P
rig = (mi-(P'+0)[r) = > (mils] - (P +0)[x]) []) -

Jj=1

b <_2(81n((£ ))(3/2)2) 5

Observe that this a part of a convolution. Thus, given a row
m;, we can compute 7 for all ¢t as P’ ® [ A m;], where ®
denotes boolean convolution and A denotes the bitwise and
operation.

Therefore, for all i € Zjog o+ and t € Zs 7; ¢ can computed
through log s’ convolution operations. It is easy to see that
h'(x¢) = r«p + b (interpreted now as a binary number).
Since each convolution takes time O((s + p)log(s + p)) =
O(slog s), the total running time is O((n+slog? s)log (1/8))
= O(nlog®nlog (1/8)). This completes the proof.

4. EMBEDDING

In this section we present a proof of Theorem 1. First, let
Bo = B/(2logn). By Lemma 2.2 we may assume that the
point sets have already been mapped from Zz(g n) to the
1-dimensional space Z, (< n), where v’ = O(u). We apply
Lemma 3.3 repeatedly with failure probability o and dis-
tance estimates 0 from {1, 2,4, ...,2%}, where k = [log(2n)].
(Note that some of this notation overlaps that used in the
proof of Lemma 3.3, but the meanings here are quite differ-
ent.) Let §; = 2%, and let ®; P denote the result of applying
Lemma 3.3 with § = §;. We apply a scalar weight to each
of the resulting vectors and concatenate them to produce:

7 k
vp = <1¢0P, 2CI>1P, é<I>2P, . 2—CI> P, 2—<I>kP>.
s s s s
Observe that ¥: Z,/(< n) — ¢7", where the dimension of the
range of m is O(knlogn log(l/ﬂ)) O(nlog? nlog(1/p)).
We first establish part (i) of Theorem 1. Observe that

[
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Let 6" = (P A Q). By Lemma 3.3(i) we have
[®:P — ®:Q||, < s6"/5; = s5"/2".

Also, ®; P and ®;( each have at most s elements, and there-
fore ||®;P — ®;Q||, < 2s. Thus we have
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IN A
M- I~
N2 8
E £
B =8
/M\ P
X )
| S >
. * o
~

i=0

Observe that 6*/2° < 2 for i > logé* — 1. Letting k' =
|log 6™ |, we have

k=1

Zz”lJrzci < 2k+1+25

i=k’ =0

< 26 +6"(2 +1og2n) < 25" logn

IN

vP—wQl,

for sufficiently large n. This establishes part (i).

To establish part (ii), Let k" = [log(6*/(81ns))]. Ob-
serve that for all ¢ < k", we have §; < 6*/(81Ins). There-
fore, we may apply Lemma 3.3(ii). Starting with Eq. (2)



with probability (1 — ) we have

k

21’
WP —wQll, = > = [1®:P - Q]
=0
k'// 211
> 2 _ k:”+1_
> Zss 2 1
=0
> O s
— 8lns — 16Ins

5*

The last inequality is satisfied for 57—
the case of 16% < 1. We observe that

s —

1. Let us consider

Y

JvP—wq|, > 2" —1 > 1.

Because 6" is less than 16Ins and | VP — ¥Q|, > 1, the
distortion is at most 16Ins (< 17logn) with sufficiently
large n. This establishes part (ii).

Finally, to establish the execution time, we observe that
we invoke Lemma 3.3 k = O(logn) times. Each invocation
takes O(nlog®nlog(1/3)) time. Thus, the total execution
time is O(nlog* nlog(1/3)). This completes the proof.

5. CONCLUSIONS

We have presented a randomized algorithm that embeds
an n-element point set over the multidimensional grid Z<,
where u is no(l)7 to a single point in a multidimensional
space under the L; distance. We assume that distances over
7¢ are measured using the symmetric difference under trans-
lation. This embedding has the property that with some
given probability, it achieves a distortion of O(log®n). Our
existing work applies to points with integer coordinates in
arbitrary dimensions and is robust to missing and spurious
points. The conditions under which our embedding applies
are admittedly restrictive, but to our knowledge this is the
first result in embeddings that are invariant under geometric
transformations and robust to outliers.

In addition to the obvious questions of improving the dis-
tortion bounds and eliminating randomization, there are two
significant issues. First, the symmetric difference distance
function that we use requires that points match identically.
Second, our embedding is invariant only under the group of
translations. In practice, point coordinates are the result of
measurements, and will be subject to the presence of noise
and digitization errors. Handling noise is one important ex-
tension, which we would like to consider. Similarly, it would
be very useful to consider allowing more extensive groups of
geometric transformations, including, for example, rotation
and/or scaling.
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