
INFORMATIONSCIENCES 57-58,347-359 (1991)

The Role for Executable Specifications in System Maintenance*

MARVIN V. ZELKOWITZ

Inst. for Advanced Computer Studies, and Department of Computer Science.
University of Maryland, College Park, Maryland 20742

and

SERGIO CARDENAS

Department of Computer Science, University of Maryland.
College Park. Maryland 20742

347

ABSTRACT

As software becomes increasingly complex, two attributes of the system life cycle are
taking on more important roles. We need the ability to formally specify the functionality of
the systems we build in order to minimize costly development problems and, with long life
times, we need the ability to enhance existing systems with new features in order to prolong
their usefulness. This enhancement process also needs a mechanism for formally defining
any new functionality on data objects placed upon the system. This paper describes the AS*
research project which is addressing this issue. AS* is a language-independent specification
language embedded within an existing programming language for the purpose of providing
extensions to existing systems. This paper discusses the designs of AS*, the structure of
the prototype implementation, and describes some early experiences using the system.

1. INTRODUCTION

As software becomes increasingly complex, two attributes of the system

life cycle are taking on more important roles. We need the ability to formally

specify the functionality of the systems we build in order to minimize costly
development problems, and with long life times, we need the ability to enhance

* The AS* research project was developed as a joint project with Sergio Antoy, now at
Portland State University, Portland OR, and Paola Forcheri and Maria Teresa Molfino of
Instituto per la Matematica Applicata of Genoa, Italy. Research support at the University
of Maryland was partially provided by Air Force Office of Scientific Research grants
AFOSR-87-0130 and AFOSR-904031.

0 Elsevier Science Publishing Co., Inc. 1991
655 Avenue of the Americas, New York, NY 10010 0020-0255/91/$03.50

348 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

existing systems with new features in order to prolong their usefulness. The
role of formal specifications (e.g., algebraic, axiomatic, functional, or oper-
ational specifications) is currently of great interest within the computer sci-
ence research community as a means to address the first of these problems.

However, formal specifications are not created in a vacuum. The under-
lying system that was initially specified will evolve and change, and the need
to make enhancements to the basic system (and hence change the underlying
formal specification) will be an ongoing life cycle concern.

In enhancing a system with new features, the “established” research model
requires a development group to refine the requirements, redo the specifi-
cations, modify the design and alter the code. But before a system is altered,
what we usually have is a requirements document long unused, an out-of-date
specification that might have reflected the original goals of the project, a
design that is undoubtedly incomplete or incorrect and a source program that
ultimately needs to be modified. Traceability of new source code feature back
through design, specifications, and ultimately back through to the require-
ments is certainly a need, but we have no effective mechanism to achieve
that today. However, in order to enhance a system, in the midst of all this
apparent confusion, we do have one clear advantage over the original de-
signers of the system-we have a running source program that can provide
the basis of an “oracle” for testing new enhancements.

We have been studying this problem within the context of an executable
specifications language which we have named AS* (for Algebraic Specifi-
cations extended). The goal is to design such a specifications language that:
(1) has the formal properties needed to correctly specify system functionality;
(2) can be compiled into executable programs; and (3) can be added to existing
systems in order to provide for system enhancements. By developing such a
language, we see its introduction into the software life cycle as follows:

(1) A new feature is modeled (i.e., specified) by the specifications lan-
guage .

(2) The feature is automatically tested (i.e., prototyped) in the context of
the existing system for appropriate behavior.

(3) The feature is designed in the native programming language in a more
efficient manner.

(4) If necessary, parts of this new implementation are redesigned to further
increase the efficiency of the new system.

(5) At any time we can execute our correct model (i.e., step (2) prototype)
in order to ensure that each successive change or enhancement doesn’t change
the desired functionality.

This approach differs from others [9, 101 in that the specifications are ex-
ecuted within the context of a running system in order to test its behavior.

EXECUTABLE SPECIFICATIONS 349

Thus, while other models can simulate the behavior of an entire system as
part of a system design activity, they are at a loss at simulating small exten-
sions within a larger existing product-the essence of the important main-
tenance aspect of the life cycle.

In Section 2 of this paper we describe our AS* speci~cation language and
we describe our initial implementation of a Pascal environment containing
AS* specifications (ASPascal). Section 3 gives some initial experiences in
using our prototype development tool.

2. AS*

Software design consists of the creation of complex data objects, usually
referred to as abstract data types, and the definition of functions that operate
on these abstract objects. Several models for specifying programs have been
developed including inductive assertions 13, 61 and algebraic specifications
14, 51. We are using algebraic specification technology consisting of a series
of axioms or equations relating the operations of the abstract type to each
other, as our basic model.

The Knuth Bendix algorithm [8] applied to these specifications defines a
proof of adequacy by showing the equivalence of supposedly equal terms to
the same constant terms. Since the Knuth Bendix algorithm uses an ordering
transformation that converts one term to a “simpler” term, the aIgo~thm
defines an operation that can be “executed” and proven to terminate. There-
fore, any set of axioms that is “Knuth Bendix” can be transformed mechan-
ically into a series of transformations that can be executed. It is this trans-
formation that is the basis for our executable specifications.

Similar to the initial algebra approach of other term-rewriting systems [2,
71, an AS* specification contains three features: (1) a sort name which defines
a new abstract object and its cons~r~rcrors, functions to build objects of that
sort; (2) a signature which defines the fun~tion~ity of set of defined ope~~r~~~~

and constructors for manipulating the abstract sort objects; and (3) a set of
equations (or axioms) which inter-relate the semantics of the defined oper-
ations and constructors.

Specifications can be generic or explicit. A generic specification is a schema
that resides (usually) in a program library and contains parameters (variables,
operations, and other sorts) that are instantiated when the specification is
used in an actual program. An explicit specification is a refinement of a generic
specification that substitutes actual arguments for the specification param-
eters.

350 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

/
(1) sort sequence [zort something/ is

(2) con8ttuctor

fst epsilon;

l-4) cons : somefhing, sequence;
(5) operation head : sequence + something is axiom

${
head(epsilon) == ?;
head(eons(X, Y)) == X;

(81 end;

Fig. 1. Example of sequence specification

Figure I gives a simple example of a specification for a sequence. Line (1)
specifies that we are defining a class of objects of sort sequence, and indicates
that the new object will require an internal sort something that will be specified
in a later binding. Lines (2)-(4) define the two constructors needed to create
an object of this sort: epsilon to return the empty object of sort sequence and
cons which takes an element and a sequence and returns a new sequence with
the element in it. The function~ity of each constructor is given after its name
with the sort name sequence implied as last (e.g., epsifon returns an empty
sequence and cons requires a something and a sequence and returns a se-
quence). Epsilon initializes objects of this sort and cons creates complex ob-
jects.

This object is manipulated by means of a set of defined operations, which
only head is given with its signature on line (5). It is defined by the rewrite
rules (axioms) on lines (6)-(7) which say to return the last element included
into the sequence by the cons function. Each axiom consists of a rewrite rule
where the expression on the left hand side of the equality operator = =
consists of a functional value of free variables and the right hand side expres-
sion gives its meaning via an arbitrary expression involving the left hand side
variables.

The ‘?’ on line (6) is equivalent to an abnormally terminating computation.
Our implementation stops execution and issues an error message when this
occurs. Within a program, specifications appear as function calls in the host
programming language to the various operations and constructors defined in
a sort.

Much like Larch and LarchlCLU, AS* specifications are independent of
the underlying programming language and must be defined relative to any
concrete language. Libraries of generic specitications can be used to form the
basis of a re-use methodology where the generic specification is refined to an
explicit specification in a specific programming language by binding the ge-
neric sorts to specific programming language types. In our case we use Pascal

EXECUTABLE SPECIFICATIONS 351

as our implementation vehicle, so to create ASPascal, the extension to Pascal
that contains AS* specifications, we indicate a linkage between a Pascal object
and an AS* sort.

An explicit specification is created by a refinement of a generic specifi-
cation via the use clause. Syntactically, a refinement of a specification is:

sort identi’er is use sortname [parameter-list] end

where identifier is the refined sort name, sortname is the sort schema to be
refined, and parameterlist is the list of actual functions and sorts that are
substituted for the parameters in the sort definition. All of the defined op-
erations in the original generic sort are now redefined in the context of this
new refined sort.

The AS* specification:

sort intsequence is use sequence [integer] end;

refines the generic sort sequence and indicates that a new sort intsequence

is created by modifying sequence with a binding of Pascal integers to the free
sort something of Figure 1.

Sorts are linked into Pascal by interpreting a specification like

sort newsort is . . .

as equivalent to the Pascal type declaration

type newsort = . . .

The primitive Pascal scalar types (char, boolean, integer, real) may all be used
in abstract sort definitions, and any explicit sort may also be used in a re-
finement. Thus,

var A: intsequence;

simply creates a Pascal variable A which is of (sort) type intsequence.

By using alternative bindings, we greatly expand reuse of specifications.
For example, real sequences could be created as:

sort realsequence is use sequence [real] end;

Similarly, a sort such as a book (which is unspecified in this paper, but could
either be a type definition in the host language consisting of a record of author,

352 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

‘YiYrm
Fig. 2. AS* toolset

title, publisher, . . . , or could be another sort specification with similar at-
tributes) could be used to create a type library as:

sort Libyan is use sequence ~b#ok~ end;

2.2. AS* ENVIRONMENT

Considering an algebraic specification as a term rewriting system is fairly
st~i~tfo~ard; however, correctly specifying such algebraic axioms is not
easy. Therefore, without computer-based tools to aid in the process, the task
is extremely difficult. We have therefore constructed a series of integrated
tools that both do the conversion from axiomatic definition into executable
source program, and also provide aid in validating the specifications. A pro-
totype implementation of the AS* system has been constructed and executes
on the SUN 3 workstation under Berkeley UNIX 4.3, Figure 2 represents the
initial AS environment that has been constructed.

The four components are:

(1) AS/SUPPORT is a modification to the SUPPORT environment [I 11
which provides text-editing capabilities for creating specifications. SUPPORT
is an integrated environment based upon a syntax-directed editor built to cre-
ate, execute, and test programs written in a subset of Pascal. Since the lan-
guage it processes is determined by an externally defined grammar file which
also includes semantic information and screen unparsing commands, it was
easy to modify the grammar to process Pascal as extended by the AS* syntax.

(2) AS/VERIFIER, a Prolog program, is called by AS/SUPPORT and ver-
ifies the set of axioms. AS/SUP~RT converts the sort axioms into a series
of Horn clauses suitable for analysis by Prolog and then calls AS/VERIFIER,
which then checks the convergence of these clauses relative to the Knuth
Bendix algorithm. Details of the verification algorithm are given elsewhere
[I]. If any error is found, an appropriate message is relayed back to AS/
SUPPORT and displayed to the user.

EXECUTABLE SPECIFICATIONS 353

Other verifiers usually interact with a user who manually indicates ap-
proval to continue the process or terminate+ In our case, AS/VERIFIER does
a single pass over the axioms and then terminates. AS/SUPPORT will rein-
voke AS/VERIFIER if the user modifies the sort definition. Thus the system
appears interactive to the user, but the underlying model is not.

(3) AS/PC is the translator written using YACC that converts specifica-
tions into standard Pascal source programs. Each axiom is implemented as
an if statement that checks on the validity of the left-hand-side arguments,
and, if true, replaces the value by the right-hand-side expression. Since AS/
VERIFIER has already proven that the axiom is “Knuth Bendix,” the right-
hand-side expression is simpler than the left and the process will eventually
terminate at some constant terms.

(4) PC is any standard Pascal compiler. At this point, the specifications
have been converted to standard Pascal, and any comparable compiler can
be used for compilation and execution.

The basic SUPPORT environment has been in use since 1986, and the AS*
extension, ASPascal, has been operational since the fall of 1989. More com-
plete details of its implementation are described elsewhere [il.

3. USING AS*

The initial implementation of AS* has been designed as a mechanism to
enhance existing Pascal source programs. Figures 3 through 6 represent a
simple example of how such a system could be used.

In Figure 3, a simple circuit of and and or gates is specified using the AS*
formalism. The sort swifch is defined to represent one type of relevant gate
with ~onst~ctors andg and org representing primitive gates and the operation
&Type returning the gate type of its argument.

The sort circuit consists of primitive wires (constructors high and low
standing for high and low voltages which represent the conditions true and
false), a constructor build that constructs complex circuits out of simpler
circuits, and one operation print that determines the output characteristics of
a circuit. Operations mux and min are specified to be local functions used
within the sort circuit.

The main body of this sample program simply builds a binary circuit of
(218 - 1) primitive gates and then computes the output value of the resulting
circuit.

Figure 4 represents a first approximation of the new feature in standard
Pascal. It was created by designing a source program based upon the initial
sort prototype of Figure 3. It should be clear from Figures 3 and 4 that the
algebraic model of specification is closely related to an applicative (i.e., func-

354 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

program main (input,olltpllt);
sort svitcb Is

constructor
andg; org;

operation SvTypo: svltcb -> integer Is
uia
SvType(andg) = 1;
svIype(org) = 2;

rnd;

end;

sort clrcult Is
constructor

lov; high; ~prlmltlre vlres)
build: svltch, circuit, clrcult; ~complrx Circuits)

operation aln: integer, Integer -> Integer is
pr10m
mln(A,B) = if AcB then A else 8;
end;

operation max: Integer, Integer -> Integer Is
oXl0m
max(A,S) = If A>B then A else 6;
end;

operation print: circuit -> Integer is
ar1om
prlnt(lov) = 0;
prlnt(hlgb) == 6;
prlnt(build(T. A, B)) ==

if (SvType(T)=S~~e(andg))
then mln(prlnt(A,),print(B))
else q ax(prlnt(A,),prlnt(B));

end;
end;

tar
gataX : circuit;
1:lnteger;

begin {Create a basic gate vlth tvo Inputs)
gateX := bulld(org, high, 10~1;
vrlteln('HIGH or LDW',prlnt(gateX));
1:=0. , <create a binary tree of gates)
vhile lcl? do

begin
gateX := bulld(aB4g. gateX, gateX);

l:=l+l' ,
end;

vrlteln('DOX6',prlntQateX));
,Tld.

Fig. 3. Sample specification

EXECUTABLE SPECIFICATIONS 355

?rogran B&111 <inpnt.output):
tme gatetype=tandg, org. high, low):
circuit = “gate;
gate= rword

circuit: 6stetypr;
virel: circuit;
vlrol: circuit
end;

function getclrcuit(circuitt~U:gst*tfpe): clrcult:
Far r: circalt;
be@
nev(x) ;
x-.clrcuit :f clrcalttype;
getcircuit := x
end;

function build(ci~CnittTpe:gotet~e; A, 8: clrCult):circult:
rar s:circult;
begin
x:f grtclrcoit~clrcu~t~~e~:
f.wlrel := A;
P.wlre2 := B;
build := x
end;

function mln~A,R:integer): Integer;
begin
if A-3 then min:=A else min:=6
end;

function max(A,B:lnteger): integer;
begfn
lf MB thtm mu:=& else ntax:=6
and;

function prlatlx:circult):intrgrr;
begin
case 2.clrcoit of
high: print:= 6;
lov: prlnt:=O;
sndg: print:= minlprfntW.virel) ,priatfx*.wire?)> ;
org: print:= nar~print~r~.wirrl~,prlnt~x~.vire2~~
end Ices.>
end; Cprfnt)

rsr
g&tax : circuit;
1: integer;
highgate, lougate: circuit;

regln %reate 8 basic gate vith two inpats
Mghgato := getc5rcn~t(~ig~~;
lovgate := getcIrcult(lov) ;
g&*x := bulld(org. hlgbgate. lovgete.t>;
uriteln(‘HIGH or LW’,print(gateX));
i:=G- * icrente a blnar;r tree al gates)
while iclf do

brgln
(IrteX := bulldfnndg, geteX, grtex);
1:=1+1;
l ud;

vrit~lnf'WINE+.prfnt~~~);

Fig. 4. Initial Pascal version of sample specification

356 MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

functlon circuitgrlnt(argl: circuit): intrpr;
bbgm

If l rgl-.ty = clrcult_bulld_tq then
if ~rritch_~r~argl~.circult_bolld_~rgl) = rwltch_S~r(swlt.ch_andg))

thrn circultgrint := clrcolt_~ln(circuit~rlnt
(ugl~.circult_bulld_~rg2), clrcultgrint(ar@l~.clrcult_bulld_ugS))
rlro circultgrlnt := circult_mx(clrcuitgrint
(sr@-.clrcuit_build_~rg2). clrcult_prlnt(srgl~.clrcult_bulld_~rgS))

elm If l rgl*.t.ag = ClrCUlt_hlgh_tEg then
circultgrint := 5

elrr If srgl-.tag = circult_low_tyl then
clrcuitgrlnt := 0

also circult_EColl('clrcultgrlnt undefined for argument’)
end ;

Fig. 5. Translation by AS/PC of function print

tional) style of programming. Operations min, max and print are almost direct
copies of their formal definitions. The AS* model, however, greatly simplifies
storage management. While simply defining andg, org, high, and low as con-
structors allows for AS* to automatically build and allocate correct data struc-
tures, the Pascal equivalent required careful deliberate design steps in order
to implement correctly.

In developing this initial implementation, only one change had to be made
to the body of the Pascal program. We had to add variables for primitive true
and false gates (e.g., highgare and lowgate) to compensate for the automatic
generation of such gates with the formal specification of constructors andg
and org. No other changes were made to the Pascal program.

For those curious, Figure 5 is an example of the output from AS/PC, and
is the source program for function print. As Figure 5 demonstrates, AS/PC
translates operation print defined in sort circuit into the procedure name cir-
cuit-print. This code is highly structured and is not meant to be read by most
programmers. The user is expected to develop axioms via AS/SUPPORT and
AS/VERIFIER and then execute the resulting program. Translation of the
specifications into Pascal should occur directly from the sort definitions.
Knowledge of the resulting Pascal output from AS/PC should not be crucial
for verification of the program.

The formal specification for print was kept simple by using a recursive
algorithm that required for computing the value of a circuit, first computing
the values for the components of that circuit. Using the fact that in and gates,
the result is low if the first input is low and in or gates the result is high if
the first input is high, regardless of the second input, Figure 6 represents an
easy optimization to the first Pascal implementation.

EXECUTABLE SPECIFICATIONS 357

function print(x:circult):integer;
var clrvalue:integrr;

begin
case x-.clrcult of
high: print:= 6;
low: print:=O;
andg: begln

clrvalue := prlnt(x-.rirel);
If clrvolue=O then print:= 0

else prlnt:=prlntW.rire2)

end;
org: begin

clrvalue := prlnt(x'.rlrel);
If clrvalue=S then print:= 5

else prlnt:=prlnt(x~.rlrr2)
end

end ~case~
end; (print)

Fig. 6. Optimized print function

All three versions had extremely different execution times on a SUN 3/60
workstation, as given by the following table:

Prototype
Initial Pascal
Optimized Pascal

27.9 set
5.4 set
3.3 set

The initial Pascal1 program represents about a fivefold improvement over the
initial prototype and the simple optimized version represents almost another
factor-of-two improvement for this simple example. This process of local op-
timization can be continued for further refinement of the program.

4. CONCLUSIONS

AS* is a specification language which has been designed to aid in system
enhancement as a prototyping and code re-use tool within the context of ex-
tending existing source code systems. Language-independent specifications
are defined via a term-rewriting notation and a Knuth Bendix verifier checks
for their termination and executability. A prototype implementation processes
ASPascal, a Pascal refinement to the AS* specification language.

The automatic execution of an AS* specification is obviously inefficient;
however, as a prototyping tool, quick execution is not of primary importance.

MARVIN V. ZELKOWITZ AND SERGIO CARDENAS

The previous example shows that improvement of perhaps a factor of 10 can
be achieved by locally improving the source program. In system maintenance,
due to the complexity of the underlying system, it might be preferable to give
up a few percentage points of execution time for ease in understanding and
building the desired extensions. Of obvious interest and needing further study
is this tradeoff between ease of use and performance penalty.

From our experience to date, development of the axioms requires an initial
period of adjustment (which would be relatively easier for a designer familiar
in an applicative language like LISP), but is not considered difficult. Storage
management is considerably simpler with these axioms. However, the im-
portant point is that these axioms provide a much greater degree of control
over functionality and verification of the underlying process of system en-
hancement-the crucial aspect in system maintenance.

This system addresses many of the important specifications and code re-
use problems that are of interest today. Specifications are formal yet exe-
cutable, and can easily be mapped into a variety of programming languages.
Maintenance is enhanced via tests on the existing source program. Deter-
mining properties of specific abstract data type implementations is explicit
and should help in the process of understanding and re-using source program
libraries.

REFERENCES

1. S. Antoy, P. Forcheri, M. T. Molfino, M. V. Zelkowitz, Rapid prototyping of system
enhancements, Proc. of 1st Int. Conf. on System Integration, Morristown, NJ, 1990.

2. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifications I: Equations and
Initial Semantics, Springer-Verlag, Berlin Heidelberg, Germany, 1985.

3. R. W. Floyd, Assigning Meanings to Programs, Proc. Symp. Appl. Math. 19:19-32

(1967).

4. J. A. Goguen, J. W. Thatcher, E. G. Wagner, An Initial Algebra Approach to the Spec-
ification, Correctness, and Implementation of Abstract Data Types, in Current Trends

in Programming Methodology (R. T. Yeh, Ed.), Prentice-Hall, Englewood Cliff, NJ,
1978, pp. 80-149.

5. J. V. Guttag and J. J. Homing, The algebraic specifications of abstract data types.
Acta Znformatica 10:27-62 (1978).

6. C. A. R. Hoare, An axiomatic basis for computer programming, Communications of
the ACM 12576-583 (1969).

7. G. Huet and D. Oppen, Equations and rewrite rules: A survey, in Forma/ Language
Theory (R. Book, Ed.), Academic Press, 1980, pp. 349-405.

8. D. Knuth and P. Bendix, Simple word problems in universal algebras, in Computational
Problems in Abstract Algebra (J. Leech, Ed.), Pergamon Press, NY, 1970, pp. 263-
297.

9. J. M. Wing, Writing Larch interface language specifications, ACM Transactions on
Programming Languages and Systems 9:1-24 (1987).

EXECUTABLE SPECIFICATIONS 359

10. P. Zave, An operational approach to requirements specification for embedded systems,
ZEEE Transactions on Software Engineering 8:250-269 (1982).

I I. M. V. Zelkowitz, B. Kowalchack, D. Itkin, L. Herman, Experiences building a syntax
directed editor, Software Engineering Journal 4:294-300 (1989).

Received 7 February 1990; revised 25 July 1990

