Introduction to Game Theory

5. Lookahead Pathology

Dana Nau
University of Maryland
Motivation

- When discussing game-tree search in the previous session, I said:
 - Deeper lookahead (i.e., larger depth bound \(d\)) usually gives better decisions

- For many years, it was tacitly assumed that searching deeper would always give better decisions
 - For my Ph.D. work in 1979, I showed that’s not true
 - There are infinitely many game trees for which searching deeper gives worse decisions
P-Games

- A class of board-splitting games invented by Judea Pearl in 1980
- Playing board: chessboard of size $2^{\lceil h/2 \rceil} \times 2^{\lceil h/2 \rceil}$ instead of 8×8
 - (or equivalently, a string of 2^h squares)
- Initial state: randomly label each square as “win” or “loss”
 - I’ll use green for win, white for loss
- Agents move in alternation
 - 1st move: remove either the left half or right half of the board
 - 2nd move: remove either the top half or bottom half of the board
- Continue until just one square is left
 - “win” square => win for the last player
 - “loss” square => loss for the last player
- This gives us a game tree of height h
Critical Nodes

- Let x be a node in a P-game
 - Suppose x’s **height** (number of moves from the end of the game) is h
- In order to talk about whether a deeper search at x gives a better or worse decision, x must be a node where the decision makes a difference
 - x’s children shouldn’t have the same minimax value
- x is **critical** if
 - it has a “loss” child y, i.e., $u^*(y) = -1$
 - and a “win” child z, i.e., $u^*(z) = 1$
- Let $D(d,h) = P(\text{choose the “win” child | minimax search to depth } d \text{ from a critical node } x \text{ of height } h)$
- Then $D(d,h) = P[\text{MINIMAX}(y,d-1) < \text{MINIMAX}(z,d-1)]$
 - $+ 0.5 \ P[\text{MINIMAX}(y,d-1) = \text{MINIMAX}(z,d-1)]$
 - where y and z are x’s loss child and win child
Probability of a Win Node

- Let $w = (3 - \sqrt{5})/2 \approx 0.382$
 - i.e., $w = 2 - \varphi = 1 - 1/\varphi$, where φ is the golden ratio
- Suppose we assign a “win” or “loss” label to each square at random, with probability p that a square is labeled “win”
- Let x be a node of height h, and y and z be its children
 - If $p > w$, then as we increase h, $P[y \text{ and } z \text{ are both wins for the last player}] \to 1$
 - If $p < w$, then as we increase h, $P[y \text{ and } z \text{ are both losses for the last player}] \to 1$
 - If $p = w$, then for all h, $P[u^*(y) \neq u^*(z)] = p(1-p)$
- So from now on, let $p = w$
 - This assures a reasonably good chance that a node at height h is critical
Evaluation Function

- Let $e(x) = \text{(number of “win” squares) / (total number of squares)}$
 - The higher $e(x)$ is, the more likely that x is a win for the last player
 - The lower $e(x)$ is, the more likely that x is a win for the other player
- Now that we have e, it’s possible to derive a formula for $D(d,h)$
 - The derivation is complicated and I’ll skip it
- But I’ll show you the results
P-Games are Pathological

- If $d = h$, then $D(d,h) = 1$
 - i.e., searching to the game’s end produces perfect play
- Likewise when $d = h-1$
 (searching to just before the end)
- For node height $h \leq 7$, no pathology
 - $D(d,h)$ generally increases as we increase d
- For node height $h > 9$, there’s lots of pathology
 - $D(d,h)$ generally decreases as we increase d
Why are the games pathological?

- **Hypothesis 1**: maybe it’s due to the evaluation function
 - Let the **height** of a node be its distance from the end of the game
 - At a node of height h, a depth-d minimax search will apply the evaluation function e to nodes of height $h-d$
 - Increase the search depth $d \Rightarrow$ decrease the node height $h-d$
 - If e is less accurate at nodes whose height is low, this could make $D(d,h)$ decrease as we increase d
 - To find out, let’s measure e’s accuracy as a function of node height
 - e’s accuracy at a critical node x of height h
 $= P[\text{correct decision if we apply } e \text{ directly to } x\text{'s children}]$
 $= D(1,h)$
 - So let’s look at $D(1,h)$ as $h \rightarrow 0$
Why are the games pathological?

- The graph shows $D(1,h)$ as a function of h
- Notice that as $h \to 0$, $D(1,h) \to 1$
 - I.e., as x’s height decreases, $e(x)$ gets more accurate
- Thus the hypothesis is wrong
 - The pathology isn’t due to the evaluation function
 - It must be due to the game itself
Why are the games pathological?

- Hypothesis 2:
 - In most board games,
 - Some positions are “strong” (you’re likely to win)
 - Others are “weak” (you’re likely to lose)
 - Strong nodes are likely to have lots of strong children
 - So if a node is strong, that means its sibling nodes are probably strong too
 - Likewise for weak positions
 - But in P-games, the values of sibling nodes are completely independent of each other
 - Could the pathology be due to that?
 - Let’s modify P-games to make sibling nodes have similar values
N-Games

- Everything is the same as in a P-game, except for how the board is initialized:
 - First assign 1 or –1 at random to each edge of the game tree
 - A node x’s “strength” = sum of the edges on the path from the root to x
 - If x is a terminal node,
 - Label x “win” if $\text{strength}(x) > 0$
 - Otherwise label x “loss”
- Use the same evaluation function as before
N-Games

- I don’t know of a formula for computing $D(d,h)$ in N-games
 - So, Monte Carlo simulation instead
- For every combination of node height h and search depth d, I averaged $D(d,h)$ over 3200 randomly generated N-games
 - Result: at every node height h, searching deeper always helps
- So this suggests pathology is unlikely when there’s a strong local similarity (correlation among sibling nodes)
Generalize to Other Games

- Suppose we do a minimax search to depth 2 at node a
 - e and h look equally good, and both look better than b
 - So we choose one of e and h at random, and move to it

- What’s the probability that we made a best move?
Probability of Optimal Decision

- For every node x, let $s(x) = \{x’s \text{ children}\}$
- Let $\text{opt}(x,d) = \{\text{the children of } x \text{ that look best to a depth-}d \text{ minimax search}\}$
 - $= \{y \in s(x) | \text{minimax}(x,d) = \text{minimax}(y,d-1)\}$
 - In the example, $\text{opt}(a,2) = \{e,h\}$
- The children of x that really are the best are the ones in $\text{opt}(x,\infty)$
 - I.e., search to the end of the game
 - In the example, $\text{opt}(a,\infty) = \{e\}$
- If we choose from $\text{opt}(x,d)$ at random, then the probability of choosing an optimal move is
 - $P_{\text{opt}}(x,d) = |\text{opt}(x,d) \cap \text{opt}(x,\infty)| / |\text{opt}(x,d)|$
- In the example, $P_{\text{opt}}(a,2) = |\{e\}| / |\{e,h\}| = \frac{1}{2}$
Degree of Pathology

• The **decision error** at x is the probability that we didn’t make the best choice:
 $$P_{err}(x,d) = 1 - P_{opt}(x,d)$$

• The **degree of pathology** at x is the probability that searching deeper increases the decision error:
 $$p(x,i,j) = P_{err}(x,i) / P_{err}(x,j)$$
 where i and j are search depths, and $i > j$

• If $p(x,i,j) > 1$ then we have lookahead pathology at x

• A game G is considered **pathological** if $p(x,i,j)$, averaged over many x, is > 1
 - When G is pathological for some values of i and j, it usually is pathological for others
Influences on the Degree of Pathology

- Several factors affect the degree of pathology
- The most important ones:
 - **Granularity**
 - Number of possible utility values
 - **Branching factor**
 - Number of children of each node
 - **Local similarity**
 - Similarity among nodes that are close together in the tree
- There are several others
 - But most of them reduce to special cases of the ones above
How to Vary the Branching Factor

- Easy to get P-games and N-games of branching factor b
 - The board has size $b^{\lceil h/2 \rceil} \times b^{\lfloor h/2 \rfloor}$
 - (or equivalently, a string of b^h squares)
 - Each move: divide the board into b pieces instead of 2 pieces, and discard all but one of them
- Result: a b-ary tree of height h
How to Vary the Granularity

- **P-game with infinite granularity:**
 - each square isn’t “win” or “loss”
 - instead, its payoff is uniformly distributed over $[0,1]$

- **N-game with infinite granularity:**
 - Instead of assigning 1 or –1 to each edge, assign a random value from a normal (i.e., Gaussian) distribution

- **P-game or N-game with granularity g:**
 - Partition the interval $[0,1]$ into g intervals of equal size
How to Vary the Local Similarity

- Use a parameter $0 \leq s \leq 1$ that determines the amount of local similarity:
 - $s = 0 \Rightarrow$ P-game of granularity g
 - $s = 1 \Rightarrow$ N-game of granularity g
 - $0 < s < 1 \Rightarrow$
 - Generate both P-game and N-game values for the nodes
 - For each terminal node, assign a payoff by making a random choice:
 - The node’s P-game value with probability s, or its N-game value with probability $1-s$
Evaluation Function and Experiments

- So now we can vary b, g, and s independently
 - Experiments to measure how they influence the degree of pathology

- We can’t use the previous evaluation function
 - It only works when $g = 2$

- Instead, use the following:
 - $e(x) = x$’s actual minimax value, corrupted by Gaussian noise with standard deviation $\sigma = 0.1$
 - For this evaluation function, accuracy is independent of node height

Granularity and Pathology

- Amount of granularity needed to avoid lookahead pathology
 - The space above the surface is pathological
 - The space below the surface is nonpathological
Branching Factor and Pathology

- The degree of pathology as a function of branching factor, granularity, and local similarity
 - Color of each point = value of $p(5,1)$
- Below the black lines: pathological
- Above the black lines: nonpathological.
Does the Model Have Predictive Value?

- Does the model predict the trends in real games?
 - Yes!

- Let’s look at
 - chess
 - kalah
Chess endgames

- Degree of pathology as a function of granularity in
 - KBBK chess endgames (average $b = 13.52$ and $cf = 0.58$)
 - KQKR chess endgames (average $b = 16.93$ and $cf = 0.37$)
Kalah

- An ancient African game
- Moves:
 - Pick up the seeds in a pit on your side of the board
 - Distribute them, one at a time, to a string of adjacent pits
- Objective: acquire more seeds than the opponent, by either
 - moving them to your “kalah”
 - capturing them from the opponent’s pits
Modified Kalah

- Kalah is normally played until no seeds are left on the board
 - For computability, we limited the game to 8 moves
- To ensure a uniform branching factor
 - We allowed players to “move” from an empty pit
 - Such a move has no effect on the board
- We got different branching factors by varying the number of pits
- In Kalah, a player can move again if the last seed they placed lands in their kalah
 - We eliminated that rule, to get strict alternation of moves
Modified Kalah

- Degree of pathology in modified kalah as a function of granularity for several different branching factors
Modified Kalah

- The degree of pathology in modified kalah at several different branching factors, as a function of clustering factor (cf)

\[\text{standard deviation of the sibling nodes’ utilities} \div \text{standard deviation of the utilities throughout the game tree} \]

- Higher cf means less local similarity

- Curves are smoothed for clarity
Summary

- In most game trees
 - Increasing the search depth usually improves the decision-making
- In pathological game trees
 - Increasing the search depth usually degrades the decision-making
- Pathology is more likely when
 - The branching factor is high
 - The number of possible payoffs is small
 - Local similarity is low
- Even in ordinary non-pathological game trees, *local* pathologies can occur
 - Work in progress: some of my students are developing algorithms to detect and overcome local pathologies