Automated Analysis and Synthesis of Block-Cipher Modes of Operation

Alex J. Malozemoff1 Jonathan Katz1 Matthew D. Green2

1University of Maryland
2Johns Hopkins University

Presented at the Fall Protocol eXchange, National Cryptologic Museum, Fort Meade, Maryland, USA, September 23–24, 2014.
Problem: Designing/proving crypto constructions is hard!
Problem: Designing/proving crypto constructions is hard!

(Possible) Solution: Use ideas from *program synthesis* to automate the design/proof of crypto schemes
Introduction

Problem: Designing/proving crypto constructions is hard!

(Possible) Solution: Use ideas from program synthesis to automate the design/proof of crypto schemes

Program Synthesis

- Automatically construct programs based on (small) set of rules
- Has been applied to crypto protocols (e.g., [AGHP12, BCG+13])
Problem: Designing/proving crypto constructions is hard!

(Possible) Solution: Use ideas from *program synthesis* to automate the design/proof of crypto schemes

Program Synthesis
- Automatically construct programs based on (small) set of rules
- Has been applied to crypto protocols (e.g., [AGHP12, BCG+13])

This Work: Apply program synthesis to *modes of operation*
Background: Modes of Operation

Block-Cipher (\(=\) PRP, \(F_k\)): Encrypts \emph{fixed-length} message (e.g., AES)
Background: Modes of Operation

Block-Cipher (\(= PRP, F_k\)): Encrypts *fixed-length* message (e.g., AES)

Mode of Operation: encrypts *arbitrary-length* messages, using block-cipher as building block
Background: Modes of Operation

Block-Cipher (= PRP, F_k): Encrypts *fixed-length* message (e.g., AES)

Mode of Operation: encrypts *arbitrary-length* messages, using block-cipher as building block

Example: Cipher-Block Chaining (CBC) Mode
Background: Security of Modes of Operation

Want output of mode to look “random” to adversary ⇒ IND$-CPA

What is IND$-CPA?

Adversary A has oracle access to either
- (World 1) a truly random function
- (World 2) the desired mode of operation

A specifies messages to encrypt and receives resulting ciphertexts

A’s Goal: Decide whether in World 1 or World 2

Secure: A cannot distinguish between worlds
Background: Security of Modes of Operation

Want output of mode to look “random” to adversary \(\Rightarrow \) IND\$-CPA

What is IND\$-CPA?

Adversary \(\mathcal{A} \) has oracle access to either

- (World 1) a truly random function
- (World 2) the desired mode of operation

\(\mathcal{A} \) specifies messages to encrypt and receives resulting ciphertexts

\(\mathcal{A} \)'s Goal: Decide whether in World 1 or World 2

Secure: \(\mathcal{A} \) cannot distinguish between worlds

Note: Explains why ECB mode (encrypt each message block by PRP) is insecure
Motivation

Lots of modes exist; some modes are complex

Each scheme requires separate security proof

- proofs occasionally omitted, sometimes wrong!
Motivation

Lots of modes exist; some modes are complex
Each scheme requires separate security proof
 • proofs occasionally omitted, sometimes wrong!

Question: Can we automate the security analysis, synthesize new modes?

Solution: Construct framework for automatically proving modes of operation secure, use this to synthesize new modes
Model (single block of) mode as *directed, acyclic graph*

- Nodes \rightarrow atomic operations
 - E.g., XOR two values, apply PRP to value, etc.
- Edges \rightarrow intermediate values
This Work

Model (single block of) mode as \textit{directed, acyclic graph}

- Nodes \rightarrow atomic operations
 - E.g., XOR two values, apply PRP to value, etc.
- Edges \rightarrow intermediate values

Each edge assigned \textit{label}

- \textit{Constraints} restrict how edges can be labeled
This Work

Model (single block of) mode as directed, acyclic graph

- Nodes \rightarrow atomic operations
 - E.g., XOR two values, apply PRP to value, etc.
- Edges \rightarrow intermediate values

Each edge assigned label

- Constraints restrict how edges can be labeled

Meta-Theorem: Exists valid labeling \implies mode IND$\$-CPA-secure

Note: Our approach analyzes a constant size graph, yet proves security on arbitrary (polynomial) length inputs
Several prior works look at automatically analyzing modes:

- **Gagné et al. [GLLSN09, GLLSN12]:**
 - Modes described in imperative language
 - Use *compositional Hoare logic* to analyze security
 - **Drawback:** Can only reason about encryption of messages of pre-specified length

- **Courant et al. [CEL07]:**
 - Use *type system* to analyze security of modes, among others
 - **Drawback:** Similar to above

Our approach works for *arbitrary (polynomial) length* messages
Mode of Operation: Formal Definition

Defined by two algorithms:

- **Init**(1^n) → (c_0, z_0)
- **Block**(m_i, z_{i−1}) → (c_i, z_i)

Enc_k(m = m_1 || ⋯ || m_ℓ):

- Compute (c_0, z_0) ← **Init**(1^n)
- For i = 1, ⋯, ℓ:
 Compute (c_i, z_i) ← **Block**(m_i, z_{i−1})
- Output c_0 || ⋯ || c_ℓ
Viewing Modes as Graphs

Init algorithm

Block algorithm
Edge Labels: Intuition

Recall: Edges denote intermediate values
Recall: Edges denote intermediate values

Intuition: Labels should capture “properties” of intermediate value
 • Does value look random to adversary?
 • Can value be output as ciphertext?
 • Only “random-looking” values should be output
 • etc.
Edge Labels: Intuition

Recall: Edges denote intermediate values

Intuition: Labels should capture “properties” of intermediate value
 • Does value look random to adversary?
 • Can value be output as ciphertext?
 • Only “random-looking” values should be output
 • etc.

Goal: If values on edges into OUT nodes look random to adversary, then mode is IND$-CPA-secure
Each edge label is a 3-tuple \((\text{fam}, \text{type}, \text{flags})\):

- **fam**: See later slide...
- **type** \(\in\{\bot, R\}\): “Type” of intermediate value
 - \(\bot\): Adversarially controlled
 - \(R\): Random
- **flags** \(\in\{0, 1\}^2\): Bit-vector denoting whether edge can be input into \(\text{OUT}\) or \(\text{PRP}\)
 - Prevents values being both output as part of ciphertext and input to \(\text{PRP}\)
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags $PRP = 1$, flags $OUT = 1$
- **DUP**: Outgoing edges inherit ingoing edge's type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to **NEXTIV**
- **M**: Outgoing edge gets type \perp, flags $PRP = 0$, flags $OUT = 0$
- **XOR**: At least one ingoing edge of type R; Outgoing edge gets type R and OR of ingoing edges' flags
- **PRP**: Ingoing edge must have type R and flags $PRP = 1$; Outgoing edge same as **GENRAND**
- **OUT**: Ingoing edge must have type R and flags $OUT = 1$
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags.$PRP = 1$, flags.$OUT = 1$

- **START**: Inherits type and flag bits of ingoing edge to NEXTIV

- **M**: Outgoing edge gets type \perp, flags.$PRP = 0$, flags.$OUT = 0$

- **XOR**: At least one ingoing edge of type R; Outgoing edge gets type R and OR of ingoing edges' flags

- **PRP**: Ingoing edge must have type R and flags.$PRP = 1$; Outgoing edge same as GENRAND

- **OUT**: Ingoing edge must have type R and flags.$OUT = 1$
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags.$PRP = 1$, flags.$OUT = 1$
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type \(R \), flags.\(PRP = 1 \), flags.\(OUT = 1 \)
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to **NEXTIV**
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type \(R \), flags.\(PRP = 1 \), flags.\(OUT = 1 \)
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to **NEXTIV**
- **M**: Outgoing edge gets type \(\perp \), flags.\(PRP = 0 \), flags.\(OUT = 0 \)
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags.$PRP = 1$, flags.$OUT = 1$
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to NEXTIV
- **M**: Outgoing edge gets type \perp, flags.$PRP = 0$, flags.$OUT = 0$
- **XOR**: At least one ingoing edge of type R; Outgoing edge gets type R and OR of ingoing edges’ flags
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags.$PRP = 1$, flags.$OUT = 1$
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to NEXTIV
- **M**: Outgoing edge gets type \bot, flags.$PRP = 0$, flags.$OUT = 0$
- **XOR**: At least one ingoing edge of type R; Outgoing edge gets type R and OR of ingoing edges’ flags
- **PRP**: Ingoing edge must have type R and flags.$PRP = 1$; Outgoing edge same as GENRAND
Constraints on Nodes:

- **GENRAND**: Outgoing edge gets type R, flags.$PRP = 1$, flags.$OUT = 1$
- **DUP**: Outgoing edges inherit ingoing edge’s type, split flag bits
- **START**: Inherits type and flag bits of ingoing edge to NEXTIV
- **M**: Outgoing edge gets type \perp, flags.$PRP = 0$, flags.$OUT = 0$
- **XOR**: At least one ingoing edge of type R; Outgoing edge gets type R and OR of ingoing edges’ flags
- **PRP**: Ingoing edge must have type R and flags.$PRP = 1$; Outgoing edge same as GENRAND
- **OUT**: Ingoing edge must have type R and flags.$OUT = 1$
What About the \textbf{fam} Variable?

\textbf{Note:} No tracking of which intermediate values “related” to other intermediate values
What About the **fam** Variable?

Note: No tracking of which intermediate values “related” to other intermediate values

Consider the following graph:
What About the **fam** Variable?

Note: No tracking of which intermediate values “related” to other intermediate values

Consider the following graph:

![Graph](image)

The output edge is labeled \((R, 11)\) but the actual value is zero!
What About the \textbf{fam} Variable?

The \textbf{fam} variable tracks “related” edges
What About the **fam** Variable?

The **fam** variable tracks “related” edges

\[\text{fam} \subseteq \{1, \ldots\} : \text{Set of families to which edge belongs} \]
What About the **fam** Variable?

The **fam** variable tracks “related” edges

fam \(\subseteq \{1, \ldots \} \): Set of *families* to which edge belongs

Two edges \(e_1, e_2 \) are *related* if \(\text{fam}_1 \cap \text{fam}_2 \neq \emptyset \)
What About the \textbf{fam} Variable?

The \textbf{fam} variable tracks “related” edges

\textbf{fam} \subseteq \{1, \ldots \}: Set of \textit{families} to which edge belongs

Two edges \(e_1, e_2\) are \textit{related} if \(\text{fam}_1 \cap \text{fam}_2 \neq \emptyset\)

New constraint on \textbf{XOR}: incoming edges cannot be related
What About the \textbf{fam} Variable?

The \textbf{fam} variable tracks “related” edges

\textbf{fam} \subseteq \{1, \ldots \}: Set of \textit{families} to which edge belongs

Two edges \(e_1, e_2 \) are \textit{related} if \(\text{fam}_1 \cap \text{fam}_2 \neq \emptyset \)

New constraint on \textbf{XOR}: incoming edges cannot be related

\[
\begin{align*}
\text{GENRAND} & \quad \{\{1\}, R, 11\} \\
\text{DUP} & \quad \{\{1\}, R, 10\}, \{\{1\}, R, 01\} \\
\text{XOR} & \quad x
\end{align*}
\]
Want to prove: Exists valid labeling \implies mode is IND$\$-CPA-secure

Proof (high level): By induction:
 - \mathcal{A} inputs $m = m_1 \| \ldots \| m_\ell$ to mode
Meta-Theorem

Want to prove: Exists valid labeling \Rightarrow mode is IND$\$-CPA-secure

Proof (high level): By induction:

- \mathcal{A} inputs $m = m_1 \parallel \ldots \parallel m_{\ell}$ to mode
- Let G be connected graph containing one copy of Init and ℓ copies of Block
Meta-Theorem

Want to prove: Exists valid labeling \Rightarrow mode is IND$\$-CPA-secure

Proof (high level): By induction:

- \mathcal{A} inputs $m = m_1\| \ldots \| m_\ell$ to mode
- Let G be connected graph containing one copy of Init and ℓ copies of Block
- Consider assigning values to edges in topological order step-by-step
Want to prove: Exists valid labeling \Rightarrow mode is IND$_\text{S}$-CPA-secure

Proof (high level): By induction:

- \mathcal{A} inputs $m = m_1 \parallel \ldots \parallel m_\ell$ to mode
- Let G be connected graph containing one copy of Init and ℓ copies of Block
- Consider assigning values to edges in topological order step-by-step
- OUT: set of edges on ingoing edges to OUT nodes in G
Meta-Theorem

Want to prove: Exists valid labeling \Rightarrow mode is IND†-CPA-secure

Proof (high level): By induction:
- A inputs $m = m_1 \| \ldots \| m_\ell$ to mode
- Let G be connected graph containing one copy of Init and ℓ copies of Block
- Consider assigning values to edges in topological order step-by-step
- OUT: set of edges on ingoing edges to OUT nodes in G
- Let val be function mapping edges to values
Meta-Theorem

Want to prove: Exists valid labeling \Rightarrow mode is IND$\$-CPA-secure

Proof (high level): By induction:

- \mathcal{A} inputs $m = m_1 || \ldots || m_\ell$ to mode
- Let G be connected graph containing one copy of Init and ℓ copies of Block
- Consider assigning values to edges in topological order \textit{step-by-step}
- OUT: set of edges on ingoing edges to OUT nodes in G
- Let val be function mapping edges to values
- \textbf{Invariant 1}: At each step, values in $\text{val}(\text{OUT})$ are uniformly random
 - \Rightarrow Output looks random to \mathcal{A}
 - \Rightarrow Proving Invariant 1 proves theorem!
Proof (continued):

- Need additional invariants to prove Invariant 1...
Proof (continued):

- Need additional invariants to prove Invariant 1.
- Edge is *active* if it has been assigned a value but its children have not
Proof (continued):

- Need additional invariants to prove Invariant 1...
- Edge is active if it has been assigned a value but its children have not
- PRP_a: set of active edges of type R with flags. $PRP = 1$
Meta-Theorem

Proof (continued):

• Need additional invariants to prove Invariant 1...
• Edge is *active* if it has been assigned a value but its children have not
• \(PRP_a \): set of active edges of type \(R \) with flags. \(PRP = 1 \)
• Invariant 2: Values in \(\text{val}(PRP_a) \) are jointly uniform, even conditioned on prior inputs to \(PRP \)
 • Intuition: Enforces that inputs into \(PRP \) nodes are uniformly random
Meta-Theorem

Proof (continued):

- Need additional invariants to prove Invariant 1...
- Edge is active if it has been assigned a value but its children have not
- \(PRP_a \): set of active edges of type \(R \) with flags. \(PRP = 1 \)
- Invariant 2: Values in \(\text{val}(PRP_a) \) are jointly uniform, even conditioned on prior inputs to \(PRP \)
 - Intuition: Enforces that inputs into \(PRP \) nodes are uniformly random
- \(OUT_a \): set of active edges of type \(R \) with flags. \(OUT = 1 \)
Proof (continued):

- Need additional invariants to prove Invariant 1...
- Edge is *active* if it has been assigned a value but its children have not
- PRP_a: set of active edges of type R with flags. $PRP = 1$
- Invariant 2: Values in $\text{val}(PRP_a)$ are jointly uniform, even conditioned on prior inputs to PRP
 - Intuition: Enforces that inputs into PRP nodes are uniformly random
- OUT_a: set of active edges of type R with flags. $OUT = 1$
- Invariant 3: Values in $\text{val}(OUT_a)$ are jointly uniform, even conditioned on prior inputs to OUT
 - Intuition: Enforces that inputs into OUT nodes are uniformly random
Meta-Theorem

Proof (continued):

• Need additional invariants to prove Invariant 1...
• Edge is active if it has been assigned a value but its children have not
• PRP_a: set of active edges of type R with flags. $PRP = 1$
• Invariant 2: Values in $val(PRP_a)$ are jointly uniform, even conditioned on prior inputs to PRP
 • Intuition: Enforces that inputs into PRP nodes are uniformly random
• OUT_a: set of active edges of type R with flags. $OUT = 1$
• Invariant 3: Values in $val(OUT_a)$ are jointly uniform, even conditioned on prior inputs to OUT
 • Intuition: Enforces that inputs into OUT nodes are uniformly random

Final Step: Considering each node type, prove (by induction) that Invariants hold

• See paper for details...
What About CTR Mode?

\[F_k \]

\[m_1 \rightarrow c_1 \]
\[m_2 \rightarrow c_2 \]
\[m_3 \rightarrow c_3 \]
What About CTR Mode?

Need to add **INC** instruction: increments value by 1

⇒ Need new type (\(U\) ⇒ “unique”), flag bits

⇒ Requires additional constraints

⇒ Complicates proof, but is possible (see paper)
Implemented model checker + synthesizer in OCaml

Model Checker:

1. Checks whether an input mode is secure
 - **Recall:** Valid labeling \implies mode is secure
 - \implies Determining secure mode is a constraint-satisfaction problem
 - \implies Can use SMT solver (e.g., Z3)!

2. Secure modes need to be decryptable!
 - Implement algorithm to check decryptability of mode

Synthesizer:

Can simply iterate over all possible graphs!
- Use simple rules to reduce search space
(1) Encoding Example: **DUP**

Recall: Edge label: *(fam, type, flags)*, flags.**OUT**, flags.**PRP**

DUP rule: outgoing edges inherit ingoing edge’s type, split flag bits

Z3 Encoding:

```lisp
(declare-const dup_l_type Int)
(declare-const dup_l_flag_out Bool)
(declare-const dup_l_flag_prp Bool)
(declare-const dup_r_type Int)
(declare-const dup_r_flag_out Bool)
(declare-const dup_r_flag_prp Bool)
(assert (= dup_l_type dup_r_type genrand_type))
(assert (= (and dup_l_flag_out dup_r_flag_out) false))
(assert (= (and dup_l_flag_prp dup_r_flag_prp) false))
(assert (= (or dup_l_flag_out dup_r_flag_out) genrand_flag_out))
(assert (= (or dup_l_flag_prp dup_r_flag_prp) genrand_flag_prp))
```
(1) Encoding Example: DUP

Recall: Edge label:
(fam, type, flags), flags.**OUT**, flags.**PRP**

DUP rule: outgoing edges inherit ingoing edge's type, split flag bits

Z3 Encoding:

(declare-const dup_l_type Int)
(declare-const dup_l_flag_out Bool)
(declare-const dup_l_flag_prp Bool)
(declare-const dup_r_type Int)
(declare-const dup_r_flag_out Bool)
(declare-const dup_r_flag_prp Bool)
(assert (= dup_l_type dup_r_type genrand_type))
(assert (= (and dup_l_flag_out dup_r_flag_out) false))
(assert (= (and dup_l_flag_prp dup_r_flag_prp) false))
(assert (= (or dup_l_flag_out dup_r_flag_out) genrand_flag_out))
(assert (= (or dup_l_flag_prp dup_r_flag_prp) genrand_flag_prp))
(1) Encoding Example: **DUP**

Recall: Edge label:
(fam, type, flags), flags.**OUT**, flags.**PRP**

DUP rule: outgoing edges inherit ingoing edge’s type, split flag bits

Z3 Encoding:

(declare-const dup_l_type Int)
(declare-const dup_l_flag_out Bool)
(declare-const dup_l_flag_prp Bool)
(declare-const dup_r_type Int)
(declare-const dup_r_flag_out Bool)
(declare-const dup_r_flag_prp Bool)
(assert (= dup_l_type dup_r_type genrand_type))
(assert (= (and dup_l_flag_out dup_r_flag_out) false))
(assert (= (and dup_l_flag_prp dup_r_flag_prp) false))
(assert (= (or dup_l_flag_out dup_r_flag_out) genrand_flag_out))
(assert (= (or dup_l_flag_prp dup_r_flag_prp) genrand_flag_prp))
Encoding Example: DUP

Recall: Edge label:

(fam, type, flags),
flags.\textit{OUT}, flags.\textit{PRP}

\textbf{DUP} rule: outgoing edges inherit ingoing edge’s type, split flag bits

\textbf{Z3 Encoding:}

(declare-const dup_l_type Int)
(declare-const dup_l_flag_out Bool)
(declare-const dup_l_flag_prp Bool)
(declare-const dup_r_type Int)
(declare-const dup_r_flag_out Bool)
(declare-const dup_r_flag_prp Bool)
(assert (= dup_l_type dup_r_type genrand_type))
(assert (= (and dup_l_flag_out dup_r_flag_out) false))
(assert (= (and dup_l_flag_prp dup_r_flag_prp) false))
(assert (= (or dup_l_flag_out dup_r_flag_out) genrand_flag_out))
(assert (= (or dup_l_flag_prp dup_r_flag_prp) genrand_flag_prp))
(2) Checking Decryptability

Given ciphertext, can we recover message?
(2) Checking Decryptability

Given ciphertext, can we recover message?

Three Steps:
Given ciphertext, can we recover message?

Three Steps:

Step 1: Given values of outgoing edge of **START** and incoming edge to **OUT** in **Block**, can we recover **M**?
- I.e., given ciphertext block and previous state info, can we recover plaintext block?

Step 2: Given value of incoming edge to **OUT** in **Init**, can we recover **NEXTIV**?
- I.e., given ciphertext, can we recover state info (in **Init**)?

Step 3: Given value of incoming edge to **OUT** in **Block**, can we recover **NEXTIV**?
- I.e., given ciphertext, can we recover state info (in **Block**)?
(2) Checking Decryptability

Given ciphertext, can we recover message?

Three Steps:

Step 1: Given values of outgoing edge of **START** and incoming edge to **OUT** in **Block**, can we recover **M**?
- I.e., given ciphertext block and previous state info, can we recover plaintext block?

Step 2: Given value of incoming edge to **OUT** in **Init**, can we recover **NEXTIV**?
- I.e., given ciphertext, can we recover state info (in **Init**)?
Given ciphertext, can we recover message?

Three Steps:

Step 1: Given values of outgoing edge of START and incoming edge to OUT in Block, can we recover M?
 - I.e., given ciphertext block and previous state info, can we recover plaintext block?

Step 2: Given value of incoming edge to OUT in Init, can we recover NEXTIV?
 - I.e., given ciphertext, can we recover state info (in Init)?

Step 3: Given value of incoming edge to OUT in Block, can we recover NEXTIV?
 - I.e., given ciphertext, can we recover state info (in Block)?
Step 1: Given values of outgoing edge of \textbf{START} and incoming edge to \textbf{OUT} in \textbf{Block}, can we recover \textbf{M}?
(2) Checking Decryptability

Step 1: Given values of outgoing edge of START and incoming edge to OUT in Block, can we recover M?
(2) Checking Decryptability

Step 1: Given values of outgoing edge of **START** and incoming edge to **OUT** in **Block**, can we recover **M**?
(2) Checking Decryptability

Step 1: Given values of outgoing edge of **START** and incoming edge to **OUT** in **Block**, can we recover **M**?

![Diagram](image)

- **GENRAND**
- **DUP**
- **OUT**
- **NEXTIV**
- **START**
- **M**
- **XOR**
- **PRP**
- **DUP**
- **OUT**
- **NEXTIV**

Init algorithm

Block algorithm
(2) Checking Decryptability

Step 2: Given value of incoming edge to **OUT** in **Init**, can we recover **NEXTIV**?
Step 2: Given value of incoming edge to OUT in Init, can we recover NEXTIV?
(2) Checking Decryptability

Step 3: Given value of incoming edge to **OUT** in **Block**, can we recover **NEXTIV**?
(2) Checking Decryptability

Step 3: Given value of incoming edge to \textbf{OUT} in \textbf{Block}, can we recover \textbf{NEXTIV}?
Results

Ran model checker for modes with ≤ 10 instructions

<table>
<thead>
<tr>
<th># Instructions</th>
<th>Valid</th>
<th>Decryptable</th>
<th>Secure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>559</td>
<td>282</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>3544</td>
<td>1361</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>8862</td>
<td>2101</td>
<td>243</td>
</tr>
<tr>
<td>Total</td>
<td>13015</td>
<td>3774</td>
<td>355</td>
</tr>
</tbody>
</table>

Note: Numbers subject to change (bug in decryptability checker currently being fixed)
Results

Ran model checker for modes with \(\leq 10 \) instructions

<table>
<thead>
<tr>
<th># Instructions</th>
<th>Valid</th>
<th>Decryptable</th>
<th>Secure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>559</td>
<td>282</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>3544</td>
<td>1361</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>8862</td>
<td>2101</td>
<td>243</td>
</tr>
<tr>
<td>Total</td>
<td>13015</td>
<td>3774</td>
<td>355</td>
</tr>
</tbody>
</table>

We are able to synthesize all standard (secure) modes
- E.g., CBC, OFB, CFB, CTR, PCBC

Note: Numbers subject to change (bug in decryptability checker currently being fixed)
Conclusion

Introduced method for reasoning about modes of operation

- Uses only “local” analysis of single block

Meta-theorem: Validly labeled mode is secure

- Can use SMT solver to *automatically* prove modes secure

Future Work:

- Handle additional operations (field operations, etc)
- Combine with EasyCrypt for (1) further security assurances and (2) concrete security bounds
- Can similar approach work for message authentication codes (authenticity), authenticated encryption (confidentiality *and* authenticity), etc?
Any questions?

E-mail: amaloz@cs.umd.edu
URL: https://www.cs.umd.edu/~amaloz
Code: https://github.com/amaloz/modes-generator
Full Version: Coming soon on https://eprint.iacr.org