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Abstract— Increasing prevalence of large-scale distributed
monitoring and computing environments such as sensor net-
works, scientific federations, Grids etc., has led to a renewed
interest in the area of distributed query processing and opti-
mization. In this paper we address a general, distributed multi-
query processing problem motivated by the need to minimize
the communication cost in these environments. Specifically we
address the problem of optimally sharing data movement across
the communication edges in a distributed communication net-
work given a set of overlapping queries and query plans for
them (specifying the operations to be executed). Most of the
problem variations of our general problem can be shown to
be NP-Hard by a reduction from the Steiner tree problem.
However, we show that the problem can be solved optimally if the
communication network is a tree, and present a novel algorithm
for finding an optimal data movement plan. For general commu-
nication networks, we present efficient approximation algorithms
for several variations of the problem. Finally, we present an
experimental study over synthetic datasets showing both the need
for exploiting the sharing of data movement and the effectiveness
of our algorithms at finding such plans.

I. INTRODUCTION

Recent years have seen a re-emergence of large-scale dis-
tributed query processing in a variety of applications. This
has in part been fueled by an increasing number of scientific
federations such as SkyServer [1], [2], GridDB [3] etc.,
where users may issue queries involving a large number of
distributed data sources. Many of these datasets tend to be
huge, and as the scale of these federations and the num-
ber of users issuing queries against them increase, network
bandwidth is expected to become the key bottleneck [4].
Similarly in publish-subscribe systems and other distributed
stream processing applications, a large number of queries must
be executed in a distributed manner across the network [5], [6].
To enable high throughput and low latencies in presence of
high-rate data streams, the query processing operators must
be placed judiciously across the network to minimize the
data movement cost. The emergence of large-scale monitoring
infrastructures such as wireless sensor networks poses similar
distributed query processing challenges; the queries must be
processed inside the network in a distributed fashion so that the
lifetime of the typically resource-constrained sensing devices
is maximized [7], [8].

Although these applications may appear very different from
each other, the query optimization challenges they pose are
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quite similar to each other. In this paper, we formulate and
address a general multi-query optimization problem where
the goal is to minimize the total communication cost while
executing a large number of queries simultaneously in a dis-
tributed environment. We note however that the algorithms we
develop are centralized. Our main focus is to optimally share
the movement of data across multiple queries. We assume
that the query plans are provided as part of the input, which
specify the operations that need to be performed on the data
items2. We allow the query plans to consist of general n-ary
operators and place no restrictions on the types of operators
that can be used; however we assume that any node in the
communication network is capable of executing any operator.
In application domains such as sensor networks, distributed
streams and publish-subscribe domains, these operators will
typically be aggregate operators, in which case we allow par-
tial aggregation of the results; whereas in distributed databases,
the operators will typically be relational operators like joins.
We note that in this paper we do not address join order
optimization, instead adopting a two-phase approach where the
join order decisions are made independently of the scheduling
and operator placement decisions [9], [10], [11], [12].

Prior analytical results on this problem have been limited
to the single-query optimization case (in the distributed query
optimization literature [13]) or to specific types of queries
and/or specific forms of communication networks [7], [8]. In
this paper, we develop a framework to address optimization
of general query plans under a flexible communication model.
We develop a novel algorithm that finds the optimal solution
in polynomial time if the communication network is a tree,
extending previous results by Silberstein and Yang [8]. The
optimization problem can be shown to be NP-Hard when the
communication graph is not a tree by a simple reduction from
the Steiner tree problem. In that case, we present a polynomial
time algorithm for the problem with an O(log n) approxi-
mation guarantee (this is a worst case bound on the quality
of the solution, compared to an optimal solution). We also
develop several constant-factor approximation algorithms for
special cases of the problem. Finally we present a performance
evaluation over synthetic datasets to illustrate the need for
sharing data movement when a large number of queries need
to be executed simultaneously in a distributed environment.

2We use the terms relation, data source and data item interchangeably in
this paper.



A. Outline

We begin with a brief discussion of related work in Section
II. We formulate the multi-query optimization problem and
summarize our main algorithmic results in Section III. We
then present a polynomial-time algorithm to find the optimal
plan that minimizes the total communication cost when the
communication graph is restricted to be a tree (Sections IV
and V). We then consider arbitrary communication graphs,
and present several approximation algorithms for the problem
(Section VI). We conclude with a preliminary performance
study that illustrates the need to share data movement in
distributed multi-query processing (Section VII).

II. RELATED WORK

There has been much work on distributed query processing
and optimization (see the survey by Kossmann [13]). Most of
this work has focused on minimizing the total communication
cost for executing a single query by judiciously choosing
the join order and possibly adding semi-join operators to the
query plan [14], [15], [16], [17], [18], [19]. In contrast to this
prior work, we consider multi-query optimization which is an
inherently harder problem, with few results known even for
the centralized case [20], [21]. On the other hand, we don’t
consider join order optimization in this paper, and assume that
a two-phase approach to query optimization is being followed;
the two-phase approach, proposed by Hong et al. [9] for
parallel query optimization, separates join order optimization
from scheduling issues, and is commonly used to mitigate the
complexity of query optimization in distributed and parallel
settings [10], [22], [11], [12].

Hasan et al. [23] and Chekuri et al. [24] present algorithms
for minimizing communication cost in parallel query opti-
mization, again assuming that the query plans are provided as
part of the input. Although these algorithms bear superficial
similarities to the algorithms we present, the underlying prob-
lem they address is fundamentally different from our problem;
they assume a uniform communication cost model (the cost of
communicating data between any pair of nodes is identical),
whereas in distributed systems the underlying communication
cost model is non-uniform; this is in fact the chief reason
behind the complexity of the problem. Also, this prior work
only considered single-query optimization, whereas we focus
on multi-query optimization.

Trigoni et al. [7] study the problem of simultaneously
optimizing multiple aggregate queries in a sensor network.
They use linear algebra techniques to share computation of
aggregates, but assume that the communication is along a pre-
determined tree. Silberstein et al. [8] study a similar problem
under the same restriction (called many-to-many aggregate
queries problem), and propose a solution based on solving
a bipartite vertex cover problem for each edge. Similar to our
work, Silberstein et al. don’t consider sharing computation
between queries either (in other words, only the movement
of the original data items is shared between queries). Both
those works assume identical-sized data items and assume
that the aggregate size is constant as well. In contrast, we

allow arbitrary-sized data items and put no restrictions on
the intermediate result sizes either.

In content delivery networks and publish-subscribe systems,
the goal is to transmit the information from a set of sources
to a set of sinks as efficiently as possible (see e.g. [25],
[26], [27]). Although some of this work has considered the
issues in allowing users to subscribe to aggregate functions
over the data sources, we are not aware of any work that
has considered simultaneous optimization of multiple queries
in such a framework. Our results can be directly applied to
similar problems in the publish-subscribe domain.

The problems we study in this paper are closely related
to several problems that have been extensively studied in the
theory literature, specifically, the Steiner tree problem [28],
[29] and its generalizations like the Single Sink Rent-or-
Buy (SROB) problem [30] (also called the Connected Facility
Location [31]). Both of these problems are NP -hard, and
constant-factor approximation algorithms are known for them.

III. PROBLEM OVERVIEW AND SUMMARY OF RESULTS

We begin with a formal definition of the problem, and
present an illustrative example that we use as the running
example. We use the terminology from multi-query join
processing to describe the problem and the algorithms (in
particular, we assume that the operations being performed are
joins); however the results extend naturally to the case when
other operations (e.g., aggregates) are being performed instead.
We then briefly summarize our main algorithmic results.

A. Formal Problem Definition

Let X = {Si|i = 1, . . . , n} denote a set of relations
(data sources) stored in a distributed fashion. Without loss
of generality, we assume that each relation is stored at a
different node (see below). We use an edge-weighted graph GC

over the nodes to represent the communication network; the
weight of an edge indicates the communication cost incurred
while sending a unit amount of data from one node to another.
Whenever a data item of size |S| is shipped across an edge e of
weight w(e), the cost incurred is |S|w(e). In a wireless sensor
network, this may be the energy expended during transmission
of the data, whereas in a distributed setting this may capture
the network utilization [4].

We are also given a set of queries, Q1, ..., Qm, with the
query Qi requiring access to a subset of relations denoted by
QR

i ⊆ {S1, . . . , Sn}. For each query, a query plan is provided,
in the form of a rooted tree, which specifies the operations
to be performed on the relations and the order in which to
perform them. Finally for each query a destination (called sink)
is provided where the final result must be shipped.

Given this input, our goal is to find a data movement plan
that minimizes the total communication cost incurred while
executing the queries.

We note that this metric does not capture the (CPU) cost
of operator execution at the nodes. In many cases (e.g., in
sensor networks or publish-subscribe domains), these opera-
tions (typically aggregates) are not very expensive, whereas
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destinations); for clarity, we assume unit-weight communication edges (w(e) = 1, ∀e) and omit the weights from the figures. The italicized numbers in the
parentheses indicate the sizes of the data sources and the intermediate results.

in other cases (in scientific federations or other distributed
databases) the operator execution cost can be very high. We
plan to address load balancing in future work, and we focus
on communication cost minimization in this paper.

The above framework is fairly general. In particular we
allow the query tree to contain n-ary operators and make no
assumptions about the operators themselves (except that we
know the result sizes). However the many-to-many aggregate
queries problem [8] cannot be directly mapped onto this
framework, but can still be indirectly reduced to our problem.
We discuss this further in Section V-B.

If multiple (say k) relations are located at the same node,
for the purpose of solving the optimization problem, we make
k − 1 copies of the node, and connect it to the original node
using zero-length edges. Each of k relations is then assigned
to a different copy of the node.

Similarly, if there is a relation such that different queries
require access to different parts of the relation (because of
selection or projection operations), we subdivide the relation
into smaller, disjoint pieces such that each query requires full
access to a subset of these pieces. In the worst case, however,
this could result in an exponential increase in the number of
sources, thus rendering the optimization problem intractable.
Understanding and addressing these tradeoffs in a systematic
manner is an interesting direction for furthur research.

B. NP -Hardness

The problem is NP -hard for arbitrary communication net-
works by an easy reduction from the Steiner Tree problem
in graphs. In an instance of the Steiner Tree problem, we are
given an undirected graph G = (V,E) with non-negative edge
weights ce and a set of terminals, T ⊂ V , and we are asked
to find the minimum weight tree subgraph of G that connects
all the terminals [28], [29].

To reduce the Steiner tree problem to our problem: let GC =
G, and assign a unit-sized relation Si to node vi ∈ V . Suppose
T = {v0, . . . , vk}. Define a set of |T | − 1 queries: QR

i =
{S0, Si} for all i = 1 . . . k, with the result size equal to zero
for all queries. It is easy to see that there is a Steiner tree on
the terminals of cost B if and only if there is a solution to our

problem with cost B – this is because an optimal solution to
our problem involves sending S0 to all remaining nodes in T .

If different nodes can carry the same data item (i.e., data
may be replicated), and hence we must also choose which
copy of a data item to use for executing the query, then the
problem is NP-hard even for tree communication networks
(see Appendix for the proof).

C. An Illustrative Example
In Figure 1 we show our running example with six data

sources over a tree network, with the data sizes shown in
parentheses. We also illustrate a collection of three queries,
along with their query plans and the destinations. The three
queries have one data source in common, S2, whereas the rest
of the data sources are different for each query. Hence the key
optimization challenge here is to share the movement of S2

across the network while executing the queries.
Figure 2 shows an optimal data movement plan computed

by our algorithm to solve these queries.
• (Query 1) The data movement plan for Query 1 (which

is also optimal for it in isolation) involves (1) joining
S1 and S2 at C, (2) shipping S1 on S2 across the edge
(C,D), (3) joining it with S4 at D, and (4) shipping the
result back to C.

• (Query 2) S2 is also shipped across edge (C,D) all the
way to F , where a join is performed with S6 for Query
2 at F , and this result is finally shipped back to D.

• (Query 3) Finally note that the optimal plan for Query
3 in isolation (without the other queries) would have
shipped S5 all the way to B where we would have
performed a join with S2. However, since S2 is shipped
from B to F (via D), we can perform a join of S5 with
S2 at D itself, and then ship the result to B.

D. Summary of Results
We briefly summarize our main algorithmic results, which

we elaborate upon in the next two sections.
1) One of our main results is that the optimization problem

can be solved optimally in polynomial time when the
underlying communication network is a tree. The algo-
rithm involves |GC | (number of edges in GC) hypergraph
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Fig. 2. An optimal Data Movement plan for the above example setup. The
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cut computations on a graph constructed by “merging”
the query trees (Section IV).

2) When the underlying communication network is an
arbitrary graph, we get an O(log n) approximation using
the results on embedding arbitrary metrics into trees
[32], [33] (Section VI-A).

3) For arbitrary communication networks, we develop con-
stant factor approximation algorithms for several inter-
esting special cases where we restrict the structure of
the query-overlap graph (Section VI-C).

4) We show how to reduce the many-to-many aggregate
queries problem to a simpler problem called the pairs
problem, where each query only contains two sources
and all result sizes are 0 (equivalently, the results can
be computed anywhere and do not need to be shipped
to specific destinations). This reduction holds for arbi-
trary communication networks, allowing us to apply our
algorithms to solve this problem. When GC is a tree, we
use this reduction to derive a considerably simpler proof
for the algorithm presented in [8] (Section V).

IV. CASE WHEN GC IS A TREE

In this section, we present a polynomial-time algorithm for
minimizing the data movement cost when the communication
network GC is a tree. Our algorithm involves solving a series
of min-cut problems on appropriately constructed hypergraphs
(one for each edge in GC). We begin with some background
on min-cuts for hypergraphs, and then present our algorithm
and the correctness proof. We then present a reduction from
many-to-many aggregate queries problem to our problem (the
reduction does not require that GC be a tree).

A. Background: Hypergraph Min-Cut and Partition Problems

A hypergraph H is specified by a vertex set V and a set
of hyperedges E, where each hyperedge in E is a subset of
V (see Figure 3(i)). We are also given two special vertices s
and t. The goal is to partition V into S and T , with s ∈ S
and t ∈ T while minimizing the weight of the hyperedges that
include vertices in both S and T (that are cut).

This problem generalizes the standard s-t min-cut problem
which is usually solved by a max-flow algorithm. In fact, the
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Fig. 3. (i) An example of an edge-weighted hypergraph with one 4-node
hyperedge (X2, X3, X4, X5), of weight c, and several two-node hyperedges
(drawn as normal edges, e.g., (S, X2), weights not shown); (ii) Reduction
of the s-t cut problem on the hypergraph to an edge capacitated flow
problem requires adding two new nodes per hyperedge, A and B for the
hyperedge (X2, X3, X4, X5) (two-node hyperedges remain unchanged in
this construction); solving the max-flow problem on the new graph gives us
the min s-t hypergraph cut on the original hypergraph.

hypergraph min cut problem can also be solved by a max-
flow computation on a derived graph [34]. For completeness
we briefly describe the procedure here. In essence, every
hyperedge in the original graph is replaced by a subgraph,
containing directed edges, as shown in Figure 3(ii). For every
hyperedge, we add two new nodes and a directed edge between
them of capacity equal to the weight of the hyperedge. Several
high-capacity edges are also added as shown in the figure.
Hyperedges containing only two nodes do not need to be
changed in the process. Solving the s-t max-flow problem on
this new graph (which contains no hyperedges) gives us a min
s-t cut on the original hypergraph.

We define and utilize a variant of the above problem called
the hypergraph partition problem, where instead of two special
vertices s and t, we are given two sets of vertices, Ls ⊂ V
and Lt ⊂ V , Ls∩Lt = ∅, and we are asked to find a partition
of V into (S, T ) that separates the vertices in Ls from the
vertices in Lt such that Ls ⊆ S, and Lt ⊆ T . We denote such
an instance by (H, Ls, Lt). It is easy to see that this problem
can be reduced to the s-t min-cut problem by: (1) adding two
special nodes s and t, and (2) by connecting s (similarly t) to
all the nodes in Ls (similarly Lt) by infinite-weight edges.

B. Algorithm

The high level approach behind our algorithm is quite
simple. The algorithm follows three main steps:

1) Build a weighted hypergraph, HD, by combining the
query trees for all the queries. This hypergraph explicitly
captures all the opportunities for sharing the movement
of data sources among the queries.
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2) For each edge e = (x, y) in GC , decide which data
sources and intermediate results move across that edge
by solving an instance of the weighted hypergraph
partition problem.

3) Combine the local solutions for all the edges into a
single global data movement plan.

This approach is quite similar to the approach taken in [8]
for solving many-to-many aggregate queries, even though the
problem we address is much more general. We discuss this
connection in more detail in Section V-B.

Steps 1 and 2 for a Single Query
We begin by describing Steps 1 and 2 for a single query
(Figure 4). We additionally assume that each leaf in the
query tree is a distinct data source (see the general algorithm
for when this assumption does not hold). The hypergraph
construction is quite easy in this case. Let T be the rooted
query tree for the query. We construct HD by adding a new
root vertex to T and attaching the original root of T to the
new root – the new root denotes the node where the results
have to be shipped. The weight of an edge (b, a) ∈ HD is set
to be the size of b, where b is the child of a. Figure 4(i) shows
an example of this construction for Query 1 of our running
example. No hyperedges with more than 2 nodes need to be
created in this case.

Now consider an edge e = (x, y) in GC . Let Gx
C and

Gy
C denote the two connected subgraphs (trees) obtained by

deleting the edge e (with x ∈ Gx
C and y ∈ Gy

C).
The communication cost incurred in a candidate solution

because of the data transmitted over the edge (x, y) is fully
determined if we know where each internal node of T (corre-
sponding to a query operator) is evaluated (at a node in Gx

C or
at a node in Gy

C); if a node is evaluated in Gx
C and its parent is

evaluated at a node in Gy
C (or vice versa), then we must ship

the result of that node across the edge (x, y).
We capture this using the following partition problem. In

the graph HD, we assign a label to each node based on which
connected component it lies in. All the leaf nodes which lie in
Gx

C are labeled x, and the leaf nodes in Gy
C are labeled y. The

new root node (corresponding to the destination) is labeled

according as well (depending on whether the destination is in
Gx

C or Gy
C). The partition problem is simply to find a cut in the

graph HD that separates the nodes labeled x from the nodes
labeled y.

It is easy to see that this partition problem exactly captures
the communication cost minimization problem for the edge
(x, y). Each edge in HD that is cut (i.e., has different labels
for its endpoints) corresponds to a data movement (of a data
source or an intermediate result) across the edge (x, y). We
illustrate this with two examples.

Example 1: Continuing with the example shown in Figure
4(i), Figure 4(ii) shows the partition problem instantiated for
the edge (B,C) of the communication network. In this case,
node S2 has label B and all the other leaf nodes have label
C (including the node corresponding to the new root, i.e., the
destination lies in the connected component corresponding to
C). By giving both internal nodes of the tree label C, we can
see that there is only one edge, S2 → C, of cost 10 (shown
as a dashed edge) whose endpoints have different labels. This
corresponds to shipping data item S2 across the edge (B,C)
in the communication network, and evaluating all operators at
the nodes in the connected component GC

C .
Example 2: Now consider the example shown in Fig-

ure 4(iii). This is the same query tree, but the labeling now
corresponds to edge (C,D). Note that the only leaf with
label D is S4. With the labeling of the leaves as shown, if
the internal labels are set as C and D for the two internal
nodes then the cost of the solution corresponds to the two
dashed edges shown in the figure since the ends of these edges
have different labels. Note that this corresponds to the cost of
shipping S1 on S2 from C to D and then finally the result
S1 on S2 on S4 back in the other direction.

Steps 1 and 2 for Multiple Queries
Given a set of queries and corresponding query plan trees,
we first add new root nodes to the query trees (corresponding
to the destinations) as above. We then superimpose all the
query trees into a single directed acyclic graph, HQ, where
we merge the leaves carrying the same information together
into a single node. The edges in HQ are oriented from a node



to its parent in a query tree. Let p(v) = {v} ∪ {u|(v, u) ∈
HQ} denote the set of parents of v. We define the hypergraph
HD = (V (HQ)3, {p(v)|v ∈ V (HQ)}), i.e., for each vertex v
in V (HQ), we add a hyperedge containing that vertex and all
its parents in HQ. The weight of hyperedge p(v) is set to be
the size of data item v.

Figure 5(i) shows how this construction is done for the three
query trees in our running example. All three queries share
the data source S2, and we capture this by using a hyperedge
that contains S2 and three appropriate internal nodes from the
query trees. The weight of the hyperedge is set to be the size
of data item S2.

Next consider an edge (x, y) in GC and let Gx
C and Gy

C be
the connected components obtained by deleting (x, y). Once
again we assign a label (x or y) to each of the leaf nodes in
HD depending on which connected component of GC it lies
in; we then find the minimum cost cut that separates the nodes
labeled x from the nodes labeled y.

We denote the minimum weight cut found for edge (x, y)
by C(Axy; Āxy), Axy ⊆ V (HD), Āxy ⊆ V (HD) (with Axy

denoting the set of vertices labeled x).
Example 3: In Figure 5, we show all three queries super-

imposed, with the shared source S2 creating one large hy-
peredge. All the other hyperedges have size 2 and are shown
as regular edges. In Figure 5(ii) we show the labeling for
the edge (C,D) of the communication network GC . Several
source and destination nodes are labeled in advance, and the
hypergraph min-cut computation labels the remaining nodes
optimally. This labeling captures the total communication cost
incurred because of the data shipped across edge (C,D).

For Query 1, S1 on S2 of size 10 is shipped across the edge
(C,D) and the result (S1S2S4) of size 5 is shipped back. In
addition, we pay the cost to ship S2 of size 10 across the edge
(this is the cost of the hyperedge having nodes with label C
and D) so it is part of the cut. In addition, for Query 3, we
pay the cost of shipping S2S5 of size 6 across the edge.

Step 3
The above two steps can be used to find the locally optimal
solutions for each edge in the communication graph. However
these solutions may not be consistent with each other (the
locally optimal solutions for two different edges may not agree
on where the internal nodes should be evaluated).

Let i denote an internal node in the hypergraph HD. We
will construct a directed graph J i with vertex set V (GC), and
edges defined as follows: for e = (x, y) ∈ GC , if i is assigned
label y in the hypergraph cut found above (i.e., if i ∈ Āxy),
then add a directed edge from x to y in GC (and vice versa if
the i is assigned label x). For instance, in the example shown
in Figure 5, J S1S2S4 will contain a directed edge from C to
D (since the node S1S2S4 is assigned label D).

Now we consider a vertex v in J i with out-degree 0. This
implies that the decisions made on all edges incident to v
agree to place i on v; then we simply place the query operator
corresponding to i at v. The input data items for that operator

3V (HQ) denotes the vertex set of HQ.
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are shipped from their respective locations to v. For example,
the internal node S1S2S4 is evaluated at D in our running
example (see Figure 2 for the complete solution), and S1S2,
which is evaluated at C, is accordingly shipped from C to D
(the other input data item S4 is already at D).

In the next section, we will prove there is exactly one such
vertex with out-degree 0 (denoted φ(i)), for every internal
node i ∈ V (HD), under the assumption that each hyper-
graph partition problem has a unique solution (this can be
guaranteed by adding small random perturbations to the data
item sizes [35]). We call such a solution “globally consistent”.
We will also prove that the cost of acquiring the data items
(original data sources or the intermediate results) required to
evaluate the operator corresponding to i at v is accounted for
in the costs of the local hypergraph cuts.

C. Proof of Correctness

We begin with some notation. Let GC = (V,E) denote the
communication graph as before. For an edge (x, y) ∈ GC ,
let Lx

xy and Ly
xy denote the nodes in HD labeled x and

labeled y respectively. As above, we denote the minimum
cut corresponding to e by C(Axy; Āxy) (so we have that
Lx

xy ⊆ Axy and Ly
xy ⊆ Āxy).

Consider two adjacent edges e1(u, v) and e2(v, w) in
the communication network GC . We call C(Auv; Āuv) and
C(Avw; ¯Avw), the minimum weight cuts corresponding to e1
and e2, locally consistent if Auv ⊆ Avw.

The following simple lemma shows that “local consistency”
on every pair of adjacent edges implies that Ji has exactly one
vertex with out-degree 0, ∀i.

Lemma 1: All cuts form a globally consistent solution if
for any two adjacent edges, the two corresponding minimum
cuts are locally consistent.

Proof: First we note that J i is a tree with all its edges
directed (since it is obtained by making each of the edges in



GC directed). It can be shown that any such tree has exactly
one node with out-degree 0 if and only if no two adjacent
edges in J i share the same tail.

For J i to not satisfy the latter property, we must have that,
for a pair of adjacent edges (u, v), (v, w) ∈ GC :

in cut C(Auv; Āuv), i is labeled u (i.e., i ∈ Auv), but
in cut C(Avw; ¯Avw), i is labeled w (i.e., i ∈ ¯Avw).

But if Auv ⊆ Avw, there is no such node. Therefore, J i has
exactly one vertex with 0 out-degree for all i ∈ V (HD).

The next lemma guarantees that local consistency holds for
any pair of adjacent edges.

Lemma 2: We assume the uniqueness of the minimum
cut solutions. Let C(Auv; Āuv) and C(Avw; ¯Avw) be min-
imum solutions for the instances (HD, L

u
uv, L

v
uv) and

(HD, L
v
vw, L

w
vw) respectively where Lu

uv ⊆ Auv and Lv
vw ⊆

Avw. If Lu
uv ∪ Lv

uv = Lv
vw ∪ Lw

vw = L and Lu
uv ⊆ Lv

vw, then
Auv ⊆ Avw.

Proof: Suppose the lemma is not true. Let S be the set
of vertices s such that s /∈ L, s ∈ Auv and s /∈ Avw. It is not
hard to see

w({e|e ∩ S 6= ∅ ∧ e ∩ Āuv 6= ∅ ∧ e ∩ (Auv − S) = ∅})
<w({e|e ∩ S 6= ∅ ∧ e ∩ (Auv − S) 6= ∅ ∧ e ∩ Āuv = ∅})

since otherwise C(Auv−S; Āuv +S) is a better solution than
C(Auv; Āuv). But we have

C(Avw + S; ¯Avw − S) = C(Avw; ¯Avw)
+w({e|e ∩ S 6= ∅ ∧ e ∩ ( ¯Avw − S) 6= ∅ ∧ e ∩Avw = ∅})
−w({e|e ∩ S 6= ∅ ∧ e ∩Avw 6= ∅ ∧ e ∩ ( ¯Avw − S) = ∅})

<C(Avw; ¯Avw).

The inequality holds since:
{e|e ∩ S 6= ∅ ∧ e ∩ ( ¯Avw − S) 6= ∅ ∧ e ∩Avw = ∅}
⊆ {e|e ∩ S 6= ∅ ∧ e ∩ Āuv 6= ∅ ∧ e ∩ (Auv − S) = ∅}

which follows from ¯Avw − S ⊆ Āuv and:
{e|e ∩ S 6= ∅ ∧ e ∩ (Auv − S) 6= ∅ ∧ e ∩ Āuv = ∅}
⊆ {e|e ∩ S 6= ∅ ∧ e ∩Avw 6= ∅ ∧ e ∩ ( ¯Avw − S) = ∅}

which follows from Auv − S ⊆ Avw.

Lemma 3: The cost of moving data items as needed to
execute the query operators is equal to the total cost of the
hypergraph cut solutions.

Proof: Consider an internal node i ∈ V (HD), and let
φ(i) ∈ GC denote the vertex with out-degree 0 in J i. Consider
an edge (x, y) ∈ GC . It is easy to see that if i has label y in
C(Axy; Āxy), then φ(i) ∈ Gy

C .
Let j denote a child of i in HQ (the DAG from which

HD is derived). Now if φ(j) ∈ Gx
C , then we must ship the

data generated by j to φ(i) through (x, y). However since j
is labeled x in that case, the edge (j, i) ∈ E(HD) is cut in
the hypergraph cut C(Axy; Āxy), and the cost of shipping the
data across (x, y) is appropriately counted in the weight of
the hypergraph cut. On the other hand, if φ(j) ∈ Gy

C , then
the data generated by j does not have to be communicated
across (x, y); this is appropriately captured in the hypergraph
cut weight, since the nodes i and j are labeled the same in

that case, and the edge (j, i) is not cut.

Theorem 1: The algorithm finds a global optimum solution.
Proof: It is easy to see that the minimum cut instances

we solve satisfy the condition in Lemma 2. Therefore, we
have local consistency for all adjacent edges from which the
global consistency follows. Since each of the local solutions
is optimal for the corresponding communication edge, the
solution obtained by putting those together is also globally
optimal.

We remark that the above solution cannot be directly
extended to share intermediate results. A natural option would
appear to be to identify and merge the internal nodes that
correspond to the same intermediate result (by adding appro-
priate hyperedges). However, we then disallow the possibility
of not sharing the intermediate result (and instead generating
it independently at different locations) – it is easy to construct
instances where the latter option is optimal.

V. MANY-TO-MANY AGGREGATE QUERIES AND THE
PAIRS PROBLEM

Before moving on to discuss the case when GC is not a
tree, we define a special case of our general problem called
the “pairs” problem, and show how it generalizes the Single
Sink Rent-or-Buy (SROB) problem. We then show how our
algorithm in the previous section can be used to solve the
many-to-many aggregate queries problem [8], and present a
simple proof of correctness.

A. Pairs Problem

We define the pairs problem to be a special case of our
general problem where all queries are restricted to be over two
nodes each, and furthermore, the query results are all of size
0 (in other words, the query results do not need to be shipped
to any sinks). The data items are allowed to be of unequal
sizes. With just two data sources in each query, the issue of
whether partial aggregation is allowed or not is irrelevant.

Definition 1: A query-overlap graph (denoted H) corre-
sponding to an instance of the pairs problem is defined to
be a graph where the vertices correspond to the set of data
items and each edge corresponds to a pair query.

This problem generalizes the Single Sink Rent-or-Buy
(SROB) problem (a generalization of the Steiner tree problem).
In an SROB instance, we are given a graph G = (V,E), a
parameter M > 1, and a set of demands associated with a
subset of vertices D ⊂ V . Each demand j ∈ D has a non-
negative weight dj . A solution consists of a set of facilities
F ⊂ V to be opened, a tree subgraph T of G spanning F ,
and an assignment, f(), of demands to the open facilities (the
demand j is assigned to f(j) ∈ F ).

The total cost of the solution is
∑

j∈D dj · `(j, f(j)) +
M

∑
e∈T ce, where the function ` denotes the shortest path

distance using edge lengths ce. There is no cost for opening
facilities but the open facilities have to be connected together.
This problem was also called the Connected Facility Location
Problem [31]. This problem is NP -hard, and an approximation
algorithm with a factor of 2.92 was presented recently [30].
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Fig. 6. (i) An instance of the pairs problem with 4 queries; (ii) The
corresponding query overlap graph, H, is a star; (iii) Mapping the case when
H is a star to Single Sink Rent-or-Buy (SROB) Problem.

Consider a special case of the pairs problem where H is
a “star” graph. Figure 6(i,ii) shows an example of this. A
solution to this problem requires the center of the star (S1) to
be shipped along a tree and the leaves of the star to be shipped
to the nearest location where S1 is shipped. Figure 6(iii) shows
a possible solution, where S1 is shipped to S8, S9, and S5,
and it meets with S2, S3, S4, and S5 at nodes S9, S9, S8, and
S5 respectively so that the queries can be executed.

If all data items have the same size, then the problem is
exactly equivalent to the Steiner tree problem (Section III-
B). When the data item sizes are unequal, then it reduces
to the SROB problem. T corresponds to the tree along with
the center of the star (S1) travels (M = size of S1). The
demands correspond to the remaining data items referenced
in the queries, and the weight of a demand is set to be the
size of the corresponding data item. Another way to look at the
solution is: we “buy” the edges on which S1 is shipped, and
“rent” the other edges since we pay a fixed cost (M = |S1|)
for the edges on which S1 is shipped and a variable cost
(depending on the sizes of the other items) for the other edges.

B. Many-to-many Aggregate Queries

In the many-to-many aggregate queries problem [8] each
query needs to compute an aggregate function over the values
produced by a subset of the data items, and the result needs
to be transmitted to a specified sink. The data items are
assumed to be identical sizes, and the data may be aggregated
along the way to the sink (the size of the partial aggregate
is assumed to be a constant, and may be different from the
size of a data item). As with our setup, the aggregated values
cannot be shared across queries. Figure 7 (i) shows an example
instance of this problem with two queries, Q1 which computes
an aggregate function over three sources S1, S2, S3, and Q2
which computes an aggregate over sources S3, S4. All data
sources are of unit size, and the size of a partial aggregate for
both queries is assumed to be 2 (corresponding to a function
like AVERAGE). As mentioned before, this problem cannot
be mapped to our general problem directly (because it allows
partial aggregation). Next we show how to reduce this problem

Q11: select * from S1, SR7
Q12: select * from S2, SR7
Q13: select * from S3, SR7

Q1 - sink S7:
select F1(S1, S2, S3) 
from S1, S2, S3

Q2 - sink S6:
select F2(S3, S4) 
from S3, S4

S6S7

S9

S8

S1

S5

S2

S3

S10 S11

S4
(1)

(i) Two aggregate queries

Q21: select * from S3, SR6
Q22: select * from S4, SR6

SR7 SR6

(1)

(1)

(1) (1)
Aggregation 

Sites

00

(ii) Reduction to "pairs" problem (iii) A solution for the reduced problem

Fig. 7. Reducing a set of many-to-many aggregate queries to the “pairs”
problem entails adding a new data source for each query, and replacing each
query with a collection of pair queries (“⇒” indicates the movement of a
partial or complete aggregate in the opposite direction).

to the pairs problem, and then present an algorithm for it.

Let a query Q be an aggregate query over data sources
S1, . . . , Sk, and let the destination be node Sd. We introduce
a new data source, SRd, with size equal to the size of a partial
aggregate for the query, and attach this data source to the node
Sd with a zero cost edge. We then create k “pair” queries:
(S1, SRd), . . . , (Sk, SRd). We then construct an instance of
our (pairs) problem by combining the queries generated for
each of the aggregate queries.

Figure 7 (ii) shows the resulting set of queries for the
example instance, where we introduce the sources SR7 and
SR6 for Q1 and Q2 respectively.

Figure 7 (iii) shows an example solution to the resulting
pairs problem (assuming the size of the partial aggregate to
be the same as the size of a data item). This solution corre-
sponds to a solution for executing the original two queries.
Specifically, the movement of SR6 or SR7 (the new nodes
added to represent the sinks) across an edge corresponds to
a movement of a partial (or full) aggregate in the opposite
direction. For example, in Figure 7 (iii), SR7 is moved across
the edge (S7, S9). This corresponds to movement of the partial
aggregate F1(S2, S3) across the edge (S9, S7). We formalize
this in the following lemma.

Lemma 4: A solution for the resulting pairs problem can
be mapped back to a solution for the original many-to-many
aggregate queries problem with the same cost.

Silberstein-Yang Construction: Our algorithm, based on
solving a hypergraph partition problem for each edge of GC ,
reduces to the algorithm presented by Silberstein and Yang [8].
For each edge (x, y) of GC (treated as a directed edge from
x to y), they construct a bipartite graph where on one side
there are nodes corresponding to the queries, and the other
side has nodes corresponding to the data items. There is an
edge in the bipartite graph between a query node and a data
node if the query needs to aggregate the data item, and if
the query destination (sink) is in Gy

C and the data item is in



Gx
C . They then solve a minimum vertex cover (VC) problem

over this bipartite graph. The main point is that, for a query
Q, either all the data items for it that are in Gx

C are shipped
across the edge (this corresponds to choosing the data items
as part of the minimum vertex cover), or the aggregation is
done first and the result shipped across the edge (the latter
corresponds to the query node being chosen as part of the
minimum vertex cover). The main issue to establish is that
all the Vertex Cover solutions (corresponding to each edge of
GC) can be put together to create an optimal solution for the
entire problem. Next we show a simpler proof of correctness
for this algorithm.

Formally, let us consider two adjacent edges e1 = (u, v) and
e2 = (v, w). Root GC at v. Let T (u) be the subtree rooted at
node u. Let A = V (T (u)), C = V (T (w)), B = V −A−C and
EH(X;Y ) = {(x, y) ∈ E(H)|x ∈ X, y ∈ Y }. Let NG(v) =
{u|(u, v) ∈ E(G)} and NG(S) = ∪v∈SNG(v). Essentially,
for edge e1, we run minimum vertex cover (VC) algorithm on
bipartite graph G1(A,B ∪ C;EH(A;B ∪ C)) and for e2, on
G2(A ∪B,C;EH(A ∪B;C)).

Proof of Correctness: We only need to prove that for any
vertex a ∈ A, if a ∈ V C(G2), then a ∈ V C(G1). The
interpretation of a node a ∈ V C(G2) is that it is shipped
across edge e2. For the solutions to be consistent, we need to
have a also shipped across e1 so that it can be shipped across
e2. Otherwise if the solution for e1 corresponds to aggregating
a and not shipping it across e1, but shipping it across e2 then
they are not consistent.

Suppose this is not true, let S be the set of vertices such
that v ∈ V C(G2) but v /∈ V C(G1). Let U = NG2(S)∩ (C −
V C(G2)). Observe that w(S) < w(U), since if the converse is
true we can replace S with U and obtain a vertex cover in G2

with lower weight (recall that the optimum solution is assumed
to be unique). Since S ∩ V C(G1) = ∅, we get NG1(S) ⊆
V C(G1). Thus U ⊆ V C(G1). We claim that V C(G1)−U+S
is a vertex cover for G1. The key observation here is

NG1(U) ⊆ NG2(U) ⊆ V C(G2) ⊆ V C(G1) ∪ S.

Thus, each edge that cannot be covered by V C(G1) − U
has an endpoint in S. So our claim is true, but this violates
the optimality of V C(G1) since w(V C(G1) − U + S) =
w(V C(G1))− w(U) + w(S) < w(V C(G1)).

VI. CASE WHEN GC IS NOT A TREE

We first present an O(log(n)) approximation obtained by
embedding GC into a tree (using the result on embedding
arbitrary metrics into trees [32], [33]). We are also able
to develop an exact dynamic programming-based algorithm
for when we have only one query plan. We then present
several constant factor approximations for the pairs problem
by restricting the complexity of the query overlap graph H.

A. An O(log n) Approximation for General GC

We use the notation from [33]. Let V be the set of vertices
of a graph, and let d, and d′ be distance functions over V .

The metric (V, d′) is said to dominate the metric (V, d) if
d′(u, v) ≥ d(u, v) for all u, v ∈ V . Let S be a family of
metrics over V , and D a distribution over S. (S,D) is called
a α-probabilistic approximation of (V, d) if every metric in
S dominates (V, d) and Ed′∈(S,D)d

′(u, v) ≤ αd(u, v). A tree
metric is a metric induced by shortest path distances over a
tree.

Theorem 2: [33] For any given metric (V, d), we can pro-
duce a distribution of tree metrics which is an O(log n)-
probabilistic approximation of d in polynomial time.

We sketch our approximation algorithm: suppose (S,D) is
the O(log n) approximation of (V, d). We randomly pick a
tree T from S according to the distribution D. We solve the
problem on T optimally by using the algorithm introduced
earlier for trees. Suppose SOLT is the solution. Now, we map
SOLT back to original graph. Specifically, if an edge e =
(u, v) ∈ T is used for sending i’s (i could be a leaf node or
internal node of some query plan tree) information in SOLT

for i ∈ V (H), we use the shortest path from u to v in GC for
sending i’s information.

First, we claim ET∈S(OPTT ) ≤ O(log n)OPT where
OPTT and OPT are optimal solution in T and GC , respec-
tively. This can be easily shown by seeing that if there is an
optimal solution of cost OPT in GC , then the expected cost
of this solution (expectation taken over the choice of tree)
increases by a factor of O(log n). The cost of an optimal
solution OPTT cannot be more than this cost. Since the tree
metric of T dominates the original metric, we can see the
(expected) cost of our solution is at most ET∈S(OPTT ).

B. Dynamic Programming Algorithm for a Single Query

In contrast with some of the other problems in distributed
query processing (e.g. the many-to-many aggregate queries
problem), our main problem can be solved in polynomial time
for a single query (even if the query contains arbitrary n-
ary operations). This follows from the observation that the
principle of optimality holds in this case, and the optimal
plan can be computed in a bottom-up fashion using dynamic
programming.

For each subtree T in the query tree and for each node v,
we compute the optimal cost of computing and transmitting
the result of T to v (denoted by OPT (T, v)); the final
operation (corresponding to the root of the subtree) may
or may not be done at v. Now, consider a subtree Ti with
c children, T 1

i , . . . , T
c
i . For each node vk, we can easily

compute the optimal cost of computing the result of Ti at vk

using OPT (Tm
i , vk),∀1 ≤ m ≤ c, 1 ≤ k ≤ n, by considering

all possible locations vk for computing the final operation in
Ti. Namely,

OPT (Ti, v) = min
vk∈V

 
cX

m=1

OPT (Tm
i , vk) + w(Ti) · d(vk, v)

!
where w(Ti) is size of the result of Ti. This can be done
in time O(nc), giving us a O(n2m + n3) algorithm for
computing the optimal cost, where m is the number of nodes



in the query tree. The second term accounts for the cost to
compute shortest paths between all pairs of nodes.

C. Approximation Algorithms for the Pairs Problem

We will make use of approximation algorithms for the
Steiner tree problem (when data item sizes are equal) or
the SROB problem (when data item sizes are arbitrary) as
subroutines. Let ρ denote the approximation ratio for the
appropriate problem. As discussed in Section II, the best
known values for ρ for the Steiner tree and SROB problems
are 1.55 [28] and 2.92 [30] respectively.

Our main result is a constant approximation if GC has
constant star arboricity.

Definition 2: The star arboricity SN(G) of a graph G =
(V,E) is the minimum number k such that E can be parti-
tioned into sets E1, E2, . . . , Ek and each connected compo-
nent of Gi = (V,Ei) is a star for 1 ≤ i ≤ k.

Theorem 3: If SN(H) can be computed in polynomial time
we can obtain an ρSN(H)-approximation.

Proof: The algorithm simply first decomposes the query-
overlap graph H into star forests H1, . . . ,HSN(H), solves Hi

separately, then glues together the solutions for allHi together.
It is easy to see that the cost of an optimal solution OPTi

for Hi for any i is at most the cost of an optimal solution
OPT . So, the cost of our approximation is at most

∑SN(H)
i=1 ρ·

OPTi ≤ ρ · SN(H) ·OPT .
The constant approximations for the following special cases

can be obtained by applying the above theorem.
1) H is a tree: It is easy to see that SN(T ) ≤ 2 for any

tree T (by defining the centers of stars as alternate levels
of the tree). So, we have a 2ρ approximation.

2) H is a bounded degree tree: We can solve this case
optimally (in polynomial time) using dynamic program-
ming. The dynamic program is similar to the one we
used to solve single query case in Section VI-B. Suppose
Tv is the subtree rooted at v and v1, . . . , vc are v’s
children. OPT (Tv, u) is the optimal cost for the instance
where H = Tv ∪ {(v, u)} with w(u) = ∞ Then,
OPT (Tv, u) = minu1,...,uc∈V (

∑c
i=1OPT (Tvi

, ui) +
w(v) · MST (u1, . . . , uc, v, u)) where MST (.) is the
cost of minimum Steiner (or SROB) tree connecting all
vertices in its argument (Note that minimum steiner or
SROB trees can be computed in polynomial time for a
constant number of terminals).

3) H has arboricity α: We have a 2αρ approximation4.
4) H is a planar graph: It is known that the arboricity of

any planar graph is at most 3 ([36]). So, we can have a
6ρ approximation.

5) The maximum degree of H is a bounded constant
∆: We can have a ∆-approximation, since we can
decomposeH into at most ∆ bounded degree star forests
(by repeatedly finding a arbitrary spanning star forest
and deleting it).

4The arboricity of a graph is defined in a similar way to the star arboricity,
except that each connected component is required to be a tree, not a star.

IfH is a tree and all data items are equal-sized, we adopt the
following algorithm that performs strictly better than gluing
together Steiner trees for alternating levels of stars: Grow a
Steiner tree bottom up in the following manner: Let T (v) is
the tree grown from v, and v1, v2, . . . , vl are v’s children.
T (v) is the (approx) Steiner tree connecting v and all T (vi)s.
T (v) can be computed by first shrinking all T (vi)s to single
nodes, then run Steiner tree approximation with v and these
shrunk nodes as terminals. We prove in next lemma it is 1.5ρ
approximation if the height of H is at most 2. The question
whether it achieves a ratio strictly better than 2ρ is left open.

Lemma 5: The above algorithm is a 1.5ρ-approximation
when H has maximum height 2 (see Appendix for the proof).

VII. EXPERIMENTAL RESULTS

In this section, we present a preliminary performance eval-
uation of the algorithms presented in this paper over syntheti-
cally generated datasets and query workload. The main goals
of our evaluation are to illustrate the importance of sharing
data movement during multi-query optimization in distributed
systems, and to show the effectiveness of our approximation
algorithms at finding good sharing plans. We begin with a
brief description of the experimental setup.

In all the experiments, we compare the performance of
our proposed algorithms with the approach of optimizing
each query optimally in isolation using the DP algorithm
described in Section VI-B (called IND-DP). When using the
latter approach, although we don’t try to explicitly share
data movement, any incidental sharing is accounted for when
computing the total communication cost. For each experiment,
we also compute the optimal cost of a NAIVE approach
wherein the data from all data sources that are referenced
in the queries, is collected at a single site. We use the cost
incurred by this NAIVE approach to normalize the costs of
our algorithm and IND-DP, and report these normalized costs.

For each of the experiments, we randomly generate a set
of data sources, distributed in a 2-dimensional plane, and we
add communication edges between pairs of sources that are
sufficiently close to each other. If the communication network
is required to be a tree, we compute the minimum spanning
tree of the communication network and discard the rest of the
edges. We report results for two different setups:
• Dataset 1: The sizes of all the data sources were set to

be identical; this captures application domains such as
sensor networks and distributed streams, where the data
sources generate equal amounts of data in each time step.

• Dataset 2: The data source sizes were randomly chosen
from a tri-modal distribution as follows: for 75% of the
data sources, the data item sizes were chosen uniformly
at random from the interval [100, 200], for 20% of the
data sources, the sizes were chosen from [1000, 2000],
whereas for the remaining 5% data sources, the sizes were
chosen from the interval [10000, 20000].

The query workload is randomly generated by choosing each
query to be over a random subset of the sources, with the
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Fig. 8. Results for when the communication network is a tree: the costs of HYPR and IND-DP are normalized using the cost of the NAIVE solution.
LOCAL refers to a query workload where the queries are restricted to be over geographically co-located sources.

number of sources in it chosen randomly between 2 and max-
query-size (an experimental parameter). We also experiment
with a query workload where all queries are chosen to be over
geographically co-located sources (denoted LOCAL); this is
enforced by requiring that all the sources in a query be within
a specified distance of each other. Each plotted point in the
graphs corresponds to an average over 25 random runs.

A. GC is a Tree

With the first set of experiments, we compare the per-
formance of our hypergraph-based algorithm (HYPR) with
IND-DP. As mentioned above, we restrict the communication
network to be a tree by finding the minimum spanning tree
and deleting all edges that are not part of the MST.

We ran experiments with several values of the experimental
parameters, and report the results from a representative set of
experiments in Figure 8. In these experiments, compare the
performance of the two algorithms as the number of nodes
(default value: 100), number of queries (default value: 50),
and the max-query-size (default value: 5) were varied.

Figures 8 (i) and (ii) show the effect of increasing the
number of queries on the performance of the two algorithms
for the two datasets and for the two query workloads. As we
can see, in all four cases, the communication cost incurred by
our approach (HYPR) is significantly lower than the costs of
the other two approaches (IND-DP or NAIVE); this validates
our assertion that sharing of data movement is paramount
when executing many queries over distributed data sources.
The performance of HYPR and NAIVE illustrates several
interesting features. As the number of queries is increased,
there is a point at which the optimal solution degenerates to
NAIVE (i.e., the optimal solution requires collecting all data at
a central location). This is especially true for Dataset 1 (equal-
sized data sources) and non-local queries. Since the query may
involve data sources that are far from each other, the total
amount of data movement required to execute the queries is
quite high, and the NAIVE option soon becomes preferable.

Dataset 2 however penalizes the NAIVE approach signifi-
cantly – it contains several very large data sources (about 5),
because of which the optimal solution typically collects the
rest of the data sources at those locations and evaluates the
queries there; on the other hand, NAIVE is forced to move all
but one of those data sources, thus incurring a high penalty.

For both datasets, the performance of IND-DP and HYPR is
much better than NAIVE for the LOCAL query workload; the
NAIVE solution forces a much higher data movement than
required to execute such local queries.

Figures 8 (iii) and (iv) show the results of experiments
where the number of nodes in the network, and the max-query-
size were varied, for Dataset 2. As we can see, HYPR contin-
ues to outperform both NAIVE and IND-DP by large margins
across a range of values of the experimental parameters.

B. GC is a not a Tree

In this case, we restrict ourselves to the case when all
queries are of size 2. IND-DP once again optimizes each
query optimally but independently from the other queries.
We compare it against an approach that greedily chooses the
largest star in the query overlap graph, and uses the Steiner
tree-based algorithm (STN) presented in Section VI. We use
the 11/6 approximation by Zelikovsky [29] for computing
Steiner trees. We would like to note that this algorithm does
not take the data item sizes into consideration, and hence is
not expected to perform well for Dataset 2.

In Figures 9 (i) and (ii), we report the results for the two
datasets, Dataset 1 and Dataset 2, and for the two query
workloads. As we can see, for Dataset 1, STN always performs
better than IND-DP for both query workloads, and both of
them find much better solutions than NAIVE for the LOCAL
query workload. However, both STN and IND-DP perform
worse than NAIVE for the non-local query workload for larger
numbers of queries. As expected, STN performs much worse
than IND-DP and NAIVE for Dataset 2.

In Figure 9 (iii), we compare the performance of the
three algorithms for the case when the query overlap graph
is restricted to be a tree. Note that this limits the number
of queries to 99 (= number-of -data-sources − 1). As we
can see, STN performs significantly better than IND-DP, but
approaches NAIVE as the number of queries approaches its
upper limit. Finally in Figure 9 (iv), we report the performance
of the algorithms as the number of data sources is varied.
The number of queries was set to be half the number of data
sources. As we can see, the comparative performance of the
algorithms is quite consistent across a range of network sizes.
We observed similar behavior for other parameter settings.
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Fig. 9. Results for the general case - all queries are restricted to be over two sources each

Our experimental evaluation for the general case suggests
that the best option might be to run all three algorithms, and
take the best solution among those. Development of better
algorithms, with guaranteed approximation ratios, is clearly
an open and fertile area of further research.

VIII. CONCLUSIONS

In recent years we have seen a rise in distributed query
processing driven by an increasing number of distributed mon-
itoring and computing infrastructures. In many of these envi-
ronments the communication cost forms the chief bottleneck.
In environments such as sensor networks, the communication
cost directly affects the energy consumption of the sensing
devices and dictates the lifetime of the network. In Internet-
scale environments such as scientific federations, the network
bandwidth is the limiting factor. In this paper we addressed
the problem of optimizing data movement when executing
a large number of queries over distributed data sources. We
presented a framework for analyzing this problem by showing
the similarities between several variations of the problem. Our
main contribution is a new algorithm for finding an optimal
sharing plan when the communication is restricted to be along
a tree. This algorithm also allows us to develop a O(log(n))
approximation algorithm for general communication graphs.
We also develop several approximation algorithms for special
cases of the problem. Interestingly, even some very special
cases correspond to well studied problems in the literature.
Our preliminary experimental analysis shows that sharing of
data movement is critical when executing a large number of
queries over distributed data sources.

Our work has opened up many avenues for further research.
Although we exploit sharing of base data sources, we do
not consider sharing of intermediate results. Incorporating
intermediate result sharing, load balancing, and join order
optimization into our framework for multi-query optimization
remains a rich area for further research. Our algorithms assume
that the set of queries to be executed is provided as the input;
in practice, we expect the queries to arrive one-by-one and we
plan to address the issue of developing online algorithms to
handle such scenarios.
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APPENDIX

NP-HARDNESS FOR REPLICATED DATA SOURCES

The reduction is from the Set Cover problem [37]. In an
instance of that problem, we are given a collection C of subsets
of a finite set S, and we are asked to find the minimum
cardinality set cover, i.e., a subset C ′ ⊆ C such that every
element in S belongs to at least one member of C ′.

We construct an instance of our problem as follows. The
communication network contains a special node r, and for
every set Si ∈ C, we add a node vi and connect it to r with
a unit-weight edge. Furthermore, for every set Si ∈ C, for
every element s ∈ Si, we add a node and connect it to vi

using a zero-weight edge. Thus, for each element s ∈ S, we
have as many nodes as the number of sets in C that contain
s – all these nodes are assigned the same data item, denoted
Ss. Finally, the root is assigned a data item Sr. All data items
are of unit size.

We are asked to evaluate |S| queries: {Ss, Sr} for all s ∈ S.
It is easy to see that the optimal solution to this instance of

our problem has the same cost as the optimal solution for the
set cover problem.

PROOF OF LEMMA 5

Suppose v is the root ofH and v1, v2, . . . , vk are its children
and vijs are vi’s children. Let OPT = {T o

v , T
o
v1
, T o

v2
, . . .}

be an optimal solution and SOL = {Tv, Tv1 , Tv2 , . . .}. Let
the vertex Ji be the meeting point of T o

v and T o
vi

for all i.
Suppose

∑
i dis(vi, Ji) = αOPT for some constant 0 ≤ α ≤

1. It is easy to see that T o
v = OPT −

∑
i T

o
vi
≤ OPT −∑

i dis(vi, Ji) = (1−α)OPT . First, we can see our algorithm
is a (1 + α)ρ-approximation algorithm. Let SP (a, b) be the
shortest path from a to b. Combining Tv and shortest paths
SP (Ji, vi) gives us a Steiner tree (may have some cycles)
spanning v and all vis.

Let AS(v, Tv1 , Tv2 , . . .) be an approximate Steiner tree on
the specified set of terminals and MS(v, Tv1 , Tv2 , . . .) be an

optimal Steiner tree on the same set of terminals.

Tv =AS(v, Tv1 , Tv2 , . . .) ≤ ρ ·MS(v, Tv1 , Tv2 , . . .)

≤ ρ ·MS(v, v1, v2, . . .) ≤ ρ · (T o
v +

∑
i

dis(vi, Ji))

So

SOL= Tv +
∑

i

Tvi
≤ ρ · (T o +

∑
i

dis(vi, vj) +
∑

i

T o
vi

)

= (1 + α)ρ ·OPT.

W.l.o.g we can assume OPT has the following property:
all leaves in T o

vi
are terminals (not Steiner points). It is

easy to see that there always exists a terminal si ∈ V (H)
which is descendant of Ji in T o

vi
(rooted at vi). We also

find dis(si, Ji) + dis(Ji, vi) ≤ T o
vi

, thus
∑

i dis(si, Ji) ≤∑
i T

o
vi
−

∑
i dis(Ji, vi) ≤ (1− α)OPT . So,

MS(v, Tv1 , Tv2 , . . .) ≤MS(v, s1, s2, . . .) ≤ T o
v +

∑
i

dis(Ji, si)

where the last inequality holds since T o
v combined with all

SP (Ji, si)s is a Steiner tree spanning v and all sis. Now, we
can show our final solution:

SOL= Tv +
X

i

Tvi = AS(v, Tv1 , . . .) +
X

i

AS(vi, vi1, vi2, . . .)

≤ ρ · (MS(v, Tv1 , . . .) +
X

i

MS(vi, vi1, vi2, . . .))

≤ ρ · (T o
v + (1− α)OPT +

X
i

T o
vi

) = ρ · (2− α) ·OPT.

Thus we have:

SOL ≤ ρ ·OPT ·min(1 + α, 2− α) ≤ 1.5ρ ·OPT


