Consensus Answers for Queries over Probabilistic Databases

Jian Li and Amol Deshpande
University of Maryland, College Park, USA
Probabilistic Databases

- Motivation: Increasing amounts of uncertain data
 - Sensor Networks; Information Networks
 - Noisy input data; measurement errors; incomplete data
 - Prevalent use of probabilistic modeling techniques
 - Data Integration and Information Extraction
 - Need to model reputation, trust, and data quality
 - Increasing use of automated tools for schema mapping etc.
- ...

- Probabilistic databases
 - Annotate *tuples* with existence probabilities, and *attribute values* with probability distributions
 - Propagate probabilities through query execution
 - Interpretation according to the "possible worlds semantics"
Semantics of Query Processing

Prob DB: D

All Possible Worlds:
- pw1,
- pw2,
-

Exponential Size !!

should be efficient

Answer(D)

combine

All Possible Answers:
- Answer(pw1),
- Answer(pw2),
-

Query
Semantics of Query Processing

How to Combine?

- Allow probabilistic answers.
 - Return all possible tuples along with prob. [Dalvi, Suciu ’04]
 - Return tuples with annotations [Green et al. ’06]

- What if we want a single deterministic answer?
 - Probabilistic thresholding [Dalvi, Suciu ’04]
 - Return all tuples s.t. t appears in the answer w.p. >=Threshold
 - Sampling
 - Top-k queries?
Semantics of Top-k Queries

<table>
<thead>
<tr>
<th>pw 1:</th>
<th>pw 2:</th>
<th>pw 3:</th>
<th>pw 4:</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>t_1</td>
<td>t_2</td>
<td>t_2</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>t_3</td>
<td>t_3</td>
<td>t_4</td>
<td>...</td>
</tr>
<tr>
<td>t_3</td>
<td>t_4</td>
<td>t_5</td>
<td>t_5</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Many prior proposals for combining them
 - U-top-k, U-rank-k [Soliman et al. ’07]
 - Probabilistic Threshold (PT-k) [Hua et al. ’08]
 - Global-top-k [Zhang et al. ’08]
 - Expected Rank [Cormode et al. ’09]
 - Parameterized Ranking Function (PRF) [Li et al. ’09]

But, formal semantics are lacking.
Consensus Answers

- Think of each possible answer as a point in the space. Suppose $d()$ is a distance metric between answers.
- **Consensus Answers:**
 - A single deterministic answer

 $$\tau = \arg \min_{\tau' \in \Omega} \{ \mathbb{E}[d(\tau', \tau_{pw})] \}.$$

 where τ_{pw} is the answer for the possible world pw

- **Mean Answers:** Ω is the set of feasible answers
- **Median Answers:** Ω is the set of possible answers
Consensus Answers

answer 1
w.p. 0.1

answer 2
w.p. 0.3

answer 3
w.p. 0.15

answer 4
w.p. 0.2

answer 5
w.p. 0.05

answer 6
w.p. 0.2

the mean
answer

the median
answer

Centroid / Center of Mass
Related Work

• Rank Aggregation [Dwork et al. ’01], [Ailon ‘07]
 • Original work in voting systems [Condorcet ‘1785]
 • Goal: Combine rankings provided by different experts

• Consensus Clustering [Ailon et al. ’08]
 • Goal: Aggregate a set of clusterings to minimize the disagreements

• Probabilistic Query Processing
 • Dichotomy result: Conjunctive query evaluation is either PTIME or #P-Complete [Dalvi, Suciu ’04]
 • Finding consensus answers a much harder problem (NP-hard even if there is a safe plan)
Outline

- Problem Definition: Consensus Answers
- Models: BID, Probabilistic and/or xor tree
- Set Distance Metrics
- Top-k Queries
- Other Types of Queries
- Conclusion
Probabilistic Database Models

- **Tuple-independence Model**
 The existence of each tuple is independent of other tuples

- **Block-independent Disjoint (BID) Scheme**

<table>
<thead>
<tr>
<th>Key</th>
<th>Attr 1</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>950</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Tuples with the same key are mutually exclusive.
Probabilistic Database Models

- Probabilistic And/Xor Trees
 - Capture two types of correlations: mutual exclusivity and coexistence.

Probabilistic And/Xor Trees

And node:

Xor nodes:

<table>
<thead>
<tr>
<th>Possible Worlds</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,150)</td>
<td>0.02</td>
</tr>
<tr>
<td>(3,200)</td>
<td>0.08</td>
</tr>
<tr>
<td>(1,500);(2,20);(3,150)</td>
<td>0.03</td>
</tr>
<tr>
<td>(1,950);(2,20);(3,150)</td>
<td>0.018</td>
</tr>
<tr>
<td>......</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Database Models

- Probabilistic And/Xor Trees
 - Capture two types of correlations: mutual exclusivity and coexistence.

\[\text{And node: } \land \]
\[\text{Xor nodes: } \lor \]

Possible Worlds	Pr
(3,150) | 0.02 |
(3,200) | 0.08 |
... |
(1,500);(2,20);(3,150) | 0.03 |
(1,950);(2,20);(3,150) | 0.018 |
... |
\[(1-0.5-0.3)*(1-0.3-0.2)*0.2 = 0.02 \]
Probabilistic Database Models

- Probabilistic And/Xor Trees

And nodes:

Xor node:

Possible Worlds

<table>
<thead>
<tr>
<th>Possible Worlds</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,20);(2,50)</td>
<td>0.5</td>
</tr>
<tr>
<td>(2,20);(3,35)</td>
<td>0.3</td>
</tr>
<tr>
<td>(1,30);(3,25)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- And/Xor trees can represent any finite set of possible worlds (not necessarily compact).
Computing Probabilities on And/Xor Trees

Generating Function Method:

Leaves: x, y, x, z

And Node:

\[
\Lambda F_1(x,y,...)F_2(x,y,...)F_3(x,y,...)
\]

\[
F_1(x,y,...) \quad F_2(x,y,...) \quad F_3(x,y,...)
\]

Xor Node:

\[
\vee q + p_1 F_1(x,y,...) + p_2 F_2(x,y,...) + p_3 F_3(x,y,...)
\]

\[
p_1 \quad p_2 \quad p_3 \quad q = 1 - p_1 - p_2 - p_3
\]

\[
F_1(x,y,...) \quad F_2(x,y,...) \quad F_3(x,y,...)
\]
Computing Probabilities on And/Xor Trees

Generating Function Method:

Root: \[F(x, y, \ldots) = \sum_{i, j, \ldots} c_{ij, \ldots} x^i y^j \ldots \]

THM: The coefficient \(c_{ij, \ldots} \) of the term \(x^i y^j \ldots \) = total prob of the possible worlds which contain

- \(i \) tuples annotated with \(x \),
- \(j \) tuples annotated with \(y \), ….
Computing Probabilities on And/Xor Trees

Example: Computing the prob. dist. of the size of the pw

\[(0.2+0.8x)(0.5+0.5x)x = 0.4x^3 + 0.5x^2 + 0.1x\]

<table>
<thead>
<tr>
<th>Size of pw</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Computing Probabilities on And/Xor Trees

Example: Computing the rank distribution

\[r(i) : \text{the rank of tuple } i. \]
\[r(i)=j \text{ if and only if (1) } j-1 \text{ tuples with higher scores appear} \]
\[(2) \text{ tuple } i \text{ appears} \]

\[Pr(r(i)=j) = \text{coeff of } x^{j-1}y \]
Outline

- Problem Definition: Consensus Answers
- Models: BID, Probabilistic and/or tree
- Set Distance Metrics
- Top-k Queries
- Other Types of Queries
- Conclusion
Set Distance Metrics

- Think of the relations (either existing or results of conjunctive queries) as sets.

- Symmetric Difference:

 \[d_\Delta(\tau_1, \tau_2) = |(\tau_1 \setminus \tau_2) \cup (\tau_2 \setminus \tau_1)| = |(\tau_1 \cup \tau_2) \setminus (\tau_1 \cap \tau_2)| \]

THM: The mean answer under the symmetric difference distance is the set of all tuples with probability >0.5.

THM: For conjunctive queries over tuple independent databases, finding the median answer under the symmetric difference distance is NP-Hard (even if the query has a safe plan).

Reduction from MAX-2-SAT
Set Distance Metrics

- Jaccard Distance

\[d_J(S_1, S_2) = \frac{|S_1 \Delta S_2|}{|S_1 \cup S_2|}. \]

- LM: For tuple independent databases, if the mean world contains tuple \(t_1 \) but not tuple \(t_2 \), then \(\Pr(t_1) > \Pr(t_2) \).

- Hence, suffices to sort by probabilities, and consider prefixes

- LM: For any fixed world \(W \), \(E[d_J(W,pw)] \) can be computed in polynomial time (using generating functions)

- Gives us a polynomial time algorithm
Outline

- Problem Definition: Consensus Answers
- Models: BID, Probabilistic and/or tree
- Set Distance Metrics
- Top-k Queries
- Other Types of Queries
- Conclusion
Top-k Queries

Symmetric Difference and Probabilistic Threshold Top-k (PT-k)

Mean answer under \(d_{\Delta}(\tau_1, \tau_2) = \frac{1}{2k} |\tau_1 \Delta \tau_2| \)

- Find a k-tuple set \(\mathcal{T} \) minimizing \(E[d_{\Delta}(\tau, \tau_{pw})] \)

PT-k: Find k tuples with largest \(\Pr(r(t) \leq k) \)

THM: The two definitions are equivalent.
Top-k Queries

- Intersection Metric: [Fagin et al ’03]

\[d_I(\tau_1, \tau_2) = \frac{1}{k} \sum_{i=1}^{k} d_\Delta(\tau_1^i, \tau_2^i) \]

\(\tau^i \): top-\(i\) tuples of \(\tau\)

e.g. \(\tau_1: 5 \ 4 \ 6 \ 3 \ 1\)
\(\tau_2: 5 \ 6 \ 2 \ 7 \ 3\)

\[d_I(\tau_1, \tau_2) = 1/5(0 + 1/4*2 + 1/6*2 + 1/8*4 + 1/10*4) \]
Top-k Queries

- Intersection Metric: [Fagin et al ’03]

\[d_I(\tau_1, \tau_2) = \frac{1}{k} \sum_{i=1}^{k} d_\Delta(\tau_1^i, \tau_2^i) \]

For any fixed top-k answer \(\tau \), we have

\[E[d_I(\tau, \tau_{pw})] = \frac{1}{k} \sum_{i=1}^{k} E[d_\Delta(\tau^i, \tau_{pw}^i)] \]

\[= \frac{1}{k} \sum_{i=1}^{k} \frac{1}{i} \left(k + \sum_{t \in T} \Pr(r(t) \leq k) - 2 \sum_{t \in \tau^i} \Pr(r(t) \leq i) \right) \]

Thus we need to find \(\tau \) which maximizes

\[A(\tau) = \sum_{i=1}^{k} \left(\frac{1}{i} \sum_{t \in \tau^i} \Pr(r(t) \leq i) \right). \]
Top-k Queries

- Intersection Metric: [Fagin et al ’03]

\[A(\tau) = \sum_{t \in T} \sum_{j=1}^{k} \left(\delta(t = \tau(j)) \sum_{i=j}^{k} \frac{1}{i} \Pr(r(t) \leq i) \right) \]

Where \(\delta(true) = 1 \) and \(\delta(false) = 0 \)

Reduce to the Max-weight Matching Problem:

ranks: 1 2 3 \(\cdots \) i \(\cdots \) k

tuples: \(t_1 \) \(t_2 \) \(t_3 \) \(t_4 \) \(\cdots \) \(t_j \) \(\cdots \) \(t_n \)

\[f(t, i) = \sum_{i=j}^{k} \frac{1}{i} \Pr(r(t) \leq i) \]
Top-k Queries

- **Spearman’s Footrule** [Fagin et al. ’03]
 - Extension of traditional footrule distance to partial rankings
 \[
 d_F(\tau_1, \tau_2) = (k + 1)|\tau_1 \Delta \tau_2| + \sum_{t \in \tau_1 \cap \tau_2} |\tau_1(t) - \tau_2(t)| - \sum_{t \in \tau_1 \setminus \tau_2} \tau_1(t) - \sum_{t \in \tau_2 \setminus \tau_1} \tau_2(t).
 \]
 - Polynomial time algorithm (by reduction to min-cost matching)

- **Kendall’s tau Distance** [Fagin et al. ’03]
 - Measures the number of inversions
 - NP-hard [Dwork et al ’01]
 - Even for only four possible worlds
 - 3/2-approximation
 - By adapting the algorithm by [Ailon ’07]

Open question: The complexity for a tuple independent DBs
Outline

• Problem Definition: Consensus Answers
• Models: BID, Probabilistic and/xor tree
• Set Distance Metrics
• Top-k Queries
• Other Types of Queries
• Conclusion
Other Types of Queries

- **Aggregate Queries**
 - `SELECT groupname, count(*) FROM R GROUP BY groupname`
 - Distance: squared vector distance
 - **Mean answer** is trivial: take average count for each group
 - **Median answer**: 4-approximation

- **Clustering**
 - A somewhat simplified model
 - Distance: consensus clustering distance
 - 4/3-approximation for finding the mean clustering
Conclusion

• Proposed the notion of Consensus Answers for probabilistic databases
 • Lends precise and formal semantics to query answers

• Algorithms for finding consensus answers for many queries
 • For the rich probabilistic and/xor tree model

• **Future work:**
 • Examining utility of consensus answers in practice
 • Handling other types of queries: range queries, frequent items, clustering
 • Finding connections to existing query processing semantics
Thanks.