
Techniques and Processes for Improving the
Quality and Performance of Open-Source Software

Cemal Yilmaz, Atif M. Memon, Adam Porter Arvind S. Krishna, Douglas C. Schmidt, Aniruddha Gokhale

University of Maryland Vanderbilt University
College Park, MD Nashville, TN

Abstract

Open-source development processes have emerged as an
effective approach to reduce cycle-time and decrease design,
implementation, and quality assurance costs for certain
types of software, particularly systems infrastructure soft-
ware, such as operating systems, compilers and language
processing tools, editors, and middleware. This paper pre-
sents two contributions to the study of open-source software
processes. First, we describe key challenges of open-source
software and illustrate how quality assurance (QA) proc-
esses – specifically those tailored to open-source develop-
ment – help mitigate these challenges better than traditional
closed-source processes do. Second, we summarize results
of empirical studies that evaluate how our distributed con-
tinuous quality assurance (DCQA) techniques and processes
help to resolve key challenges of developing and validating
open-source software. Our results show that: (1) creating
models and setting up the DCQA process improves devel-
oper understanding of open-source software, (2) improving
test diversity in terms of platform configurations helps to
find defects missed during conventional testing, and (3) cen-
tralizing control of QA activities helps to eliminate redun-
dant QA work.

1. Introduction
1.1. Enablers of Open-Source Success

Over the past decade, open-source development processes
[O’Reilly98] have demonstrated their ability to reduce cy-
cle-time and decrease design, implementation, and quality
assurance (QA) costs for certain types of software, particu-
larly infrastructure software, such as operating systems, web
servers, middleware, language processing tools, and sys-
tem/network support tools. These projects generally exhibit
common properties. First, they are general-purpose, com-
moditized systems infrastructure software, whose re-
quirements and APIs are well known. For example, the re-
quirements and APIs for Linux, Apache, C/C++ compil-
ers/linkers, and JBoss middleware are well understood, so
less time and effort is needed for upstream software devel-
opment activities, such as requirements analysis or interface
specifications. Second, they service communities whose
software needs are unmet by, or are economically unappeal-
ing to, mass-market software providers. For example, the
Linux-based Beowulf clusters and the Globus middleware
for Grid computing were developed in the scientific comput-
ing community in part because their high-end computing

applications run on specialized and relatively poorly served
platforms. Finally, they are often applied by relatively so-
phisticated user communities, who have considerable soft-
ware development skills and knowledge of development
tools (such as debuggers, configuration managers, bug
tracking systems, memory leak/validation tools, and per-
formance profilers) and collaboration mechanisms (such as
web/ftp-sites, mailing lists, NetMeeting, and instant messag-
ing). So when they encounter bugs or software configuration
problems they can fix the problems and submit patches.

From a software perspective, the open-source projects out-
lined above have generally succeeded for the following rea-
sons:

• Scalable division of labor. Open-source projects work by
exploiting a “loophole” in Brooks’ Law [Brooks75] that
states “adding developers to a late project makes it later.”
In contrast, software debugging and QA productivity does
scale up as developer headcount increases. This is because
all other things being equal, having more people test the
code will identify the “error-legs” much more quickly
than having fewer testers. So we would expect a team of
1,000 testers to find many more bugs than a team of 10
testers, a phenomenon which is commonly referred to as
“to enough eyeballs, all bugs are shallow” in the open-
source community [O’Reilly98]. QA activities also scale
better than software development activities (particularly
analysis and design activities) since they do not require as
much inter-personal communication.

As a result successful open-source projects are often or-
ganized into a “core” and “periphery” structure. A rela-
tively small number of core developers are responsible for
ensuring the architectural integrity of the project, e.g.,
they vet user contributions and bug fixes, add new fea-
tures and capabilities, and track day-to-day progress on
project goals and tasks. In contrast, the periphery consists
of the hundreds or thousands of user community members
who help test and debug the software released periodically
by the core team. Naturally, these distinctions are informal
and developers can play different roles at different times.

• Short feedback loops. One reason for the success of
well-organized, large-scale open-source development ef-
forts, such as Linux or ACE+TAO, is the short feedback
loops between the core and the periphery. For example,
for these systems it often takes just a few minutes or hours
to detect a bug at the periphery report it to the core and re-

ceive an official patch. Moreover, the use of Internet-en-
abled configuration management tools, such as the GNU
Concurrent Versioning System (CVS) or Subversion, al-
lows open-source users in the periphery to synchronize in
real-time with updates supplied by the core.

• Effective leverage of user community expertise and
computing resources. In today's time-to-market-driven
economy, fewer software providers can afford long QA
cycles. As a result, nearly everyone who uses a computer
– particularly software application developers – is effec-
tively a beta-tester of software that was shipped before all
its defects were removed. In traditional closed-
source/binary-only software deployment models, these
premature release cycles yield frustrated users, who have
little recourse when problems arise. Since they are often
limited to finding workarounds for problems they encoun-
ter, they may have little incentive to help improve closed-
source products.

In contrast, open-source development leverages expertise
in their communities, allowing users and developers to
collaborate to improve software quality. For example,
short feedback loops encourage users to help with the QA
process since they are “rewarded” by rapid fixes. More-
over, since the source code is available, users at the pe-
riphery can often either fix bugs directly or can provide
concise test cases that help isolate problems quickly. User
efforts therefore greatly magnify the debugging and com-
puting resources available to an open-source project,
which can improve software quality if harnessed effec-
tively.

• Inverted stratification of available expertise. In many
organizations, testers are perceived to have lower status
than software developers. In contrast, open-source devel-
opment processes often invert this stratification so that the
“testers” in the periphery are often excellent software ap-
plication developers who use their considerable debug-
ging skills when they encounter occasional problems with
the open-source software base. The open-source model
thus makes it possible to leverage the talents of these
gifted developers, who might not ordinarily act as testers
in traditional software organizations.

• Greater opportunity for analysis and validation. Open-
source development techniques can help improve software
quality by enabling the use of powerful analysis and vali-
dation techniques, such as whitebox testing and model
checking, that require access to the source code. For ex-
ample, see [Zeller02] and [Michail05]) who have em-
ployed analysis and testing techniques to find bugs in
open-source software.

In general, traditional closed-source software development
and QA processes rarely achieve the benefits outlined above
as rapidly or as cost effectively as open-source processes.

1.2. Problems with Current Open-Source Processes

Open-source projects have had notable successes in the sys-
tems infrastructure software domains for the reasons de-
scribed in Section 1.1. Our experience working on a wide-
range of open-source projects [GPERF90, TAO98, JAWS99,
ACE01, CoSMIC04] for the past two decades has shown,
however, that the open-source development model also cre-
ates significant problems in maintenance and evolution:1

• Problem 1: Hard to maintain software quality in the
face of short development cycles. The goals of open-
source software development aren’t unique, i.e., limit re-
gression errors (e.g., avoid breaking features or degrading
performance relative to prior releases), sustain end-user
confidence and good will, and minimize development and
QA costs. It can be hard, however, to ensure consistent
quality of open-source due to the short feedback loops be-
tween users and core developers, which typically result in
frequent “beta” releases, e.g., several times a month. Al-
though this schedule satisfies the end-users who receive
quick patches for bugs they found in earlier betas, it can
be frustrating to other end-users who want more stable,
less frequent software releases.

• Problem 2: Lack of global view of system constraints.
Large-scale open-source projects often have a high-rate of
churn in contributors and infrastructure. Users may en-
counter problems, examine the source code, pro-
pose/apply fixes locally, and then submit the results back
to the core team for possible integration into the source
base. These users, however, are rarely knowledgeable
about the entire architecture of the open-source software
system. As a result, they lack a global view of broader
system constraints that may be affected by any given
change.

• Problem 3: Unsystematic and redundant QA activities.
Many popular open-source projects (such as GNU GCC,
CPAN, Mozilla, the Visualization Toolkit, and
ACE+TAO) distribute regression test suites that end-users
run to evaluate installation success. Users can – but fre-
quently do not – return the test results to project develop-
ers. Even when results are returned to developers, how-
ever, the testing process is often undocumented and un-
systematic, e.g., developers have no record of what was
tested, how it was tested, or what the results were, which
loses crucial QA-related information. Moreover, many
QA configurations are executed redundantly by thousands
of developers, whereas others are never executed at all.

• Problem 4: Lack of diversity in test environments.
Well-written open-source software can be ported easily to
a variety of operating system (OS) and compiler plat-
forms. In addition, since the source is available, end-users
can modify and adapt their source base readily to fix bugs

1 More discussions of failed open-source projects are available at
www.isr.uci.edu/research-open-source.html and
www.infonomics.nl/FLOSS/report.

quickly or to respond to new market opportunities with
greater agility. Support for platform-independence, how-
ever, can yield the daunting task of keeping an open-
source source software base operational despite continu-
ous changes to the underlying platforms. In particular, in-
dividual developers may only have access to a limited
number of OS/compiler configurations, which may cause
them to release code that has not been tested thoroughly
on all platform configurations on which their software
needs to run.

• Problem 5: Manually intensive execution of QA proc-
esses. Source availability encourages developers to in-
crease the number of options for configuring and subset-
ting the software at compile-time and run-time. Although
this flexibility enhances the software’s applicability for a
broad range of use cases, it can also greatly magnify QA
costs. Moreover, since open-source projects often run on a
limited QA budget due to their minimal/non-existent li-
censing fees, it can be hard to support large numbers of
versions and variants simultaneously, particularly when
regression tests and benchmarks are written and run
manually.

As open-source software systems evolve, the problems out-
lined can compound, resulting in systems that are defective,
bloated, and hard to maintain. For example, the inability to
regression test a broad range of potential configurations
increases the probability that certain configurations of fea-
tures/options may break in new releases, thereby reducing
end-user confidence and increasing subsequent development
and QA costs. Without remedial action, therefore, the open-
source user communities may become smaller (due to frus-
tration with software quality) until the software falls out of
use. Until these types of problems are addressed adequately,
it will be hard to deliver on the promise of open-source
processes.

1.3. Addressing Open-Source Challenges with Skoll

To address the problems with open-source software devel-
opment described in Section 1.2, we have developed Skoll
[Skoll04], which is a distributed continuous quality assur-
ance (DCQA) environment for developing and validating
novel software QA processes and tools that leverage the
extensive computing resources of worldwide user commu-
nities in a distributed, continuous manner to significantly
and rapidly improve software quality. In particular, Skoll
provides an integrated set of technologies and tools that run
coordinated QA activities around-the-world, around-the-
clock on a virtual computing grid provided by user ma-
chines during off-peak hours to:

• Detect and resolve QA problems quickly. Skoll closes
the loop from users back to developers rapidly; it exploits
the inherently distributed nature of open-source
sites/users, each one performing a portion of the overall
testing to offload the number of versions that must be

maintained by the core developers, while simultaneously
enhancing user confidence in new beta versions of open-
source software.

• Automatically analyze and enhance key system quality
of service (QoS) characteristics on multiple platforms.
Each site/user conducts different instrumentations and
performance benchmarks automatically to collect metrics.
These metrics include static and dynamic measures of
memory footprint, as well as performance measures, such
as throughput, latency, and jitter.

Skoll’s DCQA processes are (1) distributed, i.e., a given QA
task is divided into several subtasks that can be performed

on a single user machine, (2) opportunistic, i.e., when a user
machine becomes available, one or more subtasks are allo-
cated to it and the results are collected and fused together at
central collection sites to complete the overall QA process,
and (3) adaptive, i.e., earlier subtask results are used to
schedule and coordinate future subtask allocation. Skoll
leverages important open-source project assets, such as the
technological sophistication and extensive computing re-
sources of worldwide user communities, open access to
source, and ubiquitous web access, to improve the quality
and performance of open-source software significantly by
automating the division of labor to make those 'thousands of
eyeballs' more effective. Figure 1 illustrates how a QA task
(Task 1) can be decomposed into three subtasks (subtasks
1.1, 1.2, and 1.3). The subtasks are allocated to computing
node clusters, where they are executed. As subtasks run,
Skoll’s control logic may dynamically steer the global com-
putation for reasons of performance and correctness.

Our earlier work on Skoll [Skoll04, Skoll05, PSA04] has
described various DCQA techniques supported by Skoll,
including (1) the creation of a model of all possible software
configurations, (2) division of a QA task into subtasks that
can be executed independently on user machines, (3) collec-

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1
Subtask 1.1

Subtask 1.2
Subtask 1.2

Subtask 1.3
Subtask 1.3

Task 1
Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Computing Nodes
Cluster #1

Computing Nodes
Cluster #2

Skoll Coordinator
Site

Computing Nodes
Cluster #3

Subtask 1.1
Subtask 1.1

Subtask 1.2
Subtask 1.2

Subtask 1.3
Subtask 1.3

Task 1
Task 1

QA Task 1 is split into three subtasks
(1.1, 1.2, 1.3) and allocated to
computing node clusters 1, 2, and 3
respectively.

Fig. 1: Skoll Tasks/Subtasks Allocated to Computing Nodes

tion of subtask execution results and their interpretation, (4)
adaptation of the overall process based on the results, (5)
fault classification techniques to help pinpoint errors, and
(6) visualization of QA task results. This paper extends our
prior work by focusing on how Skoll, when applied to a
large-scale open-source project, has helped to mitigate prob-
lems common to many open-source projects.

2. Overview of ACE and TAO
We have use Skoll with ACE and TAO, which are widely
used open-source middleware platforms (downloadable
from www.dre.vanderbilt.edu). ACE [ACE01] is an object-
oriented framework containing hundreds of classes that im-
plement key patterns and frameworks for distributed real-
time and embedded (DRE) systems. TAO [TAO98] is an
implementation of the Real-time CORBA specification
[OMG02] that uses many frameworks and classes in ACE to
meet the demanding quality of service (QoS) requirements
in DRE systems. These systems allow applications to
interoperate across networks without hard-coding depend-
encies on their location, programming language, operating
system platform, communication protocols and intercon-
nects, and hardware characteristics.

ACE and TAO were ideal study candidates for the Skoll
DCQA environment since they share the following char-
acteristics – as well as problems – with other large-scale
open-source projects, such as Linux, Apache, and the GNU
language processing tools:

• Large and mature source code base. The ACE+TAO
source base contains over one million source lines of C++
middleware systems source code, examples, and regres-
sion tests split into over 4,500 files as follows.

Software
Toolkit

Source
Files

Source Lines of
Code

ACE 1,860 393,000

TAO 2,744 695,000

Total 4,604 1,088,000

• Heterogeneous platform support. ACE+TAO runs on
dozens of platforms, including most POSIX/UNIX vari-
ants, all versions of Microsoft Win32, many real-time and
embedded operating systems, MVS OpenEdition, and
Cray. These platforms change over time, e.g., to support
new features in the C++ standard and newer versions of
the operating systems.

• Highly configurable, e.g., numerous interdependent op-
tions supporting a wide variety of program families [Par-
nas79] and standards. Common examples of different op-
tions include multi-threaded vs. single-threaded configu-
rations, debugging vs. release versions, inlined vs. non-
inlined optimized versions, and complete ACE vs. ACE
subsets. Examples of different program families and stan-

dards include the baseline CORBA 3.0 specification,
Minimum CORBA, Real-time CORBA, CORBA Messag-
ing, and many different variations of CORBA services.

• Core development team. ACE+TAO are maintained by a
core – yet geographically distributed – team of ~20 devel-
opers. Many of these core developers have worked on
ACE+TAO for several years. Yet there is also a continual
influx of developers into and out of the core.

• Comprehensive source code control and bug tracking.
The ACE and TAO source code resides in a CVS reposi-
tory, hosted at the Institute for Software Integrated Sys-
tems (ISIS) at Vanderbilt University. External read-only
access is available to the ACE+TAO user community via
the Web. Write access is granted only to certain group
members and trusted external contributors. Software de-
fects are tracked using Bugzilla, which is a Web-based
tool that helps ACE+TAO developers resolve problem re-
ports and other issues.

• Large and active user community. Over the past decade
ACE+TAO have been used by more than 20,000 applica-
tion developers, who work for thousands of companies in
dozens of countries around the world. Since ACE and
TAO are open-source systems, changes are often made
and submitted by users in the periphery who are not part
of the core development team.

• Continuous evolution, i.e., a dynamically changing and
growing code base that has hundreds of CVS repository
commits per week. Although the interfaces of the core
ACE+TAO libraries are relatively stable, their imple-
mentations are enhanced continually to improve correct-
ness, user convenience, portability, safety, and another
desired aspects. The ACE+TAO software distributions
also contain many examples, standalone applications, and
tests for functionality and performance. These artifacts
change more frequently than the core ACE+TAO librar-
ies, and are often not as thoroughly tested on all the sup-
ported platforms.

• Frequent beta releases and periodic “stable” releases.
Beta releases contain bug fixes and new features that are
lightly tested on the platforms that the core ACE+TAO
team uses for their daily development work. The usual in-
terval between beta releases averages around every two to
three weeks. In contrast, the “stable” versions of
ACE+TAO are released less frequently, e.g., once a year,
and are tested extensively on all the OS and compiler plat-
forms to which ACE+TAO have been ported. The stable
releases are supported commercially by over half a dozen
companies worldwide.

Despite the broad use of ACE+TAO, this open-source effort
also suffers from the problems discussed in Section 1.

3. Applying Skoll to ACE+TAO

This section describes how we have applied DCQA proc-
esses using Skoll environment to address the problems with
open-source processes discussed in Section 1.2. To make
the discussion concrete, we focus on the application of Skoll
to improve the quality and performance of ACE+TAO by
developing a scalable QA process based on continuous test-
ing and profiling. Although we describe these problems in
the context of ACE+TAO, they are issues for any large scale
open-source project.

3.1. Ensuring Software Quality in the Context of Short
Development Cycles

One reason why ACE+TAO are widely used in both com-
mercial and research projects is that they are customizable
to many different runtime contexts, i.e., they have hundreds
of features/options that can be enabled/disabled for applica-
tion-specific use cases. In the context of short development
cycles, however, the core ACE+TAO developers cannot test
all possible configurations because there are simply not
enough people, OS/compiler, platforms, CPU cycles, or disk
space in house to run the hundreds of ACE+TAO regression
tests over all possible configurations in a timely manner. As
a result some parts of the system are released untested,
which greatly increases the probability that certain configu-
rations of features/options may break in new releases,
thereby reducing end-user confidence and increasing subse-
quent development and QA costs.

To mitigate this problem we have designed a Skoll DCQA
process that runs automated regression tests continuously
across a grid of external computing resources. These tests
include ~100 ACE tests and ~250 TAO tests that serve sev-
eral purposes, including

• User acceptance and assurance, which involves building
and testing the ACE and/or TAO libraries on a wide vari-
ety of different platforms to validate the integrity of the
builds and any assumptions made about the operating
platform and

• Smoke testing, where build/test scripts run a varying sub-
set of the ACE+TAO regression test suite whenever de-
velopers commit their changes to the CVS repository.

The Skoll DCQA process is currently running on 60+ work-
stations and servers at over a dozen sites around the world
(see www.dre.vanderbilt.edu/scoreboard for a summary).
This parallelization of the DCQA process allows much more
work to be done in a shorter time frame.

Each full build and test ranges can take anywhere from three
hours on quad-CPU Linux machines to 8 or more hours on
less powerful machines. Given the size of the configuration
space and the shortness of the development cycle, we try to
improve efficiency by adapting Skoll’s DCQA process to
incoming test results. One adaptation strategy is called near-
est neighbor search, where when a configuration fails all
configurations that differ from it in the setting of exactly one

option are scheduled for testing with the highest priority to
quickly identify sets of similar configurations that both pass
and fail. This information is then fed to classification tree
algorithms [Porter91] that (1) build models of the specific
options and option settings that may be causing the failures
and (2) summarize the large volumes of data into feedback
that developers can use to help focus their debugging ef-
forts. For more information on this work see Memon et al.
[Skoll04].

3.2. Ensuring a Consistent Global View of System Con-
figuration Constraints

A fundamental strength of open-source software is its dis-
tribution in source-code form. An open-source software user
is free to download, build, and execute the software on any
platform that has the right combination of compiler/build
tools and run-time support. This flexibility, however, creates
a very large number of potential platform configurations
(e.g., compiler settings, OS version, versions of installed
libraries) in which an open-source software can be executed.
Complexity is also introduced by the large number of com-
pile- and run-time options/settings typically seen in open-
source systems infrastructure software. Our experience with
open-source software has shown that a large number of er-
rors are encountered in the field by users who employ a new,
unexplored configuration. For example, the bugzilla data-
bases (deuce.doc.wustl.edu/bugzilla/index.cgi) for ACE+
TAO show many cases of bug reports that are in fact mis-
configurations by users. These problems are magnified by
turnover in core developers.

For a successful DCQA process, it is essential to model
valid configurations explicitly. Standard documentation does
a reasonable job of conveying the options and their settings.
It rarely, however, captures inter-option constraints. For ex-
ample, in our case study with ACE+TAO [Skoll04], we
found that many core ACE+TAO developers did not under-
stand the configuration option constraints for their very
complex system, i.e., they provided us with both erroneous
and missing constraints.

A useful way to visualize the full range of settings possible
in such an open-source system is as a multidimensional soft-
ware configuration space. Each possible combination of
settings becomes a single unique point within this space,
with the space as a whole encompassing every possible
combination of settings. The total size of the software con-
figuration space depends on the number of settings available
for change. If only a small number of settings are treated “in
play,” the resulting subset of the software configuration
space might have no more than a few tens of unique points.
If every setting available on a typical realistic open-source
software is put into play, however, the resulting full software
configuration space is very large, containing millions or
more unique points.

Skoll uses a formal model of the software’s configuration
space to maintain a consistent global view of system con-
straints. This model captures all valid configurations, which
are mappings represented as a set {(V1, C1), (V2, C2), …,
(VN, CN)}, where each Vi is a configuration option and Ci is
its value, drawn from the allowable settings of Vi. As noted,
not all configurations make sense (e.g., feature X not sup-
ported on operating system Y). We therefore allow inter-
option constraints that limit the setting of one option based
on the setting of another. We represent constraints as (Pi ->
Pj), meaning “if predicate Pi evaluates to TRUE, then predi-
cate Pj must evaluate to TRUE. A predicate Pk can be of the
form A, ¬A, A|B, A&B, or simply (Vi=Ci), where A, B are
predicates, Vi is an option and Ci is one of its allowable val-
ues. A valid configuration is a configuration that violates no
inter-option constraints.

The Skoll configuration model can cover more than just
software options. It can indicate the range of platforms over
which the QA process can run correctly. It can also cover
test cases which often run correctly only in certain configu-
rations. Since this information is typically not written down
anywhere, users often run regression tests anyway, which
confuses them into believing that the resulting test failure
indicates an unknown installation problem. This also con-
fuses developers who have to remember which of the sev-
eral hundred test cases to pay attention to and which can be
safely ignored.

Table 1 presents some sample options and constraints for
ACE+TAO. These include the end platform compiler
(COMPILER); whether to compile in certain features (AMI,
CORBA MSG); whether certain test cases are runnable in a
given configuration (run(T)), and at what level to set a run-
time optimization (ORBCollocation). One sample constraint
shows that AMI support requires the presence of CORBA
messaging services. The other shows that a certain test only
runs on platforms with the SUN CC compiler version 5.1.

We learned several lessons building the ACE+TAO configu-
ration model. We learned that the configuration model for
ACE+TAO was undocumented, so we had to build our ini-
tial model bottom-up. We also found that different core de-
velopers had conflicting views on what the constraints really
were and whether certain constraints were current or had
been superseded by recent changes, which taught us that
building configuration models is an iterative process. The

use of Skoll enabled us to quickly identify many coding
errors (some previously undiscovered) that prevented the
software from compiling in certain configurations. More-
over, access to the source code of ACE+TAO enabled us to
create and validate our configuration models more quickly
and effectively than if we only had access to the binary
code.

3.3. Ensuring Coherency and Reducing Redundancy in
QA Activities

While conventional QA approaches employed in open-
source projects help improve the quality and performance of
software, they have significant limitations, e.g., there is lit-
tle, if any, control over the QA tasks being executed. What
to test is left to developers; each developer typically decides
(often by default) what aspects of the system he/she will
examine. For example, ACE+TAO developers continuously
test their software using a battery of automated tests whose
results are published at www.dre.vanderbilt.edu/scoreboard.
Each developer, however, is responsible for deciding which
configurations and tests he/she wants to run on his/her plat-
form. Our experience [skoll04, skoll05] shows that (1) con-
figurations proven to be faulty are tested over and over
again and (2) some configurations are evaluated multiple
times, others not at all, which leads to wasted resources and
lost opportunities and lets redundancies and important gaps
creep in.

To ensure greater coherency and less redundancy in QA
activities, Skoll provides an Intelligent Steering Agent (ISA)
to control the global QA process. The ISA uses advanced
AI planning algorithms [Memon01a] to decide which valid
configuration to allocate to each incoming Skoll client re-
quest. When a client becomes available, the ISA decides
which subtask to assign it by considering various factors,
including (1) the configuration model, e.g., which charac-
terizes the subtasks that can legally be assigned, (2) the re-
sults of previous subtasks, e.g., which captures what tasks
have already been done and whether the results were suc-
cessful, (3) global process goals, e.g., testing popular con-
figurations more than rarely used ones or testing recently
changed features more than heavily than unchanged fea-
tures, and (4) client characteristics and preferences., e.g.,
the configuration must be compatible with physical realities,
such as the OS running on the remote machine.

After a valid configuration has been chosen, the ISA pack-
ages the corresponding QA subtask implementation into a
job configuration, which consists of the code artifacts, con-
figuration parameters, build instructions, and QA-specific
code (e.g., developer-supplied regression/performance tests)
associated with a software project. The job configuration is
then sent to the requesting Skoll client, which executes the
job configuration and returns the results to the ISA. The
default behavior of the ISA is to allocate each configuration
exactly once (i.e., random selection without replacement) or

zero or more times (i.e., random selection with replace-
ment); it ignores the subtask results. Often, however, we
want to learn from incoming results, e.g., when some con-
figurations prove to be faulty, resources should be refocused
on other unexplored parts of the configuration space. When
such dynamic behavior is desired, process designers develop
adaptation strategies -- pluggable ISA components that
monitor the global process state, analyze it, and use the in-
formation to modify future subtask assignments to improve
overall DCQA process performance.

In one of our case studies with ACE+TAO [Skoll04], we
observed that ACE+TAO failed to build whenever configu-
ration options AMI = 0 and CORBA MSG = 1 were se-
lected. Developers, however, were unable to fix the bug
immediately. Therefore, we developed an adaptation strat-
egy, which inserts temporary constraints, such as CORBA
MSG = 1 -> AMI = 1 into the configuration model, exclud-
ing further exploration of the offending option settings until
the problem is fixed. After fixing it, the constraints are re-
moved which allows normal ISA execution. Temporary
constraints could be used to spawn new Skoll processes that
test patches only on the previously failing configurations.

Thus Skoll’s configuration model makes it possible for the
ISA and adaptation strategies to steer the QA process in
ways that ensure coherency and reduce redundancy in QA
activities. Another advantage is that it allows more sophisti-
cated algorithms and techniques to be applied to improve
software quality. For example, our configuration model es-
sentially defines a combinatorial object against which a
wide variety of statistical tools can be applied. In another
case study [Skoll05], we leveraged this feature to develop a
DCQA process called main effects screening for monitoring
performance degradations in evolving systems.

Main effects screening is a technique for rapidly detecting
performance degradation across a large configuration space
as a result of system changes. We cast this as an experimen-
tal design question in which the problem is to determine a
small subset of the configuration options that substantially
effect performance. To do this we compute a highly-efficient
formal experimental design called screening designs based
on the configuration model and conduct the resulting ex-
periment over the Skoll grid. The outcome is a small set of
“important options”. From this point on, whenever the sys-
tem changes, we systematically benchmark all combinations
of the important options (while randomizing the rest) to get
a reliable estimate of the performance across the entire con-
figuration space. Since the important options can change
over time, depending on how fast the system changes, we
recalibrate the important options by restarting the process.
We evaluated the main effects screening process via several
industrial strength feasibility studies on ACE+TAO. Our
results indicate that main effects screening can reliably and
accurately detect key sources of performance degradation in

large-scale systems with significantly less effort than con-
ventional techniques [Skoll05].

3.4. Supporting Diversity in Test Environments

When configuration space explosion is coupled with fre-
quent software updates and increasing platform heterogene-
ity, ensuring the quality of open-source software can be hard
since individual developers may only have access to a lim-
ited number of software and hardware platforms. Moreover,
frequent code changes may cause development teams to
release code that has not been tested thoroughly on all plat-
form and configuration combinations. For example, in one
of our case studies with ACE+TAO, we built a configuration
model by interviewing the core ACE+TAO developers. Af-
ter testing several hundred configurations, we found that
every configuration failed to compile. We discovered that
the problem stemmed from options providing fine-grained
control over CORBA messaging policies that had been
modified and moved to another library and developers (and
users) failed to establish if these options still worked. Based
on this feedback the ACE+TAO developers chose to control
these policies at link-time rather than compile time.

To support greater diversity in testing, one QA task we im-
plemented in Skoll is to systematically sample configuration
spaces [Yilmaz04]. The approach is based on calculating a
mathematical object called a covering array with certain
coverage properties over the configuration space. A t-way
covering array (where t is called the strength of the array) is
a minimal set of configurations in which all t-way combina-
tions of option settings appear at least once. For a given
configuration model and a level of coverage criterion (i.e., a
value for t), the ISA computes a covering array and allocates
only the selected configurations to the requesting clients.
The idea here is to efficiently improve developer’s confi-
dence that options interact with each other as expected. We
evaluated this approach via several feasibility studies on
ACE+TAO. In these studies, we rapidly identified problems
that had taken the developers substantially longer to find or
which had previously not been found [Yilmaz04].

Another advantage of diverse testing is that it allows the
application of sophisticated techniques to the resulting data
to reason about the root causes of failures, e.g., the classifi-
cation tree analysis techniques described in Section 3.1 will
perform poorly if the input data is skewed towards specific
configurations. Overall, we found that increasing test diver-
sity (1) allowed fault characterization models to quickly
pinpoint the root causes of several failures, leading to much
quicker turn-around time for bug fixes and (2) using cover-
ing arrays in complex configuration spaces resulted in fault
characterization models, which are nearly as accurate as the
ones obtained from exhaustive testing, but are much cheaper
(provides 50-99% reductions in the number of configura-
tions to be tested).

3.5. Automating the Execution of QA Processes

To evaluate key QoS characteristics of performance inten-
sive software, QA engineers today often handcraft individ-
ual QA tasks. For example, for a simple QA task, initial
versions of Skoll required the artifacts such as (1) the con-
figuration settings and options for ACE+TAO that need to
be evaluated, (2) the evaluation/benchmarking code used to
evaluate the configuration settings and provide feedback, (3)
interface definitions that represent the contract between the
client and server and (3) support code, e.g., script files, build
files to build and execute the experiments. Our earlier work
[Skoll04] revealed how manually implementing these steps
is tedious and error-prone since each step may be repeated
many times for every QA experiment.

To redress this shortcoming, we applied model-driven gen-
erative programming techniques [Czarnecki:00] to automate
the generation of scaffolding code from higher level models,
which helps ensure that the generated code is both syntacti-
cally correct and semantically valid, thus shielding QA en-
gineers from tedious and error-prone low-level source code
generation. This technique also enables QA engineers to
compose the experiments via model artifacts rather than
source code, thereby raising the level of abstraction. We
provide the following two capabilities to Skoll from the
modeling level:

• The Options Configuration Modeling Language (OCML)
[RTAS05] modeling tool, which enables users to select a
set of middleware-specific configuration options required
to support the application needs and

• The Benchmark Generation Modeling Language (BGML)
[RTAS05], which is a model-driven benchmarking tool
that allows component middleware QA engineers to visu-
ally model interaction scenarios between configuration
options and system components using domain-specific
building blocks, i.e., capture software variability in
higher-level models rather than in lower-level source
code.

OCML model interpreters based on the requesting client
characteristics (e.g., OS, compiler, and hardware) and the
configuration model generate platform-specific configu-
ration information, which serves as the basis for generating
the job configuration. As described in Section 3.3, a job con-
figuration is used to run a particular QA subtask at the client
site. The BGML model interpreters generate benchmarking
code generation and reuse QA task code across configura-
tions.

In earlier work [Skoll05, ICSR8], we showed how BGML
can be used to auto-generate ~90% of the code required to
set up a benchmarking experiment. This generated code was
also interfaced with the main-effects screening. Our work
also revealed that having access to the source code, i.e.,
benchmarking and CORBA IDL files enables the QA ex-
perimenter to reuse instrumentation and evaluation code for
different configuration combinations. Similarly, the QA ex-

perimenter can easily tailor the generated code for different
IDL interfaces by adding/modifying the generated IDL from
the model.

4. Related Work
Several research efforts attempt to address the challenges of
open-source software systems. These efforts gather various
types of information from distributed run-time environments
and usage patterns encountered in the field, i.e., on user tar-
get platforms with user configuration options.

Online crash reporting systems, such as the Netscape
Quality Feedback Agent and Microsoft XP Error Reporting,
gather system state at a central location whenever a fielded
system crashes, which simplifies user participation in QA by
automating certain aspects of problem reporting. Each of
these approaches, however, has a very limited scope, i.e.,
they perform only a small fraction of typical QA activities
and ignore issues associated with QoS and performance.
Moreover, they are reactive (i.e., the reports are only gener-
ated when systems crash), rather than proactive (e.g., at-
tempting to detect, identify, and remedy problems before
users encounter them). To aid users in reporting errors, even
Microsoft tools such as Visual Studio, generate automatic
error reports during crashes to enable users to report failures
with ease thus aiding QA teams to improve software quality.

Auto-build scoreboards, which are a more proactive form
of distributed regression test suites mentioned in Section 1.2
that allow software to be built/tested at multiple sites on
various hardware, operating system, and compiler platforms.
The Mozilla Tinderbox and ACE+TAO Virtual Scoreboard
are auto-build scoreboards that track end-user build results
across various platforms. Bugs are reported via the Bugzilla
issue tracking system, which provides inter-bug dependency
recording, advanced reporting capabilities, extensive con-
figurability, and integration with automated software con-
figuration management systems, such as CVS. While these
systems help with documenting the QA process, the deci-
sion of what to test is left to end users. Unless developers
can control at least some aspects of the QA process, impor-
tant gaps and inefficiencies will still occur.

5. Concluding Remarks
Open-source has proven to be an effective development
process in many software application domains [Ray-
mond01]. The Skoll project is leveraging key aspects of
open-source development, such as its worldwide user com-
munities, open access to source code, and ubiquitous web
access, to further improve the quality and performance of
open-source software. A particularly important strength of
open-source development processes are their scalability to
large user communities, where technologically sophisticated
application programmers and end-users can assist with
many QA activities, documentation, mentoring, and techni-
cal support. Throughout this paper we have described how

intelligent leverage of the expertise and extensive comput-
ing resources of user communities is essential to overcome
common problems that can impede the long-term success of
large-scale open-source projects.

Bibliography
[ACE01] Schmidt D., Huston S., C++ Network Program-

ming: Resolving Complexity with ACE and Patterns, Ad-
dison-Wesley, Reading, MA, 2001.

[[Brooks75] Brooks, F., The Mythical Man-Month, Addi-
son-Wesley, 1975.

[CoSMIC05] Krishnakumar Balasubramanian, Arvind S.
Krishna, Emre Turkay, Jaiganesh Balasubramanian, Jeff
Parsons, Aniruddha Gokhale, and Douglas C. Schmidt,
“Applying Model-Driven Development to Distributed
Real-time and Embedded Avionics Systems", Interna-
tional Journal of Embedded Systems special issue on De-
sign and Verification of Real-Time Embedded Software,
Kluwer, April 2005.

[GPERF90] Schmidt, D., “GPERF: A Perfect Hash Func-
tion Generator,” Proceedings of the 2nd USENIX C++
Conference, San Francisco, April 1990.

 [JAWS99] Hu, J., Pyarali I., and Schmidt D., “The Object-
Oriented Design and Performance of JAWS: A High-per-
formance Web Server Optimized for High-speed Net-
works,” Parallel and Distributed Computing Practices
Journal.

[ICSR8] Arvind S. Krishna, Douglas C. Schmidt, Adam
Porter, Atif Memon and Diego Sevilla-Ruiz “Improving
the Quality of Performance-intensive Software via Model-
integrated Distributed Continuous Quality Assurance”,
"Proceedings of the 8th International Conference on
Software Reuse, Madrid, Spain, July 2004.

 [Memon01a] Atif M. Memon, Martha E. Pollack and Mary
Lou Soffa, Hierarchical GUI Test Case Generation Using
Automated Planning, IEEE Transactions on Software En-
gineering. vol. 27, no. 2, pp. 144-155, Feb. 2001.

[Michail05] Amir Michail and Tao Xie, Helping Users
Avoid Bugs in GUI Applications, To appear in Proceed-
ings of the 27th International Conference on Software En-
gineering (ICSE 2005), St. Louis, Missouri, USA, May
2005.

[OMG02] Object Management Group, “Real-time CORBA,
OMG Technical Document formal/02-08-02”, August
2002.

[O’Reilly98] The Open-Source Revolution, O’Reilly, 1998.
[Parnas79] Parnas, D., “Designing Software for Ease of

Extension and Contraction,” IEEE Transactions on Soft-
ware Engineering, March 1979.

[Porter91] Adam Porter, R. Selby, “Empirically Guided
Software Development Using Metric-Based Classification
Trees,” IEEE Software, March 1990.

[PSA04] Arvind S. Krishna, Cemal Yilmaz, Atif Memon,
Adam Porter, Douglas C. Schmidt, Aniruddha Gokhale,
and Balachandran Natarajan, Preserving Distributed Sys-
tems Critical Properties: a Model-Driven Approach, the
IEEE Software special issue on the Persistent Software
Attributes, Nov/Dec 2004.

[Raymond01] Raymond E., The Cathedral and the Bazaar:
Musings on Linux and Open-source by an Accidental
Revolutionary, O’Reilly, 2001.

[RTAS05] Arvind S. Krishna, Emre Turkay, Aniruddha
Gokhale, and Douglas C. Schmidt, Model-Driven Tech-
niques for Evaluating the QoS of Middleware Configura-
tions for DRE Systems, Proceedings of the 11th IEEE
Real-Time and Embedded Technology and Applications
Symposium, San Francisco, CA, March 2005.

[Schantz01] Schantz R. and Schmidt D., “Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software
Engineering, Wiley & Sons, 2001.

[Skoll04] Atif Memon, Adam Porter, Cemal Yilmaz,
Adithya Nagarajan, Douglas C. Schmidt and Bala Nata-
rajan, “Skoll: Distributed Continuous Quality Assurance”,
Proceedings of the 26th IEEE/ACM International Confer-
ence on Software Engineering, IEEE/ACM, Edinburgh,
Scotland, May 2004.

[Skoll05] Cemal Yilmaz, Arvind Krishna, Atif Memon,
Adam Porter, Douglas C. Schmidt, Aniruddha Gokhale,
and Bala Natarajan, Main Effects Screening: A Distrib-
uted Continuous Quality Assurance Process for Monitor-
ing Performance Degradation in Evolving Software Sys-
tems, proceedings of the 27th International Conference on
Software Engineering, St. Louis, MO, May 15-21, 2005.

[TAO98] Schmidt D., Levine D., Mungee S. “The Design
and Performance of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on
Building Quality of Service into Distributed Systems,
21(4), 1998.

[Czarnecki:00] Krzysztof Czarnecki and Ulrich Eisenecker,
“Generative Programming: Methods, Tools, and Applica-
tions”, Addison-Wesley, Boston 2000.

[Yilmaz04] Cemal Yilmaz, Myra Cohen and Adam Porter,
“Covering Arrays for Efficient Fault Characterization in
Complex Configuration Spaces”, Proceedings of the 2004
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), Boston, Massachusetts,
2004.

[Zeller02] Andreas Zeller, “Isolating Cause-Effect Chains
from Computer Programs,” Proceedings of the ACM
SIGSOFT 10th International Symposium on the Founda-
tions of Software Engineering (FSE-10), Charleston,
South Carolina, November 2000.

