
Data Structures I
Hierarchical Data Structures

Hanan Samet
University of Maryland

Robert E. Webber
Rutgers University

This is the first part of a two-part overview of the use
of hierarchical data structures and algorithms in com-
puter graphics. In Part I, the focus is on fundamentals.
Part II focuses on more advanced applications.
Methods based on hierarchical data structures and
algorithms have found many uses in image rendering
and solid modeling. While such data structures are not
necessary for the processing of simple scenes, they are
central to the efficient processing of large-scale realis-
tic scenes. Object-space hierarchies are discussed
briefly, but the main emphasis is on hierarchies con-
structed in the image space, such as quadtrees and
oc t rees.

C omputer graphics applications require the manip-
ulation of two distinct data formats: vector and raster (see
Figure 1). The raster format enables the modeling of a
graphics image as a collection of square cells of uniform
size (called pixels]. A color is associated with each pixel.
To attain maximum flexibility, an attempt is made to
model directly the addressability of the phosphors on the
display screen so that each pixel corresponds to a phos-
phor. This format has also proven useful in computer
vision, since it corresponds to the digitized output of a
television camera. In contrast, instead of modeling the
display screen directly, the vector format models the

48 0272-1716/8~/0500-0048$01.00 1988 IEEE IEEE Computer Graphics & Applications

A B

a b
~~ ~ ~ _ _

Figure I. Example image represented in (a) a vector data format and (b) a raster data format.

Figure 2. Linked list of records representing, by pairs
of their endpoints, the line segments of Figure l a .

ideal geometric space to be represented on the display
screen. Vector data consists of points, line segments,
filled polygons, and polyhedral solids. In addition to pro-
cessing these two formats of data directly, computer
graphics also involves conversion between these two for-
mats. Closely related to the distinction between the raster
format and the vector format is the distinction between
image space and object space presented in an early clas-
sification of hidden-surface algorithms.'

Both data formats have obvious representations, which
are minimal in the sense of providing structure just suffi-
cient to allow updating. For the raster format, the obvi-
ous representation is as a two-dimensional array of color
values. As an example, in Figure Ib, all elements of the
array through which a line passes or that contain a point
(shown shaded) are black. For the vector format, the obvi-
ous representation is as a linked list of line segments (see
Figure 2). Early work on the vector format extended the
structure of this list by ordering the line segments around
common vertices. For example, consider the winged-
edge polyhedral representation' illustrated in Figure 3.
While these representations are suitable for medium-
range applications, once the scene being modeled

May 1988

Figure 3. Winged-edge representation of the line seg-
ments and their endpoints of Figure la . The result is
a graph with two types of nodes shown as squares and
narrow solid rectangles. The squares correspond to
endpoints of line segments while the rectangles cor-
respond to the actual line segments. Each arrow
denotes a n edge in the graph between two nodes.
Edges can exist between two line segments and also
from line segments to their endpoints.

49

Figure 4. An example of the use of bounding objects: (a) unbounded objects for use in Figures 4b through 4c,
(b) bounding boxes, (c) hierarchical bounding boxes.

becomes significantly larger than the display grid, major
logistic problems arise.

There are two ways' to handle the logistics problems.
One approach, based on object-space hierarchies3 is
discussed only briefly in this article. The other approach,
based on image-space hierarchies, is typified by hierar-
chical data structures such as the quadtree and octree,
and is the subject of Parts I and 114 of this article.

The two parts are organized as follows. In Part I we
review the basic fundamentals of hierarchical data struc-
tures and show how they are used in the implementation
of some basic operations in computer graphics. The sec-
ond section of Part I contains a general discussion of
properties of the structures. The third section describes
how some basic operations are performed using quad-
trees. The performance of basic operations using octrees,
where it differs from quadtrees, is discussed in Part I1
of the article (to appear in the July 1988 CG&A). Part I1
focuses on more advanced applications with a heavy
emphasis on quadtree hidden-surface algorithms and
such display methods as ray tracing and radiosity. More
references and details on hierarchical data structures
appear el~ewhere.~.'

Properties of quadtrees and
octrees

In this section we discuss some fundamental proper-
ties of quadtrees and octrees. First, however, we elaborate
on the motivation for their development. As mentioned
earlier, hierarchical data structures such as the quadtree
and octree have their roots in attempts to overcome prob-
lems that arise when the scene being modeled is more
complex than the display grid (in size, precision, num-

ber of elements, etc.). The problems are solved with
object-space hierarchies and image-space hierarchies,
which are described in greater detail below. Next, we
present a definition of the quadtree and octree, an exami-
nation of some of the more common ways in which they
are implemented, and an explanation of the quad-
tree/octree complexity theorem. We conclude with a dis-
cussion of vector quadtrees and vector octrees.

Object-space hierarchies
Two kinds of logistic problems present themselves in

scene modeling. First, communication between the user
software and the graphics package-i.e., the number of
procedure calls (or commands transmitted on a graphics
channel)-can become a bottleneck for the system. The
second problem is in determining what subset of the
scene is actually visible. For example, in a 512 x 512 x 512
scene, only about 512 x 512 of it is actually visible at any
given time. When the scene extends horizontally and ver-
tically past the bounds of the viewing surface, the prob-
lem is further aggravated. The first problem has been
addressed, in part, by observing that the universe can be
hierarchically organized into objects composed of
subobjects, which are in turn composed of other objects,
and so forth.' This observation has been used as the
basis for the organization of the user's interface to the
data from the earliest graphics systemsQ~'O to the most
recent graphics package designs."*"

Since the object hierarchy must be kept to solve the
communication problem, it is tempting to use this hier-
archy to solve the visible-subset problem. One way to
adapt the object hierarchy to the visible-subset problem
is through the notion of bounding objects. When deter-
mining whether or not an object is visible, it is

50 IEEE Computer Graphics & Applications

~ o m m o n ’ ~ to surround the object (see Figure 4a) with a
bounding box (see Figure 4b) or even a sphere. If the
bounding object is not visible, then clearly the object
being bounded is also not visible. This technique
produces a major computational savings, since it is
usually much easier to test for visibility of the bounding
object than the visibility of the bounded object. However,
the approach cannot deal with the visible-subset prob-
lem when the number of objects is large.
 researcher^^^'^^'^ have noted that the objects being
bounded need not be limited to the primitive objects of
the scene; instead, bounding objects can also be placed
around the complex objects formed by the different levels
of the object hierarchy (see Figure 4c).

This approach is easy to implement and can greatly
improve execution time. But its efficiency is based on the
notion that the object hierarchy is a structural approxi-
mation of a balanced binary tree, in the sense that objects
in the hierarchy are expected to be locatable in time
roughly proportional to the logarithm of the number of
objects in the hierarchy. Of course, this is often not the
case, because there are two kinds of levels in a natural
hierarchy: those formed by a few unique objects and
those formed by a large number of nearly identical
objects.’ Levels formed in the second manner can be
very flat and of little computational benefit. Even when
the branching factor is reasonable, there is no guaran-
tee that the natural hierarchy will be balanced in the
algorithmic sense. Some attempts have been made to
structure the object-space artificially to avoid these prob-
lems,I6 but such attempts have problems handling
dynamically changing scenes (due to preprocessing
costs) as well as often producing worst-case results.

A related artificial object hierarchy is the strip tree.”
Here we are dealing with an object consisting of a sin-
gle curve. The curve is surrounded by a bounding rec-
tangle, two of whose sides are parallel to the line joining
the endpoints of the curve. The curve is then partitioned
in two at one of the locations where it touches the bound-
ing rectangle. Each subcurve is then surrounded by a
bounding rectangle and the partitioning process is
applied recursively. The process stops when the width
of each strip is less than a predetermined value. This
approach to subdivision can be viewed as heuristically
subdividing a curve near its points of maximum curva-
ture and halting when the curve is essentially linear. The
worst-case situations illustrated by this data structure are
typical of the problems with computations on object
hierarchies.

Image-space hierarchies
A natural alternative to processing graphics com-

mands in the object-space hierarchy is to organize the
data around an image-space hierarchy. One problem
with traditional image-space representations (i.e., 2D and
3D arrays) is that they require the user to fix the maxi-
mum resolution in advance. However, a hierarchical

May 1988

a b

Figure 5. Examples of nonsquare partitionings of the
plane: (a) equilateral triangles, (b) hexagons.

organization of the image space allows the resolution to
vary with the complexity of the objects in various
regions. Of course, there are many ways to partition the
image space (when it is viewed as a continuous
p l a n e / s p a ~ e] , ’ ~ - ~ ~ but to interface easily with a Carte-
sian coordinate system and with the typical display
device controller, a decomposition of the plane into
square regions (and a space into cubical regions) is sim-
plest. Two examples of nonsquare partitionings of the
plane are given in Figure 5. In the following, we discuss
the organization of a planar image space (leaving consid-
eration of the 3D image space for a later section).

When justifying the use of object-space hierarchies for
image-space processing, we often refer to the property
of area coherence, which means that objects tend to rep-
resent compact regions in the image space. Similarly, we
might speak of object coherence as being a factor in
image-space hierarchies, since regions that are close to
each other tend to be parts of the same object. Thus, both
types of hierarchies tend to approximate each other.

For large-scale applications, however, the costs
associated with the imprecision of these approximations
can easily overshadow any benefits accrued from the
explicit maintenance of just one of the hierarchies. Thus,
when possible, both hierarchies should be maintained.
A definitive analysis of the merits of image-space and
object-space hierarchies awaits a universally accepted
model of “typical graphic data.”

Quadtree/octree definition
One commonly used 2D image-space hierarchy is typi-

fied by the quadtree data ~ t ruc tu re .~ . ’~ It is constructed
in the following manner. We start with an image (whose
binary array representation is given in Figure sa) and
check to see if it has a simple description and thus does
not require any further hierarchical structuring. If this
is not the case, then the image space is partitioned into
four disjoint congruent square regions (called quadrants)
whose union covers the original image space (see Figure
6b). Each of these new image spaces is treated as if it

51

C d

Figure 6. Illustration of the quadtree decomposition
process: (a) original image, (b) first level of decompo-
sition, (c) second and final level of decomposition, (d)
an example of an irregular decomposition.

Figure 7. The edge quadtree for the vector data of Fig-
ure la . The maximum level of decomposition is 4.

were isolated, and each one is examined to determine
whether or not it has a simple description (resulting in
Figure 6c). Of course, in this example, the stopping rule
for the decomposition process is homogeneity (i.e., each
square region is of one color].

This decomposition technique is referred to as a regu-
lar decomposition, to distinguish it from decomposition
approaches that vary the size of the subregions formed
from the original regions (see Figure 6d). While it is plau-
sible to attempt to move the boundaries of the subregions
to distribute the complexity of the image more evenly,
how to do this effectively is not clear. The inherent sim-
plicity of regular decomposition facilitates both its
implementation and the analysis of its performance.

The test for determining whether or not an image
space has a simple description is called the leaf criterion,
because the spaces that satisfy it form the leaf nodes of
the tree that represents the hierarchical structure. There
are many variants on the quadtree data structure that dif-
fer only in what constitutes a satisfactory leaf criterion
for the data structure. This is useful because it allows the
construction of integrated graphic databases that han-
dle a wide variety of data a n a l o g ~ u s l y . ~ ~ ~ ~ ~

There are many plausible leaf criteria. When looking
for a leaf criterion, we are really looking for a subset of
the possible image spaces where the graphics tasks we
want to process can be solved easily. It is also necessary
that any arbitrary image space can eventually be decom-
posed into regions that satisfy the criterion. Thus, for
example, if we were to store the vector data in the image
space, we might hypothesize a criterion stipulating that
at most one line segment could appear in any leaf. How-
ever, this in itself would be unsatisfactory, because there
are images (for example, any image containing a vertex
where at least two line segments meet) that cannot in
general be partitioned (in a finite amount of time) into
square regions where no region contains more than one
line segment.

Although the above criterion is inadequate as a pure
vector representation, a slight modification of it has been
~ s e d . ~ ~ l ~ ~ ' ~ ~ The modification is to establish a maximum
quadtree depth. Once the maximum depth is reached in
the construction process, if the criterion is still not satis-
fied, then the region is simply represented by a pixel. The
result is a mixed raster and vector representation in
which some information about the image can be lost.
This representation is known as the edge q ~ a d t r e e . ' ~ . ' ~
For example, Figure 7 is the edge quadtree correspond-
ing to the vector data of Figure la. In this case, trunca-
tion at the maximum tree depth (4) has occurred at the
nodes containing vertices A, B, C, D, E, F, and G, but not H.

The octree data ~ t r u c t u r e ~ ~ ' ~ ~ is the 3D analog of the
quadtree. It is constructed as follows: We start with an
image in the form of a cubical volume and determine if
its description is sufficiently complex, in which case the
volume is recursively subdivided into eight congruent
disjoint cubes (called octants), until the complexity is
sufficiently reduced. Of course, the leaf criteria differ
depending on whether the data is of a raster format (con-
sisting of 3D voxels having a single color, instead of 2D
pixels] or vector format (consisting of solids and planar
or curved surfaces, instead of polygons and edges). Fig-

IEEE Computer Graphics & Applications 52

ure 8a is an example of a simple 3D object whose raster
octree block decomposition is given in Figure 8b and tree
representation in Figure 8c.

In this article, we consider quadtrees and octrees con-
structed from two different leaf criteria (one for handling
raster data and the other for handling vector data). For
raster data we use the quadtree/octree built from the
criterion that no space can contain data having more
than one color. This works for raster data because the
raster grid is built of singly colored regions, and hence
the hierarchy need never decompose to a level lower than
that of these pixels. The structure has many interesting
mathematical properties, some of which are reviewed
briefly below after the discussion of implementation
techniques.

Quadtree/octree data structure
implementations

Besides consideration of the leaf criteria, the investi-
gation of hierarchical data structures has also been con-
cerned with how to encode the tree representing the
hierarchy. In his treatise on data structures, Knuth3'
mentions three general approaches to representing trees.
Each of these approaches has been investigated by others
with regard to the specific representation of quadtrees.
In the following, we describe these three approaches and
discuss their relative advantages and disadvantages in
the context of a quadtree; however, the extension to
octrees is straightforward.

The first and most obvious quadtree encoding is as a
tree structure that uses pointers. Figure 9 is the
tree/pointer representation of the quadtree of Figure 6.
Each internal node (often referred to as a gray node)
requires four pointers (one for each of its subtrees).
Clearly the leaf nodes do not need pointer fields. The size
of a pointer field is the base 2 logarithm of the number
of nodes in the tree. Each node also requires one bit of
information to indicate whether it is an internal node or
a leaf. To describe quadtree algorithms, a father link is
useful in each node; however, this is not necessary for
implementation, because in most tasks processing starts
at the root and a stack of father links can be easily main-
tained.

Pointers have also been proposed to connect nodes that
represent neighboring region^,^^^^^ but these are not
necessary for the efficient processing of the quadtree.
Most early implementations of quadtrees used the
pointer approach, while the next two approaches were
considered later because of a perceived storage ineffi-
ciency of the pointer approach. However, the literature
is often unclear about exactly how the quadtree
algorithms are coded.

The second approach makes use of the observation
that the number of subtrees of a given node in the quad-
tree node is either four or zero. Thus a quadtree can be
represented by listing the nodes encountered by a
preorder traversal of the tree structure. For example,

May 1988

b A a

C

Figure 8. (a) Example 3D object, (b) its octree block
decomposition, and (c) its tree representation.

I

d

Figure 9. Pointer encoding of the quadtree of Figure
6. Internal nodes are represented by circular nodes.
Terminal nodes are represented by square nodes
whose contents correspond to the blocks in Figure 6.

traversing the quadtree of Figure 9 in the order NW, NE,
SW, and SE and letting G, B, and W denote nonterminal,
solid, and empty nodes, respectively, results in the list
GWGWWBBGWBWBB. The approach requires exactly
one bit of overhead per node, which is used to distin-
guish between leaf nodes and internal nodes.

Many simple algorithms-for example, intersec-
tion/union and area calculation-are performed by

53

preorder traversals of the quadtree, and they can be effi-
ciently implemented with this encoding. However, other
algorithms cannot be so efficiently implemented. For
example, to visit the second subtree of a node, it is neces-
sary to visit each node of the first subtree so that the loca-
tion of the root of the second subtree can be determined.
Nevertheless, this encoding is usable for some
applications-for example, archiving and facsimile
transmission. Algorithms specific to this representation
have been investigated by Kawaguchi et a1.,33-35 who call
it a DF-expression (because of the similarity between a
preorder traversal and a depth-first expansion of the
tree), and Oliver and W i ~ e m a n , ~ ~ . ~ ~ who refer to it as a
treecode.

The third approach is based on the use of locational
codes (referred to as a Dewey decimal encoding by
Knuth3'). It was first proposed by Morton3' as an index
to a geographical database. In the variant that we
describe, each node is represented by a pair of numbers.
The first number, termed a locational code, is composed
of a concatenation of base 4 digits corresponding to
directional codes that locate the node along a path from
the root of the quadtree. The directional codes take on
the values 0 , 1 , 2 , and 3 corresponding to quadrants NW,
NE, SW, and SE, respectively. The second number is the
level of the tree at which the node is located. Assume that
the root is at level 0. For example, the pair of numbers
(312,3) are decoded as follows: 312 is the base 4 locational
code and denotes a node at level 3 reached by a sequence
of transitions-SE, NE, and SW-starting at the root. The
overhead per node is two bits per level of depth of the
node, plus the base 2 logarithm of the depth of the node
to specify the level at which the node is found.
Gargantini39-42 has investigated algorithms specific to
this representation, which she calls a linear quadtree,
because the addresses are keys in a linear list of nodes.
Oliver and W i ~ e m a n ~ " ~ ' call it a leafcode.

When using the linear quadtree encoding, further
reduction of the storage requirements is possible with-
out substantially increasing the runtime requirements
of the algorithms. In particular, there is no need to retain
the internal nodes as the general quadtree structure
stores only data in the tree's leaf nodes. Since the num-
ber of internal nodes is equal to one third of the number
of leaf nodes minus one, this results in a significant space
savings. Moreover, it is often remarked that the nodes
representing a background color3' (or empty nodes) can
also be eliminated from the node list. While this does not
excessively complicate the processing of the quadtree, its
usefulness is unclear. With a binary raster image, the
result is a reduction in the size of the quadtree to one half
of its former size (assuming that, on the average, one half
of the pixels are background]. However, for multicolored
raster data, the notion of a background color becomes
less relevant and this compaction becomes, in turn, less
useful. This approach can also be applied to vector data

quadtrees. A related method draws an analogy to run
encoding,43 where the locational codes of the leaf nodes
are sorted and only the first element of each subsequence
of blocks of the same color is retained.44 This method
cannot be easily applied to vector quadtrees.

The relative compactness of the pointer and the linear
quadtree representations depends on the complexity of
the scene being represented and on the application in
which they are used. The attractiveness of the linear
quadtree representation increases with the complexity
of the scene. However, the choice is not clear cut, and is
further complicated by the necessity for the various
fields to land on byte boundaries. For 3D data (and data
of even higher dimensions], the overhead of the internal
nodes is less of a factor and hence the pointer represen-
tation is more compact for an even larger fraction of pos-
sible scenes.45

The amount of storage required by quadtrees and
octrees is directly proportional to the number of leaf
nodes. One approach to reducing the number of leaf
nodes in these data structures is the bintree.46-48 Rather
than splitting a region with respect to all the principal
planes simultaneously, the bintree splits a region against
only one plane at each level. For example, instead of split-
ting an octree node into eight subnodes, the bintree first
splits the node into two subnodes along the x-y plane.
Each of these subnodes is checked to see if it could be
a valid leaf (i.e., if it represents a region of just one color).
Each subnode that does not correspond to a leaf is then
subdivided along the y-z plane. Finally, nodes that
require further subdivision are subdivided along the x-
z plane. This process is repeated in a cyclical manner
until the appropriate maximum level of subdivision is
attained.

In the best case, a region requiring one internal node
and eight octree leaf nodes is represented by one inter-
nal node and two bintree leaf nodes. For the example
described, in the worst case, a bintree of seven internal
nodes and eight leaf nodes might be required. The aver-
age case is more difficult to define, so a pointer-based
bintree representation may or may not be more compact
than the corresponding pointer-based octree represen-
tation. However, with a linear bintree representation, the
extra internal nodes become irrelevant and the need for
two additional bits (for a 3D image) to represent the
deepest level of the bintree is often overshadowed by the
reduction in the number of leaf nodes. Another advan-
tage of the bintree is that algorithms using it can be
designed to work for data of arbitrary dimensionality.

The quadtree/octree complexity theorem
Most quadtree algorithms are simply preorder traver-

sals of the quadtree and hence their execution time is
generally a linear function of the number of nodes in the
quadtree. Thus we are interested in the asymptotic anal-
ysis of the size of a quadtree more for its relevance to the
execution-time analysis of quadtree algorithms than for

54 IEEE Computer Graphics & Applications

Figure 10. Example quadtree where the perimeter
does not exceed the base 2 logarithm of the width of
the image. The region in the image is assumed to con-
sist of four pixels, each of unit width.

the amount of storage actually required. Our discussion
assumes a tree representation in the sense that the num-
ber of nodes in the quadtree includes the internal nodes.
A key to the analysis of the execution time of quadtree
algorithms is the following result on the size of quadtrees
(henceforth referred to as the quadtree complexity
the~rem’~,~’) , which states that

For a quadtree of depth q representing an image
space of 2q x pixels where these pixels represent
a region whose perimeter measured in pixel-widths
is p, the number of nodes in the quadtree cannot
exceed 16-p-11+ 16.q.

In all but the most pathological cases (see Figure 10 for
an example) the region perimeter exceeds the base 2 log-
arithm of the width of the image space in which the
region is presented. Therefore, the quadtree complexity
theorem holds that the size of the quadtree representa-
tion of a region is linear in the perimeter of the region.
An alternative interpretation of this result is that for a
given image, if the resolution doubles and hence the
perimeter doubles (ignoring fractal effects), then the
number of nodes will double. On the other hand, for the
2D array representation, when the resolution doubles,
the size of the array quadruples. Therefore, asymptoti-
cally, quadtrees are arbitrarily more compact than 2D
arrays; however, for moderate-size applications, constant
factors need to be scrutinized more carefully. Figure 11
illustrates the relative growth of the two representations
for a simple triangular region.

a d

b e

C f

Figure 11. An illustration of the relative growth of the
array and quadtree representations at different levels
of resolution for a simple triangular region. Figures
l l a through l l c are the array representations of the
triangle at resolutions 1,2, and 3. Figures l l d through
l l f are the corresponding quadtree representations at
the same resolutions. Whenever any part of a square
or node partially overlaps the interior of the triangle,
the node or square is treated as being in the region
(and is shown shaded). Note that the quadtree at reso-
lution 1 (in Figure l l d) has just one node. The trian-
gle overlaps each of the four blocks, and thus they
have been merged.

In most tree structures, the number of nodes in the tree
is dominated by the number of nodes at the deepest
levels (assuming that the root is at the top). This is also
true for quadtrees (see Figure 9). The quadtree complex-
ity theorem follows from the realization that all nodes in
the quadtree are either adjacent (including diagonal
adjacencies) to the border between two regions or have
a sibling with a subtree that contains a portion of the bor-
der. Thus at the deeper levels of a quadtree, the only
nodes present are those that are very close to the border.

From elementary geometry we know that the number

May 1988 55

I A I l e 1

Figure 12. A vector data quadtree corresponding to the
image of Figure la.

of disjoint regions of a bounded size that can be within
a bounded region of the perimeter is a linear function
of the length of the perimeter. Although we might expect
a typical image to have a lower constant of proportion-
ality than the 16 of the quadtree complexity theorem, we
should expect it to have a size that is linear in its perim-
eter. Dyer4' has verified such expectations for randomly
placed rectangles where a factor of 4 rather than 16 was
found.

The quadtree complexity theorem applies to 3D
data5' where perimeter is replaced by surface area, as
well as to higher dimensions for which, in all but patho-
logical cases, it holds that

The size of the k-dimensional quadtree of a set of k-
dimensional objects is proportional to the sum of the
resolution and the size of the (k - 1)-dimensional
interfaces between these objects.

Aside from its implications on the storage requirements,
the quadtree complexity theorem also has a direct
impact on the analysis of the execution time of
algorithms. In particular, most algorithms that execute
on a quadtree representation of an image instead of an
array representation have an execution time that is
proportional to the number of blocks in the image rather
than the number of pixels. In its most general case, this
means that the application of a quadtree algorithm to a
problem in d-dimensional space executes in time propor-
tional to the analogous array-based algorithm in the
(d - 1)-dimensional space of the surface of the original d-
dimensional image.

Vector quadtree definition
The other type of data that we want to represent is vec-

tor data. There are a number of useful leaf criteria5' for
representing vector data using quadtrees. These criteria
differ in the degree of the complexity of the image-space
description versus the size of the hierarchy (i.e., the num-
ber of nodes in the quadtree). Choosing between the
criteria is a matter of analyzing constants on specific
computers to determine whether we prefer a large num-
ber of simple leaf nodes or a smaller number of more
complicated leaf nodes (where it is understood that the
expense of processing a leaf is proportional to the com-
plexity of the information stored in the leaf). In the fol-
lowing, we present a leaf criterion that results in many
simple leaf nodes, but which minimizes the complexity
of the description of algorithms; however, other leaf
criteria may prove more useful for specific implementa-
tions. The criterion that we shall use for vector data is
termed a PM, quadtree and is defined as follows:

0 There can be at most one vertex in an image space.

0 If there is a vertex in the image space, then all line seg-
ments in the image space must share that vertex.

0 If there are no vertices in the image space, then there
can be at most one line segment passing through the
image space.

For our purposes, vertices occur at the endpoints of line
segments and at any location where two line segments
intersect. A line segment consists of a set of q-edges
where a q-edge is the maximal portion of a line segment
that is contained within a given image space. Using such
criteria, the image of Figure la is represented by the
quadtree of Figure 12.

When a line segment passes through an image space,
resulting in a q-edge, only its presence in the space is
explicitly re~orded .~ ' The intercepts of the q-edge with
the border of the image space can be derived from the
descriptor of the line segment that is associated with the
q-edge. Thus all q-edges are specified with the same pre-
cision as the vertices of their corresponding line seg-
ments. The descriptor of the line segment is retained as
long as at least one of its q-edges is still present. Thus
fragments of line segments can be represented. This is
important for it means that the representation is consis-
tent; that is, removal of a q-edge from an image space and
its subsequent reinsertion into the same image space will
result in the same line segment.

The quadtree complexity theorem is also applicable to
vector data. In this case, a suitable pixel width would be
the size of the deepest leaf node needed to represent the
structure. This maximum depth is a function of the
closest approach between vertices and line segments that
are not adjacent to the vertices. Alternatively, an upper
bound on the depth can be constructed based on the pre-
cision with which the location of the vertices is speci-
fied.53 In either case, the bound on the number of nodes

56 IEEE Computer Graphics & Applications

given by the quadtree complexity theorem is excessively
pessimistic for vector data.

It would be nice if the number of nodes of the quad-
tree were a function of the number of line segments in
the image space (thus making the size of the image-space
hierarchy comparable with the size of the object-space
hierarchy for the same data). However, this is not the case
because as the image space is subdivided, line segments
are also subdivided. Thus information about a given line
segment can exist in many nodes of the structure. In the
worst case, the number of nodes in which information
about a particular line segment can occur is proportional
to the length of that line segment.

This worst case is the one that is analyzed by the above
adaptation of the quadtree complexity theorem. How-
ever, it is not typical. In fact, usually the smallest leaf
nodes that contain a given line segment occur near the
endpoints of the line segment. Furthermore, as we exam-
ine parts of the line segment that are successively farther
from both endpoints, the sizes of the leaf nodes contain-
ing these parts of the line segment get larger. In other
words, we expect the number of nodes contributed by a
given line segment to be proportional to the base 2 loga-
rithm of the length of the line segment.

Vector octree
Just as the raster quadtree leaf criterion could be gener-

alized to a raster octree leaf criterion, the vector quad-
tree leaf criteria can also be generalized to form vector
octree leaf criteria to represent polyhedrons. Octree data
structures have been used where the octree decomposi-
tion was performed as long as the number of primitives
in a leaf node exceeded a predefined b o ~ n d . ~ ~ . ~ ~ This
approach has also been used in the context of the bintree
representation of the ~ c t r e e . ~ ’ However, it has the same
problems as the analogous quadtree approach; that is,
there are some features that cannot be represented
exactly (thus they require a maximum-depth truncation
similar to the edge q ~ a d t r e e ~ ’ ~ ‘ ~ ~ ’ ~) .

One way to avoid the information loss from a
maximum-depth cutoff is to permit a variable number
of primitives to be associated with each octree leaf node.
The vector octree ana10g25~58-61 of the vector quadtree
consists of leaf nodes of type face, edge, and vertex,
defined as follows. A face node is an octree leaf node that
is intersected by exactly one face of the polyhedron. An
edge node is an octree leaf node that is intersected by
exactly one edge of the polyhedron. For our purposes,
having more than two faces meet at a common edge is
permissible, although the situation cannot arise when
modeling solids with Eulerian operators.‘ Nevertheless,
it is plausible when 3D objects are represented by their
surfaces. A vertex node is an octree leaf node that is inter-
sected by exactly one vertex of the polyhedron.

The space requirements of the vector octree are con-
siderably harder to analyze than those of the raster
octree.6’ However, it should be clear that the vector

May 1988

Figure 13. (a) Example 3D object and (b) its cor-
responding vector octree.

octree for a given image is much more compact than the
corresponding raster octree. For example, a vector octree
decomposition of the object in Figure 13a is shown in
Figure 13b.

Vector octree techniques have also been extended to
handle curvilinear surfaces. Primitives including
cylinders and spheres have been used with a decompo-
sition rule that limits the number of distinct primitives
that can be associated with a leaf n ~ d e . ~ ’ . ~ ~ Another
approach64 extends the concepts of face node, edge
node, and vertex node to handle faces represented by
biquadratic patches. Biquadratic patches enable a bet-
ter fit with fewer primitives than can be obtained with
polygonal faces, thus reducing the size of the octree. The
difficulty in organizing curved surface patches by using
octrees lies in devising efficient methods of calculating
the intersection between a patch and an octree node.
Observe that in this approach we are organizing a col-
lection of patches in the image space, in contrast to
decomposing a single patch in the parametric space by
use of quadtree technique^.^

Algorithms using quadtrees
Now we describe how a number of basic graphics

57

algorithms can be implemented using quadtrees. In par-
ticular, we discuss point location, object location, set
operations, image transformations, scaling, transmis-
sion, quadtree construction, and polygon coloring. We
also explain the concept of neighbor finding, which
serves as a basis for many algorithms using quadtrees
and octrees.

Point location
Probably the simplest task to perform on raster data

is determining the color of a given pixel. In the tradi-
tional raster representation, this task is accomplished by
exactly one array access. In the raster quadtree, it
requires searching the quadtree structure. The algorithm
starts at the root of the quadtree and uses the values of
the x and y coordinates of the center of its block to deter-
mine which of the four subtrees contains the pixel. For
example, if both the x and y coordinates of the pixel are
less than the x and y coordinates of the center of the
root's block, then the pixel belongs in the southwest sub-
tree of the root.

This process is performed recursively until a leaf is
reached. It requires the transmission of parameters so
that the center of the block corresponding to the root of
the subtree currently being processed can be calculated.
The color of that leaf is the color of the pixel. The exe-
cution time for the algorithm is proportional to the level
of the leaf node containing the desired pixel.

Point location can also be performed without explicitly
calculating the center of the block corresponding to each
node encountered along the path. This calculation can
be avoided by using the depth n of the pixel relative to
that of the root and assuming that the southwestern-most
pixel is at (0,O).

This approach to pixel location is easiest to contem-
plate with respect to a quadtree representation that
makes use of locational codes, although it is equally
applicable to the pointer representation of quadtrees.
The locational code for a leaf is formed by a process
(described in the section on quadtree/octree data struc-
ture implementations) that is equivalent to interleaving
the binary coordinates of the lower left-hand corner of
the leaf. Here coordinates are integer values ranging
from 0 to 2" - 1 for a 2" x 2" grid. When the leaf nodes
are sorted by their locational codes (as for a preorder
traversal of the quadtree), the addresses of all descen-
dants of a node, say P, lie between the address of P and
the address of its immediate successor at the same level.
A pixel is located by first interleaving the binary
representations of its coordinates to construct an
address, say K, for a hypothetical leaf node correspond-
ing to the pixel. This hypothetical leaf is located by per-
forming a binary search on the sorted list of locational
codes for the leaf nodes of the quadtree and returning
the leaf node with the largest locational code value that
is less than or equal to K. The execution time for this algo-
rithm is proportional to the log of the number of leaf

nodes in the tree (assuming key comparisons can be
made in constant time).

When a pointer representation is used, the pixel-
location algorithm is slightly different. In particular, we
locate the appropriate leaf by descending the tree. The
execution time is proportional to the level of the leaf node
containing the desired pixel.

Neighboring object location
The vector analog of the pixel-location task is the

object-location operation, where the x and y coordinates
of the location of a pointing device (e.g., mouse, tablet,
lightpen) must be translated into the name of the appro-
priate object. To handle this task, we must first determine
the leaf that contains the indicated location. The first
approach discussed in the section above can be adapted
in a straightforward manner. The second approach,
using the interleaved bits, is not immediately applicable,
since there is no underlying pixel level.

Let us assume that the block corresponding to the root
of the quadtree is the unit square, and represent the
values of the x and y coordinates of the pointing device
as fixed-length binary fractions. Now the bits of the
binary fraction can alsc be viewed as representing the
unsigned integer coordinates of a grid where the sepa-
ration between neighboring grid points is the minimum
resolution of the binary fraction. The equivalence to
integer coordinates is straightforward.

For vector data quadtrees, the leaf corresponding to the
location of the pointing device serves as the starting
point of the object-location algorithm. In essence, we
wish to report the nearest primitive of the object descrip-
tion stored in the quadtree. If the leaf is empty, then we
must investigate other leaf nodes. In fact, even if the leaf
node is not empty, unless the location of the pointing
device coincides with a primitive, it is possible that a
nearer primitive might exist in another leaf. Such an
algorithm has been developed for quadtree representa-
tions that use locational c o d e P as well as pointers.66
The latter is reported only for point data; however, the
treatment of vector data differs from point data only in
the formula used to calculate the distance from a point.

Using a pointer quadtree representation, the nearest
primitive is found by a top-down recursive algorithm (the
operation is also known as the nearest neighbor problem).
Initially, at each level of the recursion, we explore the
subtree that contains the location of the pointing device,
say P. Once the leaf containing P has been found, the dis-
tance from P to the nearest primitive in the leaf is calcu-
lated (empty leaf nodes have a value of infinity). Next, we
unwind the recursion. As we do so, at each level we
search the subtrees that represent regions overlapping
a circle centered at P whose radius is the distance to the
closest primitive that has been found so far. When more
than one subtree must be searched, the subtrees
representing regions nearer to Pare searched before the
subtrees farther away (since it is possible that a primitive

58 IEEE Computer Graphics & Applications

in them might make it unnecessary to search the subtrees
that are farther away).

Consider, for example, Figure 14 and the task of find-
ing the nearest neighbor of P in node 1. If we visit nodes
in the order NW, NE, SW, and SE, then as we unwind for
the first time, we visit nodes 2 and 3 and the subtrees of
the eastern brother of 1. Once we visit node 4, there is
no need to visit node 5 since node 4 contained A.
Nevertheless, we still visit node 6, containing point B,
which is closer than A, but now there is no need to visit
node 7. Unwinding one more level reveals that because
ofthe distance between P and B, there is no need to visit
nodes 8, 9, 10, 11, and 12. However, node 13 must be
visited, as it could contain a point that is closer to P than B.

Sometimes calculating the nearest neighbor is not
necessary, as long as a “close” neighbor is found. For
example, in a plotting application we want to reduce the
wasted pen motions (motions of the pen that do not
involve drawing). In particular, we require a real-time
algorithm, in the sense that we want to minimize the total
time required both to preprocess the drawing and actu-
ally plot it. In such a case, a quadtree heuristic for cal-
culating the nearest neighbor has been found useful.66
For example, in Figure 14 such a heuristic might return
A as the nearest neighbor of P even though B is closer.
In this application, the only relevant data are the end-
points of the line segments. The heuristic is to use the
primitive in the leaf containing the location of the point-
ing device (unless that leaf is empty, in which case one
of the neighboring nonempty leaf nodes is used).

Set-theoretic operations and image
transformations

The basic set-theoretic operations on quadtrees were
first described by Hunter and S t e i g l i t ~ ’ ~ , ~ ~ (see also
ShneieP8) for pointer-based quadtrees. Gargantini4’
raises the issue of performing these operations on lin-
ear quadtrees that are not aligned. Hunter and
Steiglit~”,~’ and Peters6’ consider the related problem
of performing an arbitrary linear transformation on an
object represented by a quadtree.

In this section we show how to perform set-theoretic
operations on both aligned and unaligned quadtrees. We
conclude with a demonstration that linear transforma-
tions on a quadtree are special cases of set-theoretic
operations applied to quadtrees that are not aligned. Our
implementation of the transformations uses the same
technique as that of Meagher3O for shifting and rotating
images represented by octrees (see Jackins and
TanimotoZ8 for a related approach), although he does
not use the analogy with the set-theoretic operations.

Alternative implementations compute the trans-
formed location of each black node in the original quad-
tree (octree) and insert it in the new quadtree
(o ~ t r e e) . ~ ~ - ’ ~ The worst-case analysis of their execution
time is not as good as that of the methods that we discuss,
although, in practice, the actual execution times seem to

Figure 14. Example illustrating the neighboring
object problem: P is the location of the pointing
device. The nearest object is represented by point B in
node 6.

be dominated by implementation-dependent constant
factors. Van L i e r ~ p ~ ~ and W a l ~ h ~ ~ discuss algorithms for
linear quadtrees that have aspects of both of these alter-
natives, while Yamaguchi et al.75 do the same for linear
octrees.

Aligned quadtrees
Two quadtrees are said to be aligned when their root

nodes correspond to the same region. Set-theoretic oper-
ations on aligned quadtrees are generally simpler than
the equivalent operation on unaligned quadtrees. Of
course, the complement operation, which is a unary
operation, is trivially an aligned-quadtree algorithm
(since every quadtree is aligned with itself). The comple-
ment operation makes sense only as a set-theoretic oper-
ation when the quadtree in question represents a binary
image (i.e., leaf nodes are either black or white). In the
more general case of a quadtree with multicolored leaf
nodes, the analogous operation is to uniformly replace
the color of each of the leaf nodes by another color. When
the color-to-color mapping is specified by an array
indexed by the first color, then the cost of the transfor-
mation is simply the cost of visiting each node of the
quadtree and creating a copy with the appropriate new
data. Assuming that the color mapping is “one-to-one”
and “onto,” then the quadtree’s structure does not
change. The simplest method is to traverse the input
quadtree in preorder, simultaneously building the resul-
tant quadtree. If the mapping between colors is not
invertible, then merging some nodes in the resulting
quadtree may be necessary. However, this can be done
naturally during the preorder traversal of the input tree.

59 May 1988

1 2 3 4 7 8 9 10 I1 12 13 14 15 16 17 18

I 29 x) 31 32 24 25 26 27

Figure 15. Example of set-theoretic operations.
Figures 15a and 15b show sample images and their
quadtrees. Figure 15c shows the intersection of the
images in Figures 15a and 15b; Figure 15d shows their
union.

Thus, under either condition, the quadtree recoloring
algorithm executes in time proportional to the size of the
input quadtree.

For a binary image, set-theoretic operations such as
union and intersection are quite simple to implement.
For example, the intersection of two quadtrees yields a
black node only when the corresponding regions in both
quadtrees are black. The intersection of the quadtrees of
Figures 15a and 15b results in Figure 15c. This operation
is performed by simultaneously traversing three quad-
trees. The first two trees correspond to the trees being
intersected and the third tree represents the result of the
operation. At each step in the traversal one of the follow-
ing actions is taken:

0 If either input quadtree node is white, then the out-
put quadtree node is white.

0 If both input quadtree nodes are black, then the out-
put quadtree node is black.

0 If one input quadtree node is black and the other
input quadtree node is gray (i.e., an internal node),
then the gray node’s subtree is copied into the output
quadtree.

0 If both input quadtree nodes are gray, then the out-
put quadtree node is gray, and these four actions are
recursively applied to each pair of corresponding
sons. Once the sons have been processed, we must
check to see if they are all leaf nodes of the same color,
in which case a merge takes place (e.g., the sons of
nodes B and E in Figures 15a and 15b respectively).
Note that for the intersection operation, a merge of
four black leaf nodes is impossible, and thus we must
check only for the mergibility of white leaf nodes.

The worst-case execution time of this algorithm is
proportional to the sum of the number of nodes in the
two input quadtrees. Note that as a result of the first and
third actions, it is possible for the intersection algorithm
to visit fewer nodes than the sum of the nodes in the two
input quadtrees.

The union operation is implemented easily by apply-
ing DeMorgan’s law to the above intersection algorithm.
For example, Figure 15d is the result of the union of the
quadtrees of Figures 15a and 15b. When the set-theoretic
operations are interpreted as Boolean operations, union
and intersection become “or” and “and” operations,
respectively. Other operations, such as “xor” and set-
difference, are coded in an analogous manner with
linear-time algorithms. Since all of these algorithms are
based on preorder traversals, they will execute efficiently
regardless of the way the quadtree is represented (e.g.,
pointers, locational codes, DF-expressions).

Note also that clipping is a special case of the intersec-
tion operation. In this case, one of the input quadtrees
corresponds to a black region that represents the display
screen’s location and size, thereby making clipping easy
to implement using quadtrees.
Rectilinear unaligned quadtrees and shift operations

Implicit in the intersection algorithm given above is the
assumption that both input quadtrees correspond to the
same region (although the individual pixels can have
different values). In this section we are interested in the
situation where the quadtrees correspond to regions of
the same size but their lower left-hand corners cor-
respond to different positions. For example, consider the
4 x 4 quadtrees shown in Figures 16a and 16b, whose
lower left-hand corners are at locations (0,Z) and (2,O)
respectively. This alignment information is stored
separately from the quadtree. Thus, to translate or rotate
a quadtree, we need only to update the alignment infor-
mation. However, when two quadtrees of differing align-
ment must be operated upon simultaneously (e.g.,

IEEE Computer Graphics & Applications 60

a b

C d

Figure 16. Example of rectilinear unaligned-quadtree
intersection: (a) a 4 x 4 quadtree with a lower left-hand
corner at (0,2), (b) a 4 x 4 quadtree with a lower left-
hand corner at (2,0), (c) the intersection of Figures 16a
and 16b with Figure 16a as the aligned quadtree, (d)
the intersection of Figures 16a and 16b with Figure
16b as the aligned quadtree.

intersected), then the algorithm must take the differing
alignments into consideration as it traverses the two
quadtrees. Such quadtrees are termed unaligned
quadtrees.

Processing unaligned quadtrees is simplified by the
observation that if a square of size w x w (parallel to the
x- and y-axes) is overlaid on a grid of squares such that
each square is of size w x w, then it can overlap, at most,
four of those squares (see Figure 17a) and those four
squares will be neighbors (i.e., they form a 2 ~ x 2 ~
square). We refer to this as the rectilinear unaligned-
quadtree problem. When the w x w square is not paral-
lel to the x- and y-axes, we have the general unaligned-
quadtree problem. In that case, we observe that when an
arbitrary square of size w x w is overlaid at an arbitrary
orientation upon a grid of squares such that each square
is of size w x w, it can cover at most six grid squares (see
Figure 17b). These six or fewer grid squares will lie
within a 3w x 3w square, where the center square of the
3w x 3w square is always one of the intersected squares.

To handle the rectilinear unaligned-quadtree intersec-
tion problem, we adopt the convention that the output
quadtree will be aligned with the first quadtree. We refer
to the first quadtree as the aligned quadtree and to the
second quadtree as the unaligned quadtree. For exam-
ple, intersecting the quadtrees in Figures 16a and 16b so
that the quadtree of Figure 16a is the aligned quadtree

a

b

Figure 17. Examples showing how many squares can
be overlapped when a square of size w x w is overlaid
on a grid of squares such that each square is of size
w x w, so that the square and the grid are (a) rec-
tilinearly unaligned and (b) generally unaligned.

yields the quadtree of Figure 16c. On the other hand, if
the quadtree of Figure 16b is the aligned quadtree, then
the result is represented by the quadtree of Figure 16d.

When intersecting aligned quadtrees (see section on
aligned quadtrees above), we examined pairs of nodes
that overlaid identical regions. In contrast, when inter-
secting rectilinear unaligned quadtrees, upon process-
ing a node in the aligned quadtree, say A, we must
inspect at most four nodes (say U1, U2, U3, U,) from the
unaligned quadtree that overlap the corresponding
region. Note that A corresponds to one of the shaded
squares in Figure 17a while U1, Uz, U3, U4 correspond
to the overlapped grid cells. When A is not white, we may
have to process the sons of A further. In this case, the four
nodes from the unaligned quadtree that overlap a given
son of A are chosen from the sons of U1, U p , U3, and U,.
Thus an efficient recursive top-down algorithm for this
version of the quadtree intersection problem can be eas-

May 1988 61

r - - - - - - -

L..--..--------J

a b C

i

ily implemented. The execution time of this algorithm
is proportional to the sum of the sizes of the two input
quadtrees and the size of the output quadtree. Note that
this bound is slightly different from the bound obtained
for the aligned intersection algorithm, as in this case the
size of the output quadtree is not bounded from above
by the sum of the sizes of the two input quadtrees.

Shifting a quadtree can be viewed as a special case of
the rectilinear unaligned-quadtree algorithm. In partic-
ular, suppose it is desired to shift a quadtree, say A, to
the right by n units and up by rn units. In such a case, a
quadtree, say B, is created representing a black square
whose width is the same as that of A and whose origin
is n units to the left and rn units below the origin of A.
We now use B as the aligned quadtree and A as the
unaligned quadtree in our rectilinear unaligned-
quadtree algorithm. The resulting output quadtree will
be a shifted version of quadtree A. This technique is the
same as that used by Meagher3’ for shifting images rep-
resented by octrees. See, for example, Figure 18, where
the 4 x 4 quadtree of Figure 18a is shifted to the right by
two units and up by one unit. The position of the aligned
quadtree relative to the unaligned quadtree is shown in
Figure 18b using broken lines, while Figure 18c is the
resulting shifted quadtree. Following the analysis of the
previous paragraph, a quadtree can be shifted an integer
number of pixel widths in time linear with respect to the
sizes of the original and resulting quadtrees.

General unaligned quadtrees and rotations
The general unaligned-quadtree algorithm is analo-

gous to the algorithm discussed above for rectilinear
unaligned quadtrees. The only difference is that each
node in the aligned quadtree can be overlapped by as
many as six nodes in the unaligned quadtree (see Figure
17b). Just as shifting was a special case of the rectilinear
unaligned-quadtree intersection algorithm, rotation is a
special case of the general unaligned-quadtree intersec-
tion algorithm. The method we describe is the same as

that used by Meaghe?’ for rotating images represented
by octrees, although he does not draw the analogy with
the unaligned set intersection algorithm. In particular,
suppose we wish to rotate a quadtree, say A, counter-
clockwise by rn degrees. In such a case, a quadtree, say
B, is created representing a black square whose width
is the same as that of A, but one that has been rotated by
m degrees in the clockwise direction about the appropri-
ate center. We now use B as the aligned quadtree and A
as the unaligned quadtree in our general unaligned-
quadtree algorithm. The resulting output quadtree will
be a rotated version of quadtree A.

In the following we describe the rotation of the quad-
tree of Figure 19a, termed A, by 16 degrees in a counter-
clockwise direction about its origin. Black block B has
been rotated by 16 degrees in the clockwise direction
about the origin of A (see Figure 19b). We use broken
lines to depict the decomposition of A and solid lines to
depict the decomposition of B.

The rotation algorithm first determines whether B is
a terminal node by checking whether the maximum of
six nodes of equal size in A that cover it are of the same
color. If they are, then we are done. Otherwise, B is sub-
divided (it is a gray node), as are the relevant nodes in A.
This process is repeated until either all nodes in B’s trees
are terminal or we have reached a maximum level of
decomposition. In our example, the first subdivision is
illustrated in Figure 19c, and its result is given in Figure
19d. Notice the “?” symbol that indicates the block will
be subdivided further. The NE quadrant in Figure 19d
(corresponding to the block labeled B2 in Figure 19c) is
white because the blocks in A that overlap it (just the two
blocks labeled A2 and A4 in Figure 1%) are white. Before
proceeding further, we should check to see if any of the
subdivided blocks of B have four identically colored
sons, in which case a merge must occur.

Next, we subdivide the blocks labeled I‘?’’ in Figure 19d
as well as blocks Al, A2, A3, and A4 in Figure 19c to
obtain Figure We. Again, we now check each of the
newly obtained subblocks of B to see if they are covered
by subblocks of A of the same color. In this case we find
that this is true for blocks B5 and B6 in Figure 19e (i.e.,
they are covered by black subblocks AS, A6, A7, A8, and
A9), as well as blocks B7 and B8. The result is given in
Figure 19f, with I ‘?” denoting that the block will be
decomposed further. One more level of decomposition
is depicted in Figure 19g and the resulting rotated quad-
tree is shown in Figure 19h. Checking to determine
whether any of the subdivided blocks in B have identi-
cally colored sons reveals that the four blocks of the NW
son of the NW quadrant in Figure 19h should be merged
as they are all white. At this point, the resulting quadtree
is at the same level as the original unrotated quadtree.
Nodes labeled with a “?” can be assigned either black or
white as is desired. This may cause more merging.

Since we are usually working in a digitized space, the
rotation operation is not generally invertible. In partic-

IEEE Computer Graphics & Applications 62

Figure 19. Example of rota-
tion. Broken lines depict the
decomposition of the un-
aligned quadtree and solid
lines depict the decomposi-
tion of the aligned quadtree:
(a) sample quadtree, (b) rota-
tion of Figure 19a by 16
degrees in a counterclock-
wise direction about its ori-
gin, (c) decomposition after
the first level of subdivision,
(d) rotated quadtree with one
level of subdivis ion, (e)
decomposition after the sec-
ond level of subdivision, (f)
rotated quadtree with two
levels of subdivision, (g)
decomposition after the third
level of subdivis ion, (h)
rotated quadtree with three
levels of subdivision.

May 1988
63

ular, a rotated square usually cannot be represented
accurately by a collection of rectilinear squares. How-
ever, when we rotate by 90 degrees, then the rotation is
invertible. In such a case, the algorithm traverses the tree
in preorder and rotates the pointers at each node. For a
counterclockwise rotation by 90 degrees, the NW, NE,
SE, and SW sons become SW, NW, NE, and SE sons,
respectively, at each level of the quadtree.

Although the operations discussed in this and the
previous subsections are presented for binary raster
quadtrees, they can be extended in a straightforward
manner to raster quadtrees that have multiple colors and
to vector quadtrees. However, vector quadtree algorithms
generally require more bookkeeping operations than the
corresponding raster quadtree algorithms and conse-
quently are more difficult to analyze.

Scaling quadtrees and multiresolution
representations

Besides the traditional graphics operations of transla-
tion (shifting) and rotation, which are discussed above,
there is also the scaling operation. To make an image rep-
resented by a quadtree half the size that it was originally,
we need only create a new root and give that root three
white [or empty, in the case of vector quadtrees) sons and
one son that was the original quadtree. To make the quad-
tree twice as big, we choose one of the subtrees to serve
as the new root (e.g., the SW subtree), thus eliminating
the remaining three subtrees. If a particular portion of
the quadtree is to be doubled or halved in size, then a
shift operation may have to be performed for the purpose
of alignment.

The above techniques can be applied to scaling by any
power of two. Scaling by an arbitrary factor, sayf, is han-
dled by using the property that when a square, say S, of
size f . w x f a w (0 ~ f s 1) is placed on a grid of squares so
that each square is of size w, then S can overlap no more
than four grid squares. Note that arbitrary scaling is
implemented in a manner similar to that used for the rec-
tilinear unaligned-intersection problem.

Progressive transmission of images represented by
quadtrees can be achieved by taking advantage of the
above techniques for scaling by powers of two. Progres-
sive transmission of an image enables the receiver to pre-
view a reduced-resolution version of the image before
seeing it in its entirety. For example, using such a scheme
for the triangle of Figure 11, we would first see Figure
Ild, then Figure l le, and finally Figure l l f . The scheme
facilitates browsing a database of images. One success-
ful a p p r o a ~ h ~ ~ , ' ~ - ' ' is to transmit the nodes of a raster
quadtree in breadth-first order, so that large leaf nodes
are seen first.

Bottom-up neighbor finding
Many quadtree algorithms involve more work than just

traversing the tree. In particular, in several applications
we must perform a computation at each node that

depends on the values of its adjacent neighbors. Thus we
must be able to locate these neighbors. There are several
techniques for achieving this result. One approach"
uses the coordinates and the size of the node whose
neighbor is being sought, in order to compute the loca-
tion of a point in the neighbor, and then performs an
algorithm similar to that described in the section on
point location. For a 2"xZ" image, this can require n
steps corresponding to the path from the root of the
quadtree to the desired neighbor. An alternative
approach, and the one we describe below, makes use of
only father links and computes a direct path to the neigh-
bor by following links in the tree. This method is called
bottom-up neighbor finding and has been shown to
require an average of four links to be followed for each
neighbor

Here we limit ourselves to neighbors in the horizon-
tal and vertical direction that are of a size equal to or
greater than the node whose neighbor is being sought.
Neighbors in the diagonal direction have been handled
elsewhere." Finding a node's neighbor in a specified
horizontal or vertical direction requires us to follow
father links until a common ancestor of the two nodes
is found. Once it has been located, we descend along a
path that retraces the previous path with the modifica-
tion that each step is a reflection of the corresponding
prior step about the axis formed by the common bound-
ary between the two nodes. The general flow of such an
algorithm is given in Figure 20. For example, when
attempting in Figure 20 to locate the eastern neighbor of
node A (the neighbor is node G), node D is the common
ancestor of nodes A and G, and the eastern edge of the
block corresponding to node A is the common bound-
ary between node A and its neighbor.

The main idea behind bottom-up neighbor finding can
be understood by examining more closely how the
nearest common ancestor of a node, say A in Figure 20,
and its eastern neighbor of greater or equal size, G, is
located. In particular, the nearest common ancestor has
A as one of the eastern-most nodes of one of its western
subtrees, and G as one of the western-most nodes of one
of its eastern subtrees. Thus, as long as an ancestor X is
in a subtree that is not an eastern son (i.e., NE or SE), we
must ascend the tree at least one more level before locat-
ing the nearest common ancestor. Similar techniques are
used to find neighbors in octrees." The difference is
that there are 26 different directions.

Constructing quadtrees
Before we can operate on images represented by quad-

trees, we must first build the quadtrees. The process
requires conversion between a number of different data
formats and the quadtree. Here we briefly describe the
construction of raster quadtrees from raster data and
vector data. The construction of vector quadtrees from
either type of data can be performed in an analogous
manner.

64 IEEE Computer Graphics & Applications

Figure 20. The process of locating
the eastern neighbor of node A (i.e.,
node G): (a) block decomposition,
(b) tree representation.

The algorithm for building a raster quadtree from a 2D
array can be derived directly from the definition of the
raster q~adtree.’~ When building a quadtree from raster
data presented in raster scan order (i.e., the array is pro-
cessed row by we use the bottom-up neighbor-
finding algorithm to move through the quadtree in the
order in which the data is encountered. For example,
considering the quadtree of Figure 6 as a 4 x 4 image
means that its image elements are examined in the order
indicated in Figure 21. Such an algorithm takes time
proportional to the number of pixels in the image. Its exe-
cution time is dominated by the time necessary to check
whether nodes should be merged. This can be avoided
by predictive techniques that assume the existence of a
homogeneous node of maximum size whenever a pixel
that can serve as an upper left corner of a node is
scanned (assuming a raster scan from left to right and
top to bottom). In such a case, merging is reduced and
the algorithm’s execution time is dominated by the num-
ber of blocks in the image85*86 rather than by the number
of pixels. However, this algorithm does require an aux-
iliary data structure (which can be implemented by a
fixed-size array85386) of a size on the order of the width
of the image, to keep track of all active quadtree blocks
(i.e., blocks containing pixels that have not yet been
encountered by the raster scanning process).

Building a raster quadtree from vector data is more
complicated than from raster data. This is because a list
of line segments has no inherent spatial ordering. Atop-
down algorithm for producing a raster quadtree from
vector data takes as input a list of line segments. This list
is recursively clipped against the region, say R, repre-
sented by the root of the current subtree of the quadtree.
If no line segments fall within R, then a white leaf node
is created. If R is of pixel size and contains at least one
line segment, then a black leaf node is created. Other-

May 1988

Figure 21. Raster scanning order for the image of Fig-
ure 6.

wise, a gray node corresponding to R is created and the
algorithm is recursively applied to each of its four chil-
dren using the list that has been clipped.

As an alternative we could use a bottom-up approach
to building the raster quadtree from vector data. First, we
must convert the line segments into a list of pixel-to-pixel
steps (also known as chain codes8’) using a traditional
line-drawing algorithm.88 Next, we follow the path
formed by the chain codes of the line segments creating
black pixel-size leaf nodes.” This is done with the
bottom-up neighbor-finding algorithm.

Average-case analysis for the execution time of the
chain-code-to-raster-quadtree algorithm is linear in the
length of the chain code, as shown by analysis” in con-
junction with the quadtree complexity theorem. More-
over, preprocessing the chain code shows that the
worst-case analysis of this algorithm is also linear in the
length of the chain code.g0 Neighbor-finding methods

65

have also been used to construct chain codes from quad-
trees,g1 as well as 2D arrays in a row-by-row manner.”

Polygon coloring
Another raster operation that can be efficiently imple-

mented in quadtrees using neighbor finding is the seed-
filling approach to polygon coloring. The classic seed-
filling algorithm13 has as its input a starting pixel loca-
tion and a new color. The algorithm propagates the new
color throughout the polygon containing the starting
pixel location. When using arrays, this algorithm is
coded by a recursive routine that checks whether the
color of the current pixel is equal to that of the original
color of the start pixel. If it is, then its color is set to the
new color and the algorithm is applied to each of the cur-
rent pixel’s four neighboring pixels (for a +connected
region). The array implementation of this algorithm can
be adapted to quadtrees by using bottom-up neighbor
finding. Another approach to coloring a region is to color
the border of the region and then move inward from
smaller to larger quadtree This algorithm
could also be implemented using bottom-up neighbor
finding.

A more general version of polygon coloring is
connected-component analysis. Here the task is to take
a binary image and recolor each of the distinct black
regions so that each region has a unique color. The
general approach is to traverse the quadtree in preorder
and attempt to propagate different colors across the
different regions. We discuss three techniques for
propagating the colors.

The first technique is to perform the quadtree-based,
seed-filling, polygon-coloring algorithm described above
whenever a new region is encountered during the
traversal.

The second technique consists of a three-stage algo-
~-ithm.’~ The first stage propagates the color of a node to
its southern and eastern neighbors. This may result in
coloring a single connected component with more than
one color, in which case the equivalence of the two colors
is noted. Such equivalences are merged in the second
stage. The third stage updates the colors of all nodes of
the quadtree to reflect the result of the second stage.
Often, the first and second stages can be combined into
one ~ t a g e . ~ ~ , ’ ~

The third techniqueg0 is a modification of the second
technique and avoids the second stage of merging
equivalences. Each time the border of a new region is
encountered, the preorder traversal is interrupted and
the border of the region is traced and colored using
bottom-up neighbor finding. At the end of the trace, the
preorder traversal is resumed.

Both the second and third techniques use a special
kind of neighbor finding; that is, they perform a preorder
traversal of a quadtree and require the examination of
some of the neighbors of each node in the traversal. For
this approach top-down neighbor finding can be used to

produce improved worst-case results.90395‘97 Top-down
neighbor finding is based the observation that the
neighbor of a node is either a sibling of the node or a
child of a neighbor of the node’s father. Thus, the neigh-
bors of a node can be transmitted as parameters to the
function performing the preorder traversal of the quad-
tree. The same idea can be used for efficiently calculat-
ing the perimeter of a region represented by a
q~adt ree . ’~

Concluding remarks
We have presented an overview of the fundamentals

behind the use in computer graphics of such hierarchi-
cal data structures as the quadtree and the octree. More
advanced applications with an emphasis on the octree
and display methods will be discussed in a companion

I article to appear in the July issue of CG&A.4

Acknowledgment
The support of the National Science Foundation

under grant DCR\-86\-05557 is gratefully acknowledged.

References
1. I.E. Sutherland, R.F. Sproull, and R.A. Schumacker, “A Characteri-

zation of Ten Hidden-Surface Algorithms,” ACM Computing Sur-
veys, Mar. 1974, pp. 1-55.

2. B.G. Baumgart, “Winged-Edge Polyhedron Representation,” Tech.
Report STAN-CS-320, Computer Science Dept., Stanford Univ.,
Stanford, Calif., 1972.

3. J.H. Clark, “Hierarchical Geometric Models for Visible Surface
Algorithms,” CACM, Oct. 1976, pp. 547-554.

4. H. Samet and R.E. Webber, “Hierarchical Data Structures and
Algorithms for Computer Graphics, Part 11: Applications,” To
appear in CG&A, July 1988.

5. H. Samet, “The Quadtree and Related Hierarchical Data Struc-
tures,” ACM Computing Surveys, June 1984, pp. 187-260.

6. H. Samet, “Bibliography on Quadtrees and Related Hierarchical
Data Structures,” in Data Structuresfor Raster Graphics, E]. Peters,
L.R.A. Kessener, and M.L.P. van Lierop, eds., Springer-Verlag, Ber-
lin, 1986, pp. 181-201.

7. H. Samet, Spatial Data Structures: Quadtrees, Octrees, and Other
Hierarchical Methods, to appear, 1989.

8. H.A. Simon, The Sciences ofthe Artificial, MIT Press, Cambridge,
Mass., 1969.

9. I.E. Sutherland, “Sketchpad, A Man-Machine Communication
System,” Proc. SJCC, Detroit, 1963, pp. 329-346.

10. 1.C. Gray, “Compound Data Structure for Computer Aided Design:
A Survey,” Proc. 22nd Nat’l Conf ACM, ACM, New York, 1967, pp.

11. K.A. Lantz and W.I. Nowicki, “Structured Graphics for Distributed
Systems,” ACM Trans. Graphics, Jan. 1984, pp. 23-51.

12. American National Standards Institute Committee X3H31, Ameri-
can National Standard for the Functional Specification of the
Programmer’s Hierarchical Interactive Graphics System (PHIGS),
ANSI Standard X3H31/85-05 X3H3/85-21, American National
Standards Institute, New York, 1985.

13. D.R. Rogers, Procedural Elements for Computer Graphics, McGraw-
Hill, New York, 1985.

14. S.M. Rubin and T. Whitted, “A 3-Dimensional Representation for
Fast Rendering of Complex Scenes,” Computer Graphics (Proc.

15. H. Weghorst, G. Hooper, and D.P Greenberg, “Improved Computa-
tional Methods for Ray ’Ikacing,” ACM Trans. Graphics, Jan. 1984,
pp. 52-69.

355-365.

SIGGRAPH), July 1980, pp. 110-116.

66 IEEE Computer Graphics & Applications

16. H. Fuchs, G.D. Abram, and E.D. Grant, “Near Real-Time Shaded
Display of Rigid Objects,” Computer Graphics (Proc. SIGGRAPH),

17. D.H. Ballard, “Strip Trees: A Hierarchical Representation for
Curves,” CACM, May 1981, pp. 310-321 (see also corrigendum,
CACM, Mar. 1982, pp. 213).

18. N. Ahuja, “On Approaches to Polygonal Decomposition for Hier-
archical Image Representation,” Computer Vision, Graphics, and
Image Processing, Nov. 1983, pp. 200-214.

19. S.B.M. Bell, B.M. Diaz, F. Holroyd, and M.J. Jackson, “Spatially
Referenced Methods of Processing Raster and Vector Data,” Image
and Vision Computing, Nov. 1983, pp. 211-220.

20. L. Gibson and D. Lucas, “Vectorization of Raster Images Using
Hierarchical Methods,” Computer Graphics and Image Process-
ing, Sept. 1982, pp. 82-89.

21. A. Klinger, “Patterns and Search Statistics,” in Optimizing
Methods in Statistics, J.S. Rustagi, ed., Academic Press, New York,

22. H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, “A Geo-
graphic Information System Using Quadtrees,” Pattern Recogni-
tion, Nov./Dec. 1984, pp. 647-656.

23. C.A. Shaffer, H. Samet, and R.C. Nelson, “QUILT: A Geographic
Information System Based on Quadtrees,” Tech. Report TR-1885,
Computer Science Dept., Univ. of Maryland, College Park, Md.,
1987.

24. M. Shneier, “Two Hierarchical Linear Feature Representations:
Edge Pyramids and Edge Quadtrees,” Computer Graphics and
Image Processing, Nov. 1981, pp. 211-224.

25. D. Ayala, €? Brunet, R. Juan, and I. Navazo, “Object Representation
by Means of Nonminimal Division Quadtrees and Octrees,” ACM
Trans. Graphics, Jan. 1985, pp. 41-59.

26. J.E. Warnock, “A Hidden Surface Algorithm for Computer Gener-
ated Half Tone Pictures,” Tech. Report TR 4-15, Computer Science
Dept., Univ. of Utah, Salt Lake City, 1969.

27. G.M. Hunter, “Efficient Computation and Data Structures for
Graphics,” doctoral dissertation, Princeton Univ., Princeton, N. J,,
1978.

28. C.L. Jackins and S.L. Tanimoto, “Oct-Trees and Their Use in
Representing Three-Dimensional Objects,” Computer Graphics
and Image Processing, Nov. 1980, pp. 249-270.

29. D. Meagher, “Geometric Modeling Using Octree Encoding,” Com-
puter Graphics and Image Processing, June 1982, pp. 129-147.

30. D.R. Reddy and S. Rubin, “Representation of Three-Dimensional
Objects,” Tech. Report CMU-CS-78-113, Computer Science Dept.,
Carnegie Mellon Univ., Pittsburgh, 1978.

31. D.E. Knuth, The Art ofcomputer Programming, Vol. I: Fundamen-
tal Algorithms, 2nd ed., Addison-Wesley, Reading, Mass., 1975.

32. G.M. Hunter and K. Steiglitz, “Operations on Images Using Quad
Trees,” IEEE Trans. Pattern Analysis and Machine Intelligence, Apr.

33. E. Kawaguchi and T. Endo, “On a Method of Binary Picture Rep-
resentation and Its Application to Data Compression,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Jan. 1980, pp.

34. E. Kawaguchi, T. Endo, and M. Yokota, “DF-Expression of Binary-
Valued Picture and Its Relation to Other Pyramidal Representa-
tions,” Proc. Fifth Int’l Conf. Pattern Recognition, CS Press, Los
Alamitos, Calif., 1980, pp. 822-827.

35. E. Kawaguchi, T. Endo, and J. Matsunaga, “Depth-First Expres-
sion Viewed from Digital Picture Processing,” IEEE Trans. Pattern
Analysis and Machine Intelligence, July 1983, pp. 373-384.

36. M.A. Oliver and N.E. Wiseman, “Operations on Quadtree-
Encoded Images,” Computer I., Feb. 1983, pp. 83-91.

July 1983, pp. 65-72.

1971, pp. 303-337.

1979, pp. 145-153,

27-35.

37. M.A. Oliver and N.E. Wiseman, “Operations on Quadtree Leaves
and Related Image Areas.” Computer J., Nov. 1983, pp. 375-380.

38. G.M. Morton, “A Computer Oriented Geodetic Data Base and a
New Technique in File Sequencing,” IBM Ltd., Ottawa, Canada,
1966.

39. I. Gargantini, “An Effective Way to Represent Quadtrees,” CACM,
Dec. 1982, pp. 905-910.

40. I. Gargantini, “Linear Octtrees for Fast Processing of Three-
Dimensional Objects,” Computer Graphics and Image Processing,
Dec. 1982, pp. 365-374.

41. I. Gargantini, “Detection of Connectivity for Regions Represented
by Linear Quadtrees,” Computers and Mathematics with Applica-
tions, Vol. 8, No. 4, 1982, pp. 319-327.

42. I. Gargantini, “Translation, Rotation, and Superposition of Lin-
ear Quadtrees,” Int’l J. Man-Machine Studies, Mar. 1983, pp.
253-263.

43. D. Rutovitz, “Data Structures for Operations on Digital Images,”
in Pictorial Pattern Recognition, G.C. Cheng et al., eds., Thompson
Book Co., Washington, D.C., 1968, pp. 105-133.

44. J.P. Lauzon, D.M. Mark, L. Kikuchi, and J.A. Guevara, “Two-
Dimensional Run-Encoding for Quadtree Representation,” Com-
puter Vision, Graphics, and Image Processing, Apr. 1985, pp. 56-69.

45. H. Samet and R.E. Webber, ”A Comparison of the Space Require-
ments of Multi-Dimensional Quadtree-Based File Structures”
Tech. Report TR-1711, Computer Science Dept., Univ. of Maryland,
College Park, Md., 1986.

46. K. Knowlton, “Progressive Transmission of Greyscale and Binary
Pictures by Simple, Efficient, and Lossless Encoding Schemes,”
Proc. IEEE, July 1980, pp. 885-896.

47. M. Tamminen, “Comment on Quad- and Octtrees,” CACM, Mar.

48. H. Samet and M. Tamminen, “Efficient Component Labeling of
Images of Arbitrary Dimension,” Tech. Report TR-1480, Computer
Science Dept., Univ. of Maryland, College Park, Md., 1985. Also
to be published in IEEE Trans. Pattern Analysis and Machine Intel-
ligence.

49. C.R. Dyer, “The Space Efficiency of Quadtrees,” Computer
Graphics and Image Processing, Aug. 1982, pp. 335-348.

50. D. Meagher, “Octree Encoding: A New Technique for the Repre-
sentation, the Manipulation, and Display of Arbitrary 3-D Objects
by Computer,” Tech. Report IPL-TR-80411, Image Processing
Laboratory, Rensselaer Polytechnic Inst., Troy, N.Y., 1980.

51. H. Samet and R.E. Webber, “Storing a Collection of Polygons Using
Quadtrees,” ACM ’kans. Graphics, July 1985, pp. 182-222. Also pub-
lished in Proc. IEEE Computer Vision and Pattern Recognition
Conf., CS Press, Los Alamitos, Calif., 1983, pp. 127-132.

52. R.C. Nelson and H. Samet, “A Consistent Hierarchical Represen-
tation for Vector Data,” Computer Graphics (Proc. SIGGRAPH),

53. H. Samet, C.A. Shaffer, and R.E. Webber, “Digitizing the Plane with
Cells of Non-Uniform Size,” Information Processing Letters, Apr.

54. A.S. Glassner, “Space Subdivision for Fast Ray Tracing,” CGGA,

55. G. Wyvill and T.L. Kunii. “A Functional Model for Constructive
Solid Geometry,” The Visual Computer, July 1985, pp. 3-14.

56. F.W. Jansen, “Data Structures for Ray Tracing,” in Data Structures
for Raster Graphics, F.J. Peters, L.R.A. Kessener, and M.L.P. van
Lierop, eds., Springer-Verlag, Berlin, 1986, pp. 57-73.

57. M.R. Kaplan, “Space-Tracing: A Constant Time Ray’kacer,” Uses
of Spatial Coherence in Ray-Tracing, tutorial notes, SIGGRAPH 85,
ACM, New York, 1985.

58. 1. Carlbom, I. Chakravarty, and D. Vanderschel, “A Hierarchical
Data Structure for Representing the Spatial Decomposition of 3-D
Objects,” CGGA, Apr. 1985, pp. 24-31.

59. K. Fujimura and T.L. Kunii, “A Hierarchical Space Indexing
Method,” Proc. Computer Graphics 85, Springer-Verlag, Tokyo,

60. K.M. Quinlan and J.R. Woodwark, “A Spatially-Segmented Solids
Database-Justification and Design,” Proc. CAD 82 Conf.,
Brighton, UK, 1982, pp. 126-132.

61. D.J. Vanderschel, “Divided Leaf Octal Trees,” research note,
Schlumberger-Doll Research, Ridgefield. Conn., 1984.

1984, pp. 248-249.

Aug. 1986, pp. 197-206.

1987, pp. 369-375.

Oct. 1984, pp. 15-22.

1985, pp. 21-33.

May 1988 67

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

I. Navazo, Contribucio a les tecniques de modelat geometric d’ob-
jectes poliedrics usant la codificacio amb arbres octals, doctoral dis-
sertation, Escola Tecnica Superior d’Enginyers Industrials,
Universitat Politechnica de Barcelona, Barcelona, Spain, 1986.
A. Fujimoto, T. Tanaka, and K. Iwata, “ARTS: Accelerated Ray-
Tracing System,” CGbA, Apr. 1986, pp. 16-26.
I. Navazo, D. Ayala, and P. Brunet, A Geometric Modeller Based on
the Exact Octree Representation of Polyhedra, Escola Tecnica
Superior d’Enginyers Industrials, Universitat Politechnica de
Barcelona, Barcelona, Spain, 1986.
D.J. Abel and J.L. Smith, “A Simple Approach to the Nearest-
Neighbor Problem,” Australian Computer J., Nov. 1984, pp. 140-146.
D.P. Anderson, “Techniques for Reducing Pen Plotting Time,”
ACM Trans. Graphics, July 1983, pp. 197-212.
G.M. Hunter and K. Steiglitz, “Linear Transformation of Pictures
Represented by Quad Trees,” Computer Graphics and Image Pro-
cessing, July 1979, pp. 289-296.
M. Shneier, “Calculations of Geometric Properties Using Quad-
trees,’’ Computer Graphics and Image Processing, July 1981, pp.

F.J. Peters, “An Algorithm for Transformations of Pictures Repre-
sented by Quadtrees,” Computer Vision, Graphics, and Image Pro-
cessing, Dec. 1985, pp. 397-403.
N. Ahuja and C. Nash, “Octree Representations of Moving
Objects,” Computer Vision, Graphics, and Image Processing, May

W. Osse and N. Ahuja, “Efficient Octree Representation of Mov-
ing Objects,” Proc. Seventh Int’l Conf. Pattern Recognition, CS
Press, Los Alamitos, Calif., 1984, pp. 821-823.
J. Weng and N. Ahuja, “Octrees of Objects in Arbitrary Motion:
Representation and Efficiency,” Computer Vision, Graphics, and
Image Processing, Aug. 1987, pp. 167-185.
M.L.P. van Lierop, “Geometrical %ansformations on Pictures Rep-
resented by Leafcodes,” Computer Vision, Graphics, and Image
Processing, Jan. 1986, pp. 81-98.
T.R. Walsh, “Efficient Axis-Translation of Binary Digital Pictures
by Blocks in Linear Quadtree Representation,” Computer Vision,
Graphics, and Image Processing, Mar. 1988, pp. 282-292.
K. Yamaguchi, T.L. Kunii, K. Fujimura, and H. Toriya, “Octree-
Related Data Structures and Algorithms, CGG.A, Jan. 1984, pp.
53-59.
F.S. Hill, Jr., S. Walker, Jr., and F. Gao, “Interactive Image Query
System Using Progressive Transmission,” Computer Graphics
(Proc. SICGRAPH), July 1983, pp. 323-330.
H. Samet, “Data Structures for Quadtree Approximation and Com-
pression,” CACM, Sept. 1985, pp. 973-993.
K.R. Sloan, Jr., and S.L. Tanimoto, ”Progressive Refinement of
Raster Images,’’ IEEE Trans. Computers, Nov. 1979, pp. 871-874.
A. Klinger and M.L. Rhodes, “Organization and Access of Image
Data by Areas,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, Jan. 1979, pp. 50-60.
H. Samet, “Neighbor Finding Techniques for Images Represented
by Quadtrees,” Computer Graphics and Image Processing, Jan.

H. Samet and C.A. Shaffer, “A Model for the Analysis of Neigh-
bor Finding in Pointer-Based Quadtrees,” IEEE Trans. Pattern
Analysis and Machine Intelligence, Nov. 1985, pp. 717-720.
H. Samet, “Neighbor Finding in Images Represented by Octrees,”
Tech. Report. TR-1968, Computer Science Dept., Univ. of Mary-
land, College Park, Md., 1988.
H. Samet, “Region Representation: Quadtrees from Binary
Arrays,” Computer Graphics and Image Processing, May 1980, pp.

H. Samet, “An Algorithm for Converting Rasters to Quadtrees,”
IEEE Trans. Pattern Analysis and Machine Intelligence, Jan. 1981,
pp. 93-95.

C.A. Shaffer, Application of Alternative Quadtree Representations,
doctoral dissertation and Tech. Report TR-1672, Computer Science

296-302.

1984, pp. 207-216.

1982, pp. 37-57.

88-93.

Dept., Univ. of Maryland, College Park, Md., 1986.
86. C.A. Shaffer and H. Samet, “Optimal Quadtree Construction

Algorithms,” Computer Vision, Graphics, and Image Processing,
Mar. 1987, pp. 402-419.

87. H. Freeman, “Computer Processing of Line-Drawing Images,”
ACM Computing Surveys, Mar. 1974, pp. 57-97.

88. J.E. Bresenham, “Algorithm for Computer Control of a Digital Plot-
ter,” IBM Systems J., Vol. 4, No. 1, pp. 25-30.

89. H. Samet, “Region Representation: Quadtrees from Boundary
Codes,” CACM, Mar. 1980, pp. 163-170.

90. R.E. Webber, Analysis of Quadtree Algorithms, doctoral disserta-
tion and Tech. Report TR-1376, Computer Science Dept., Univ. of
Maryland, College Park, Md., 1984.

91. C.R. Dyer, A. Rosenfeld, and H. Samet, “Region Representation:
Boundary Codes from Quadtrees,” CACM, Mar. 1980, pp. 171-179.

92. H. Samet, “Algorithms for the Conversion of Quadtrees to Rasters,”
Computer Vision, Graphics, and Image Processing, Apr. 1984, pp.

93. H. Samet, “Connected Component Labeling Using Quadtrees,”
J. of the ACM, July 1981, pp. 487-501.

94. H. Samet and M. Tamminen, “A General Approach to Connected
Component Labeling of Images,” Tech. Report TR-1649, Computer
Science Dept., Univ. of Maryland, College Park, Md., 1986. Also
published in Proc. IEEE Computer Vision and Pattern Recognition
Conf., CS Press, Los Alamitos, Calif., 1986, pp. 312-318.

95. H. Samet and R.E. Webber, “On Encoding Boundaries with Quad-
trees,’’ Tech. Report TR-1162, Computer Science Dept., Univ. of
Maryland, College Park, Md., 1982.

96. C.L. Jackins and S.L. Tanimoto, “Quad-Trees, Oct-Trees, and k-
Trees-A Generalized Approach to Recursive Decomposition of
Euclidean Space,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, Sept. 1983, pp. 533-539.

97. H. Samet, “A Top-Down Quadtree Traversal Algorithm,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Jan. 1985, pp.

1-16.

94-98.

Hanan Samet is a professor of computer science
at the University of Maryland, where he serves
as the director of the graduate program in com-
puter science. He is also a member of the Com-
puter Vision Laboratory of the Center for
Automation Research and has an appointment
in the University of Maryland Institute for
Advanced Computer Studies. His research
interests are data structures, computer graphics,
geographic information systems, computer

vision, robotics, programming languages, artificial intelligence, and
database management systems.

Samet received his BS in engineering from UCLA and his MS in
operations research and MS and PhD in computer science from Stan-
ford University. He is a senior member of IEEE and is a member of
ACM.

Samet can be reached at the Computer Science Department, Uni-
versity of Maryland, College Park, MD 20742.

Robert E. Webber is an assistant professor of
computer science at Rutgers University. His
research interests are image synthesis, geo-
graphic information systems, analysis of
algorithms, and discrete geometry.

Webber received his BS, MS, and PhD in com-
puter science from the University of Maryland.
He is a member of ACM, IEEE, and NCGA.

Webber can be contacted at the Department of Computer Science,
Rutgers University, Busch Campus, New Brunswick, NJ 08903.

68 IEEE Computer Graphics & Applications

