
An Adaptive Cost System for Parallel Program
Instrumentation ?

Je�rey K. Hollingsworth1 and Barton P. Miller2

1 University of Maryland, hollings@cs.umd.edu
2 University of Wisconsin, bart@cs.wisc.edu

Abstract. We present a new data collection cost system that provides
programmers with feedback about the impact data collection is having
on their application. We allow programmers to de�ne the level of pertur-
bation their application can tolerate and then we regulate the amount of
instrumentation to ensure that threshold is not exceeded. Our approach
is unique in that the type of data gathered remains constant; instead we
regulate when it is collected. This permits programmers to trade speed
of isolation of a performance problem for less application perturbation.
We implemented this cost system in the Paradyn Performance Tools and
present case studies demonstrating the accuracy of the cost system.

1 Introduction

We present a new way to manage the perturbation caused by software data
collection. Our approach is based on an instrumentation cost system that en-
sures that data collection and analysis can be accomplished while controlling
the performance overhead of the instrumentation. The unique feature of our ap-
proach is that it lets the programmer see and control the overhead introduced
by monitoring rather than simply being subjected to it.

The best way to handle instrumentation overhead is to avoid introducing it
in the �rst place. In a previous paper [4], we described a new approach to perfor-
mance monitoring called Dynamic Instrumentation. Dynamic Instrumentation
delays instrumenting an application until it is in execution, permitting dynamic
insertion and alteration of the instrumentation during program execution. En-
abling instrumentation only when it is needed greatly reduces the amount of
data collected, and thus the overhead due to the instrumentation system.

We have developed an instrumentation cost system to ensure that data collec-
tion and analysis does not excessively alter the performance of the application
being studied. The system associates a cost with di�erent resources. Possible
resources include processors, interconnection networks, disks, and data analy-
sis workstations. The cost system is divided into two parts: predicted cost and

?
Supported in part by Wright Laboratory Avionics Directorate (WLAD), Air Force Material
Command, USAF, grant F33615-94-1-1525 (ARPA order B550), NSF Grants CCR-9100968
and CDA-9024618, DOE Grant DE-FG02-93ER25176, and ONR Grant N00014-89-J-1222. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the o�cial policies
or endorsements, either expressed or implied, of WLAD or the U.S. Government.



observed cost. Predicted cost is computed when an instrumentation request is
received, and observed cost while the instrumentation is enabled.

By computing the predicted cost of instrumentation before data collection
starts, it is possible to decide if the requested data is worth the cost of col-
lection. This predictive information can be used as feedback to reduce or defer
an instrumentation request. Our higher-level performance analysis tools use the
cost prediction to control how aggressively they instrument a program in search
of performance bottlenecks. In many cases, control of instrumentation overhead
permits our tools to more quickly isolate a performance problem (see Section 6).

Although predicting the cost of data collection prior to instrumentation exe-
cution provides useful data, it is important to make sure that the actual cost of
data collection matches the predicted cost. The observed cost tracks the impact
the currently enabled instrumentation has on the application. To be useful, our
observed cost system needs to be both cheap to compute and accurately reect
the true impact of data collection. If the observed cost exceeds prede�ned limits,
feedback is provided to the user or higher-level tool; this feedback allows us to
dynamicallymaintain (approximately) a �xed level of instrumentation overhead.

2 Dynamic Instrumentation and W 3 Search Model

Our recent work in performance monitoring tools has focused on two areas.
First, how can we e�ciently collect performance data for large, long running
applications? Second, how can we help programmers to understand the source
of their performance problems rather than providing them raw performance data.

Our approach, called Dynamic Instrumentation, defers instrumenting the
program until it is in execution. This approach permits dynamic insertion and
alteration of the instrumentation during program execution. At any time during
a program's execution, a consumer of performance data can start collecting a
metric for a particular combination of resources. To satisfy this request, instru-
mentation code is generated and inserted into the program. When performance
data is no longer required, its instrumentation code is removed from the program.

Dynamic instrumentation is designed to be usable for a variety of high level
tools, and so it has a simple interface. The interface is based on two abstractions:
resources and metrics. Resources are the objects about which we gather perfor-
mance information. Resources include processors, interconnection networks, pro-
cesses, procedures, and synchronization objects. Metrics are time varying func-
tions that characterize a program's performance; they can be computed for any
subset of the resources in the system. For example, CPU time can be computed
for a single procedure executing on one processor or for the entire application.

We have also been investigating how to help programmers interpret the col-
lected performance data. The W 3 Search Model[6] is a structured methodology
for programmers to quickly and precisely isolate a performance problem without
having to examine a large amount of extraneous information. It is based on an-
swering three separate questions: why is the application performing poorly, where
is the bottleneck, and when does the problem occur. By iteratively re�ning the



answer to these three questions, we can precisely describe to programmers the
reason their program is not performing as expected. Re�ning the answer to these
questions requires testing di�erent hypotheses about the source of performance
problems. To deliver answers rather than asking the questions, we automate this
search process. In an automated search, the tool re�nes the answers to these
three questions by enabling and disabling the collection of performance data.
The module that implements our model is called the Performance Consultant.

3 Cost System

With Dynamic Instrumentation, the data collected at a particular point in the
program no longer remains �xed for the entire program's execution. Each time
a new request for instrumentation is received, the instrumentation overhead for
that point can change. Our system associates an instrumentation cost with dif-
ferent resources. Possible resources include processors, interconnection networks,
disks, and data analysis workstations. The cost system is divided into two parts:
predicted cost and observed cost. Predicted cost is computed when an instru-
mentation request is received, and can be used to estimate the overhead for the
desired instrumentation. Observed cost is computed while the instrumentation
executes and provides noti�cation if the overhead has exceeded the user's expec-
tations. In essence, observed cost is just another performance metric; we use the
W 3 Search Model to implement much of the observed cost system.

3.1 Predicted Cost

Predicted cost is the expected overhead of collecting the data necessary to com-
pute a metric for a particular combination of resources. We compute the pre-
dicted cost when an instrumentation request arrives, but before the instrumen-
tation is inserted into the application. The predicted cost is expressed as the
utilization of each measured resource required to collect the desired data.

In Dynamic Instrumentation, CPU time overhead is due to the insertion of
instrumentation primitives at various points in the program's executable. To pre-
dict this overhead at a single point in the program we need to know: what instru-
mentation will be inserted, the cost of executing that instrumentation, and the
frequency of execution of that point. We multiply the instrumentation overhead
by the point's expected execution frequency to compute the predicted overhead.
The sum of the overhead for all points is the predicted cost for an instrumenta-
tion request. Based on measurements, we know the cost of each instrumentation
primitive; the di�cult part is estimating their execution frequency.

Data about the frequency of instrumentation execution comes from a static
estimate of procedure call frequency. This approach is at best a wild guess,
but since we adjust this value based on runtime data the initial value does not
need to be accurate. We associate with every point in the program an expected
frequency. The initial value for each point is based on the point's type (e.g., user
vs. system call). We denote the predicted cost for the application as Cpred.



3.2 Observed Cost

The observed cost monitors the e�ect of data collection on the application. Its
purpose is to check that the overhead of data collection does not exceed pre-
de�ned levels, and if it exceeds these levels, report it to the higher level consumers
of the data. If the predicted and observed costs di�er signi�cantly, we can adjust
the amount of instrumentation enabled.

Actual cost also might di�er from predicted cost because of resource con-
tention between the application and the data collection. For example, the pre-
dicted cost system does not include the memory hierarchy (e.g., caches and
TLB). If the application is constrained by that resource then the impact on the
performance could be signi�cant.

Our current implementation includes only the direct CPU and cache pollu-
tion costs. Conceptually, computing the cost of executing the instrumentation
is easy: we record the time spent executing the primitives. However, computing
the cost of cache pollution is problematic. The di�culty is that it is impossi-
ble, without sophisticated hardware instrumentation, to know if cache lines used
by the instrumentation will cause subsequent cache misses for the application.
However, we can compute a bounds for the impact of cache pollution. The lower
bound is that there was no cache pollution. This happens when none of cache
items replaced due to instrumentation were subsequently used by the applica-
tion. An upper bound is that every cache item loaded by the instrumentation
code will result in a subsequent cache miss for the application3.

Our observed cost has two values reecting the lower and upper bound of the
cache pollution. The actual cost of instrumentation should lie within this range.
To compute the observed cost range we use two values:

Cobs direct: The measured time spent executing the instrumentation. To e�-
ciently compute this value we use statistical sampling.

Cobs cache: The waiting time for cache misses during instrumentation code.

To compute Cobs cache, we use Cobs ideal. Cobs ideal is the time required to
execute the instrumentation assuming an ideal memory model (i.e., all memory
requests are satis�ed by the cache). Di�erences between the measured and ideal
times are due to the memory hierarchy. So:Cobs cache = Cobs direct � Cideal. To
compute Cobs ideal, we added an additional instruction at each instrumentation
point to record the number of machine cycles required for the primitives at
that point. The cycle count provides a precise measure of the instrumentation
instructions executed. However, we still need to convert instruction counts to
time. For the processors used in this case study, we divide the cycle times of the
instrumentation instruction sequences by the clock frequency of the machine4.

We then compute the lower and upper bounds for the observed cost as:
Cobs low = Cobs direct, and Cobs high = Cobs direct + Cobs cache.

3 While this one-to-one ratio is the worse case for direct mapped caches, for set-
associative caches, the cache pollution penalty is also a function of the associativity.

4 For super-scalar processors an approach similar to [8] will be required.



Observed cost can be viewed as just another a performance metric to charac-
terize a type of bottleneck in a parallel program. The only di�erence is that the
bottleneck in which we are interested was created by the data collection system
rather than the programmer. We treat instrumentation as a potential bottle-
neck like an application bottleneck (such as too much synchronization blocking
time) and use the W 3 Search Model to look for it. In the W 3 Search Model, the
observed cost is expressed as additional hypotheses along the \Why" axis, that
can be isolated to speci�c resources.

4 Evaluation of the Cost System

We ran three sequential and three parallel applications, and then compared the
predicted and observed costs to the actual perturbation. For each program, we
measured its performance with four di�erent levels of instrumentation enabled:

Base: The minimum dynamic instrumentation is inserted (recording the start
and end of the application).

Procedure: CPU time metrics for each procedure computed for the lifetime of
the application (similar to the UNIX prof utility).

PC Base: The initial instrumentation used by the Performance Consultant to
search for a bottleneck in the application is enabled.

PC Full: The Performance Consultant run in automated mode, turning on and
o� instrumentation as needed.

Since we were interested in assessing the accuracy of the cost system, we
did not want to use the cost system to control the number of re�nements be-
ing considered. However, we also did not want to overwhelm the application
with instrumentation by enabling all re�nements at once. As a compromise, we
con�gured the Performance Consultant to consider ten re�nements at once.

For each of the four levels of instrumentation, we recorded Cobs low , Cobs high,
and Cpred. In addition we recorded two additional values:

Tobs: the user CPU time of the application program with the dynamic instru-
mentation, as measured by UNIX timing commands.

Cobserved: the timed cost of the instrumentation, calculated as di�erence between
Tobs for the current and base levels of instrumentation.

The range between Cobs low and Cobs high represents the bounds on the in-
strumentation overhead. If Cobserved is inside this range, our system accurately
computed the instrumentation overhead. Di�erences between Cobserved andCpred

represent the inaccuracies in our calculations of the predicted cost. Accurate cal-
culation of observed cost is crucial; accurate calculation of predicted cost is less
critical since it can be corrected by feedback from the observed cost system.

The three sequential applications we measured (Ear, Fpppp, and Doduc) are
from the oating point SPEC92 benchmark suite. Since instrumentation is cur-
rently inserted at procedure boundaries, we wanted a cross section of procedure
size and procedure call frequency. The programs were run on an otherwise idle



SPARCstation 5 running at 85Mhz. PVM[2] versions of three parallel Compu-
tational Fluid Dynamics (CFD) kernels from the NAS parallel benchmarks[1]
were also run.

4.1 Observed Cost

The results for the �rst sequential application, Ear, are shown at the top of
Figure 1. The base time for this program is about 11.5 minutes, and averages
11,000 procedure calls per second during its execution. The values in the table
show that the measured observed cost is within the range between Cobs low and
Cobs high as is true for all three benchmarks. The total instrumentation overhead
(Cobserved) ranged from 9% to just over 42% of the CPU time of the base time to
run the program in Paradyn. The Performance Consultant overhead was larger
than we expected due to our naive code generator inserting duplicate copies of
instrumentation to satisfy di�erent metric requests.

Program Cobserved Cobs low Cobs high

Version Time Time Percent Time Percent Delta Time Percent Delta

Ear 687.9
Procedure 753.4 65.5 9.5% 52.1 7.6% (2.0) 87.9 12.8% (-3.3)
PC Base 838.6 150.7 21.9% 124.0 18.0% (3.9) 213.6 31.0% (-9.1)
PC Full 978.2 290.2 42.2% 261.2 38.0% (4.2) 453.2 65.9% (-23.7)

Fpppp 293.8
Procedure 309.4 15.6 5.3% 11.1 3.8% (1.5) 19.5 6.6% (-1.3)
PC Base 308.4 14.6 5.0% 11.9 4.1% (0.9) 20.7 7.0% (-2.1)
PC Full 314.8 21.0 7.1% 14.6 5.0% (2.1) 24.2 8.2% (-1.1)
Doduc 58.0
Procedure 109.7 51.7 89.2% 48.1 82.9% (6.3) 74.2 128.0% (-38.8)
PC Base 61.2 3.2 5.6% 2.1 3.6% (2.0) 3.6 6.2% (-0.7)
PC Full 67.3 9.3 16.1% 7.1 12.2% (3.8) 10.2 17.5% (-1.4)

Fig. 1. Observed vs. Timed Overhead (seconds).

The second program was Fpppp, a quantum chemistry benchmark that does
electron integral derivatives. It averaged 2,100 procedure calls per second.

The third program is Doduc, a Monte Carlo simulation of the time evolu-
tion of a thermo-hydraulical model of a nuclear reactor. This program averages
107,000 procedure calls per second. The timed observed cost for this program
ranged from 5 to 89 percent of the base time to run the program using Para-
dyn. This program has the largest di�erence between Cobs low and Cobs high,
indicating that the program is sensitive to cache perturbation.

Next, we tested our cost system with three NAS CFD benchmarks running on
a network of SPARCstations 5's connected by Ethernet. The applications were
con�gured with one master and four worker processes. We ran each program
with the same same four levels of instrumentation that we used before.

A comparison of the low and high values of the observed cost and measured
perturbation for these program appears in Figure 2. The Time column shows the



total time of all processes. Cobserved ranged from 1.8% to 12.7% for these three
programs. For all of the programs at all levels of instrumentation, the value of
Cobserved was in the range from Cobs low to Cobs high.

Program Cobserved Cobs low Cobs high

Version Time Time Percent Time Percent Delta Time Percent Delta

PVM BT 892.5
Procedure 1005.8 113.3 12.7% 96.3 10.8% (1.9) 161.2 18.1% (-5.4)
PC Base 914.4 21.9 2.5% 13.8 1.6% (0.9) 26.2 2.9% (-0.5)
PC Full 925.5 33.0 3.7% 18.6 2.1% (1.6) 33.4 3.7% (0.0)
PVM LU 99.0
Procedure 105.2 6.2 6.3% 5.2 5.3% (1.0) 9.0 9.1% (-2.8)
PC Base 103.4 4.4 4.4% 3.3 3.3% (1.1) 6.3 6.3% (-1.9)
PC Full 104.6 5.6 5.7% 3.2 3.2% (2.4) 5.9 6.0% (-0.3)
PVM SP 474.5
Procedure 483.1 8.6 1.8% 7.4 1.6% (0.3) 9.1 1.9% (-0.1)
PC Base 501.7 27.2 5.7% 15.7 3.3% (2.4) 29.6 6.2% (-0.5)
PC Full 509.2 35.0 7.4% 20.2 4.3% (3.2) 35.0 7.4% (0.0)

Fig. 2. Timed vs. Observed Overhead for NAS CFD Kernels (seconds).

4.2 Predicted Cost

To gauge the e�ectiveness of the Predicted Cost, we ran the same applications
we used to study the observed cost metric, and measured the predicted cost
metric. These results are based on using the static predicted cost information
and do not include any compensation based on the observed cost.

The predicted cost for the Ear program is shown at the top of Figure 3. The
value for the Procedure and PC Base cases are each within 6% of the observed
cost. The value for the PC Full case had an error of almost 40%. This is due
the Performance Consultant inserting instrumentation into a single procedure
that is called thousands of times a second. The middle section of table shows
the predicted cost for the Fpppp application. For all three cases, the estimated
cost was within 6% of base time to run the application using Paradyn. The last
part of table shows the predicted cost for the Doduc application. The errors in
the Predicted Cost ranged from 4.7% to 73.1% in this case. The largest error
occurred instrumenting the CPU time for all procedures.

We also compared the predicted cost data for the three PVM applications.
The results are shown in Figure 3. The di�erence between the actual predicted
running time for all three applications was within 6% for all three levels of
instrumentation.

5 Using Cost to Control Searching

We now describe how the predicted cost can be used with the W 3 Search Model.
First the programmer sets the tolerable instrumentation overhead. We use this



Program Cobserved Cpred

Version Time Percent Time Percent Delta
Ear

Procedure 65.5 9.5% 97.3 14.4% -4.6
PC Base 150.7 21.9% 111.6 16.2% 5.7
PC Full 290.2 42.2% 18.8 2.7% 39.5
Fpppp

Procedure 15.6 5.3% 7.3 2.5% 2.8
PC Base 14.6 9.4% 9.4 3.2% 1.8
PC Full 21.0 7.1% 5.6 1.9% 5.2
Doduc

Procedure 51.7 89.2% 9.3 16.1% 73.1
PC Base 3.2 5.6% 0.6 0.9% 4.7
PC Full 9.3 16.1% 0.5 0.9% 15.2

Program Cobserved Cpred

Version Time Percent Time Percent Delta
PVM BT

Procedure 113.3 12.7% 112.7 12.6% 0.1
PC Base 21.9 2.5% 1.6 0.2% 2.3
PC Full 33.0 3.7% 4.1 0.5% 3.2
PVM LU

Procedure 6.2 6.3% 9.6 9.7% -3.4
PC Base 4.4 4.4% 0.0 0.0% 4.4
PC Full 5.6 5.7% 0.2 0.2% 5.4
PVM SP

Procedure 8.6 1.8% 0.9 0.2% 1.6
PC Base 27.2 5.7% 2.5 0.5% 5.2
PC Full 35.0 7.4% 16.2 3.4% 4.0

Fig. 3. Observed Cost vs. Predicted Cost for Six Applications (in seconds).

value to moderate how much instrumentation gets inserted. In manual search
mode, the predicted cost acts as a check to see if the request associated with
a hypothesis can be satis�ed without undue perturbation. In automated search
mode, we enumerate possible re�nements, and then work down that list adding
instrumentation and evaluating the results. When a test request pushes the
instrumentation overhead too high, we delay requesting new instrumentation.
Thus the perturbation threshold regulates how many hypotheses (potential per-
formance problems) are considered simultaneously.Raising the threshold permits
the search system to try more tests at once, but with a higher overhead. However,
changing the threshold does not change what hypotheses get tested; it simply
changes when they get tested.

We quanti�ed how well our cost system regulated the perturbation of the
Performance Consultant. For each application, we ran the Performance Consul-
tant three times. The �rst time was with an overhead limit of 10% perturbation,
the second time for a �xed limit of three re�nements to the current hypothesis,
and third with no limit on the re�nements to the current hypothesis. The limit
of three re�nements provides a comparison to an alternative strategy for con-
trolling the cost of data collection. The unlimited case measures the worst case
impact of instrumentation for each application.

We evaluated two criteria about the e�ectiveness of our search system. First,
we veri�ed that the instrumentation cost was held within the limit set by the user
(10% in this case). Second, we compared how quickly a performance problem
could be isolated using each method.

For each run of an application, we compared the bottlenecks identi�ed by the
Performance Consultant. For Ear, the same performance bottleneck was found
for all three cases, but the order was di�erent. For the Doduc application, the
same performance bottleneck was found in the 10% limit and three hypothesis
limit, but the perturbation was so high in the unlimited case that no bottleneck
was identi�ed5. For Fpppp, the hypothesis limit and unlimited cases identi�ed
one procedure as the bottleneck and the cost limit identi�ed another procedure.
A CPU time pro�le for the application showed that both procedures consumed

5 The application �nished execution before the search was completed



enough CPU time to be agged as bottlenecks according the thresholds.
The results for Doduc, Ear, and Fpppp are shown in Figure 4. The Search

Time column reports the amount of elapsed time required for the Performance
Consultant to execute its search. For all the applications, the time required for
the search was least when cost was used to regulate hypothesis evaluation. The
improvement in search time ranged from 29% (Fpppp) to 71% (Ear) compared
to the limit of three hypotheses. The cost-based limit was able to evaluate the
available hypotheses faster because di�erent hypotheses have di�erent costs and
the cost-based limit permits evaluation of more hypotheses simultaneously, while
keeping the overhead within the limit. The cost-based limit was able to identify
a problem faster than the unlimited search case because it saved time by not
inserting instrumentation for all possible re�nements.

Program Search Cobs ideal

Control Method Time Avg Max Std. Dev.
Doduc

10% 48.2 3.1% 8.6% 2.3%
3 Hypotheses 77.1 3.1% 5.6% 1.7%
unlimited 258.7 6.2% 41.6% 9.3%

Fpppp

10% 52.0 1.2% 3.7% 0.9%
3 Hypotheses 73.2 0.5% 1.3% 0.3%
unlimited 227.2 1.9% 3.7% 0.4%
Ear

10% 37.9 2.7% 8.1% 3.3%
3 Hypotheses 130.8 5.1% 17.5% 6.3%
unlimited 226.5 15.4% 17.2% 3.5%

Fig. 4. Summary of �xed vs. cost-based hypothesis evaluation.

6 Related Work

Perturbation compensation[5] reconstructs the performance of an un-perturbed
execution from a perturbed one. These techniques require a trace based instru-
mentation system and post-mortem analysis to reconstruct the correct ordering
of events. Our approach does not try to factor out perturbation; instead we try
to avoid it using the predicted cost, and quantify it using the observed cost.

Pablo[7] uses an adaptive instrumentation system. The programmer speci�es
events to log for post mortem analysis. If the volume of data collected exceeds
certain thresholds, the system will stop producing event logs and instead produce
summary information. Pablo leaves the underlying instrumentation in place and
controls the logging of data. However, our technique has the advantage that
disabling data collection completely removes the instrumentation code and so



there is no latent perturbation due to instrumentation code that is disabled but
must execute code to learn that it is disabled.

Goldberg and Hennessy[3] used the di�erence between the measured and
predicted time of a code region to quantify the a�ects of the memory hierarchy.
Our approach di�ers in two ways from theirs. First, since we need to be able
to characterize the impact of small, but (potentially) frequently accessed instru-
mentation code blocks, we use statistical sampling instead of timers. Second, our
goal is to compute the impact of the instrumentation on the original code rather
than the impact of the cache on a single block.

7 Conclusion

Our cost system controls software instrumentation overhead based on feedback.
We predict the amount of overhead we will cause and then use our instrumenta-
tion facility to provide information about the actual costs. The mechanisms that
we have built give the programmer direct control over their instrumentation. We
expose the overhead of data collection as a �rst class metric in Paradyn. The
programmer is also given explicit control of the overhead, which controls the rate
at which the performance tool searches for bottlenecks. We evaluated our model
with six programs, and demonstrated that the actual instrumentation overhead
was within the range of our observed cost model.

References

1. D. H. Bailey, E. Barszcz, J. T. Barton, and D. S. Browning. The NAS parallel
benchmarks. Journal of Supercomputer Applications, 5(3):63{73, Fall 1991.

2. J. Dongarra, A. Geist, R. Manchek, and V. S. Sunderam. Integrated PVM frame-
work supports heterogeneous network computing. Computers in Physics, 7(2):166{
174, March-April 1993.

3. A. J. Goldberg and J. L. Hennessy. Performance debugging shared memory mul-
tiprocessor programs with MTOOL. Supercomputing 1991, pages 481{490, Nov.
18-22 1991.

4. J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumen-
tation for scalable performance tools. 1994 Scalable High-Performance Computing

Conf., pages 841{850, May 1994.
5. A. Malony. Performance Observability. PhD Dissertation, Department of Computer

Science, University of Illinois, Oct. 1990.
6. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,

K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn parallel per-
formance measurement tools. IEEE Computer, 28(11), Nov. 1995.

7. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz,
and L. F. Tavera. Scalable performance analysis: The pablo performance analysis
environment. In A. Skjellum, editor, Scalable Parallel Libraries Conference. IEEE
Computer Society, 1993.

8. K.-Y.Wang. Precise compile-time performance prediction of superscalar-based com-
puters. ACM SIGPLAN'94Conf. on Programming LanguageDesign and Implemen-

tation, pages 73{84, June 20-24 1994.



This article was processed using the LaTEX macro package with LLNCS style


