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Abstract 
This paper proposes and evaluates a new mechanism, rate windows, for I/O and network rate po-
licing.  The goal of the proposed system is to provide a simple, yet effective way to enforce re-
source limits on target classes of jobs in a system. This work was motivated by our Linger Longer 
infrastructure, which harvests idle cycles in networks of workstations. Network and I/O throttling 
is crucial because Linger Longer can leave guest jobs on non-idle nodes and machine owners 
should not be adversely affected. Our approach is quite simple. We use a sliding window of recent 
events to compute the average rate for a target resource. The assigned limit is enforced by the 
simple expedient of putting application processes to sleep when they issue requests that would 
bring their resource utilization out of the allowable profile. Our I/O system call intercept model 
makes the rate windows mechanism light-weight and highly portable. Our experimental results 
show that we are able to limit resource usage to within a few percent of target usages. 

 

1. Introduction 

This paper proposes and evaluates rate windows, a 
new mechanism for I/O and network rate policing. 
Integrated with our existing Linger-Longer infra-
structure for policing CPU and memory consump-
tion [17], rate windows give unprecedented con-
trol over the resource use of user applications. 
More specifically, they are a low-overhead facility 
that gives us the ability to set hard per-process 
bounds on I/O and network usage.  

Current general-purpose UNIX systems pro-
vide no support for prioritizing access to other 
resources such as memory, communication and 
I/O. Priorities are, to some degree, implied by the 
corresponding CPU scheduling priorities. For ex-
ample, physical pages used by a lower-priority 
process will often be lost to higher-priority proc-

esses. LRU-like page replacement policies are 
more likely to page out the lower-priority proc-
ess's pages, because it runs less frequently. How-
ever, this might not be true with a higher-priority 
process that is not computationally intensive, and 
a lower priority process that is. We therefore need 
an additional mechanism to control the memory 
allocation between local and guest processes. 
Similarly, I/O and network access by guest jobs 
can interfere with host jobs that are doing I/O or 
accessing the network. To prevent this, I/O and 
network policing mechanisms are needed.  

Our rate window mechanism has applications 
in several areas; we perform a detailed investiga-
tion of two in this paper. First, we show that net-
work and I/O throttling is crucial in order to pro-
vide guarantees to users who allow their worksta-
tions to be used in Condor-like systems. Condor-
like facilities allow guest processes to efficiently 
exploit otherwise-idle workstation resources. The 
opportunity for harvesting cycles in idle worksta-
tions has long been recognized [13], since the ma-
jority of workstation cycles go unused. In combi-
nation with ever-increasing needs for cycles, this 
presents an obvious opportunity to better exploit 
existing resources.  
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However, most such policies waste many op-
portunities to exploit cycles because of overly 
conservative estimates of resource contention. Our 
Linger-Longer approach [16] exploits these op-
portunities by delaying migrating guest processes 
off of a machine in the hope of exploiting fine-
grained idle periods that exist even while users are 
actively using their computers. These idle periods, 
on the order of tens of milliseconds, occur when 
users are thinking, or waiting for external events 
such as disks or networks. Our prior work [17] 
consisted of new mechanisms and policies that 
limit the use of CPU cycles and memory by guest 
jobs. The work proposed in this paper comple-
ments that work in extending similar protection to 
network and I/O bandwidth usage.  

Second, we show that rate windows can be 
used to efficiently provide rate policing of net-
work connections. Rate limiting is useful for man-
aging resource allocations of competing users 
(such as virtual hosting of web servers) and also 
can be used for rate-based clocking of network 
protocols as a means of improving the utilization 
of networks with high bandwidth-delay products 
[8, 14]. 

The rest of this paper is organized as follows. 
Section 2 reviews the CPU and memory policing 
mechanisms for the Linger-Longer infrastructure. 
Section 3 describes the design and implementation 
of rate windows. Section 4 describes the use of 
rate windows in policing file I/O, and Section 5 
describes its use with network I/O. Finally, Sec-
tion 6 reviews related work, and Section 7 con-
cludes. 

2. CPU and memory policing 

Before discussing rate windows, we place this 
work in the context of the Linger-Longer re-
source-policing infrastructure [16]. The Linger-
Longer infrastructure is based on the thesis that 
current Condor-like [12] policies waste many op-
portunities to exploit idle cycles because of overly 
conservative estimates of resource contention. We 
believe that overall throughput is maximized if 
systems implement fine-grained cycle stealing by 
leaving guest jobs on a machine even when a pri-
mary user is present and host jobs are running. In 
earlier work [16], our trace-driven simulations 
demonstrated that Linger-Longer can harness up 
to 60% more idle cycles than the immediate evic-
tion policy adopted by most of the existing sys-

tems. However, the host job will be adversely af-
fected unless the guest job’s resource use is 
strictly limited. Our earlier work strictly bounded 
CPU and memory use by guest jobs through the 
use of a few, simple modifications to existing ker-
nel policies.  

These policies rely on two new mechanisms. 
First, a new guest priority prevents guest proc-
esses from running when runnable host processes 
are present. The change essentially establishes 
guest processes as a different class, such that 
guest processes are not chosen if any runnable 
host processes exist. This is true even if the host 
processes have lower runtime priorities than the 
guest process. Note that running with “nice –19” 
is not sufficient, as the nice’d process can still 
consume between 8%, 15%, and 40% of the CPU 
for Linux (2.0.32), Solaris (SunOS 5.5), and AIX 
(4.2), respectively [17]. 

Our second mechanism limited guest con-
sumption of memory resources. The cost of re-
claiming page frames from a running process is 
negligible for clean pages, but quite large for 
modified pages because they need to be flushed to 
disk before being reclaimed. Our approach does-
not impose any hard restrictions on the number of 
physical pages that can be used by a guest proc-
ess. Instead, we implemented a policy that estab-
lishes low and high thresholds for the number of 
physical pages used by guest processes. We modi-
fied the Linux kernel to support this prioritized 
page replacement. Two new global kernel vari-
ables were added for the memory thresholds, and 
are configurable at run-time via system calls.  

The kernel keeps track of resident memory 
size for guest processes and host processes. Peri-
odically, the virtual memory system triggers the 
page-out mechanism. When it scans in-memory 
pages for replacement, it checks the resident 
memory size of guest processes against the mem-
ory thresholds. If they are below the lower thresh-
olds, the host processes’ pages are scanned first 
for page-out. Resident sizes of guest processes 
larger than the upper threshold cause the guest 
processes’ pages to be scanned first. Between the 
two thresholds, older pages are paged out first no 
matter what processes own them. These thresh-
olds are usually set very low (5-10% of the total 
memory) so as not to affect memory intensive 
host jobs. 
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3. Rate Windows 
Rate windows are proposed here as a simple, 
portable, and effective strategy for enforcing lim-
its on I/O and network bandwidth, analogous to 
the limits on CPU and memory usage. The rest of 
this section describes our rate-window policies, 
and the mechanisms that are needed to support I/O 
throttling.  
3.1 Policy 
First, we distinguish between “unconstrained” and 
“constrained” job classes. The default for all proc-
esses is unconstrained; jobs must be explicitly put 
into constrained classes. The unconstrained class 
is allowed to consume all available I/O. Each dis-
tinct constrained class has a different threshold 
bandwidth, defining the maximum aggregate 
bandwidth that all processes in that class can con-
sume. As an optimization, however, if there is 
only one class of constrained jobs, and no I/O-
bound unconstrained jobs, the constrained jobs are 
allowed unfettered access to the available band-
width.  

We identify the presence of unconstrained 
I/O-bound jobs by monitoring I/O bandwidth, 
moving the system into the throttled state when 
unconstrained bandwidth exceeds threshhigh, and 
into the unthrottled state when unconstrained 
bandwidth drops below threshlow. Note that 
threshlow is lower than threshhigh, providing hys-
teresis to the system to prevent oscillations be-
tween throttled and un-throttled mode when the 
I/O rate is near the threshold. The state of the sys-
tem is reflected in the global variable throt-
tled. Note that the current unconstrained band-
width is not an instantaneous measure; it is meas-
ured over the life of the rate window, defined be-
low.  

3.2 Mechanism 
The implementation of rate windows is 

straightforward. We currently have a hard-coded 
set of job equivalence classes, although this could 
be easily generalized for an arbitrary number. 
Each class has two kernel window structures, one 
for file I/O and one for network I/O. Each window 
structure contains a circular queue, implemented 
via a 100-element array (see Figure 1). 

The window structure describes the last I/O 
operations performed by jobs in the class, plus a 
few other scalar variables. The window structure 
only describes I/O events that occurred during the 
previous 5 seconds, so there may be fewer than 
100 operations in the array. We experimented 
with several different window sizes, finding little 
sensitivity to the exact value. Nonetheless, it is 
clearly possible that new environments or applica-
tions could be best served by using other values. 
We provide a means of tuning these and other pa-
rameters from a user-level tool. 

We implemented our mechanism via a load-
able kernel module which intercepts each of the 
kernel calls for I/O and network communication: 
read(), write(), send(), and recv(). 
Whenever such system functions are triggered, we 
first call rate_check() with the process ID, 
I/O length, and I/O type and then call the original 
system call. The process ID is used to map to an 
I/O class, and the I/O type is used to distinguish 
between file and network I/O. The 
rate_check() routine maintains a sliding 
window of operations performed for each class of 
service and for the overall system. However, to 
prevent using too old of information, we limit the 
sliding window to a fixed interval of time (cur-
rently 5 seconds). 

At the time that a constrained process at-
tempts to perform I/O, we define the window 
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Figure 1: Maintaining a sliding window of resource utilization. 
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bandwidth, Bw, as the total amount of I/O in the 
window’s operations, including the new opera-
tion. We define Tw, the window time, as the inter-
val from the beginning of the oldest operation in 
the window until the expected completion of the 
new operation, assuming it starts immediately. Let 
Rt be the threshold bandwidth per second for this 
class. We then allow the new operation to proceed 
immediately if the class is currently throttled and: 

w
t

w

B
R

T
≤  

Otherwise, we calculate the sleep() delay as 
follows: 

delay w
w

t

B
T

R
= −  

And then the kernel suspends the process for de-
lay time units before calling the original I/O sys-
tem call. This process is illustrated graphically in 
Figure 2. Note that we have upper and lower 
bounds on allowable sleep times.  

Sleep durations that are too small degrade 
overall efficiency, so durations under our lower 
bound are set to zero. Sleep durations that are too 
large tend to make the stream bursty. If our com-
puted delay is above the computed threshold we 
break the I/O into multiple pieces and spread the 
total delay over the pieces. This will not affect 
application execution since file I/O requests will 
eventually be broken into individual disk blocks 
and for network connections TCP provides a byte-
oriented stream rather than a record oriented one. 

  We chose Linux as our target operating sys-
tem for several reasons. First, it is one of the most 
widely used UNIX operating systems. Second, the 
source code is open and widely available. Because 

our throttling mechanisms are implemented as a 
loadable kernel module, end users can easily load 
and enable them at run-time. By contrast, a source 
code patch would require rebuilding a kernel and 
rebooting a machine.  

Also, since our mechanism simply requires 
the ability to intercept I/O calls, it would be easy 
to implement on other systems that defined an 
API to intercept I/O calls. Windows 2000 (nee 
Windows NT) and the stackable file system [10] 
provide the required calls. 

In order to provide the finer granularity of 
sleep time to allow our policing to be imple-
mented, we augmented the standard 2.2 Linux 
kernel with extensions developed by the KURT 
Real-time Linux project [3]. KURT’s microsec-
ond resolution timer support was enabled since 
Linux 2.2 can support only a 10 millisecond reso-
lution timer for sleep1. 

4. File I/O Policing 

In order to validate our approach, we con-
ducted a series of micro-benchmarks and applica-
tion benchmarks.  The purpose of these experi-
ments is three fold. First, we want to show that 
our mechanism does not introduce any significant 
delay on normal operation of the system.  Second, 
we want to show that we can effectively police the 
I/O rates.  Third, since our policing mechanism 
sits above the file buffer cache, it will be conser-
vative in policing the disk since hits in cache will 
be charged against a job classes’s overall file I/O 
limit. We wanted to measure this affect.  

                                                   
1 This is due to the default setup of the timer unit on Linux. 
Linux 2.4 can now support a higher resolution timer using 
APIC, so the KURT patch will not be needed. 
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Figure 2: Policing I/O Requests. 
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We first measured resource usage in order to 
verify that the use of rate windows does not add 
significant overhead to the system. We ran a sin-
gle tar program by itself both with and without 
rate windows enabled. We did not set the I/O limit 
since we wished to measure the overhead of main-
taining rate windows and computing delays. The 
difference in completion time of the tar applica-
tion with rate windows enabled was less than the 
variation between several runs of the experiment. 
This was expected, as there are no computation-
ally expensive portions of the algorithm. 

Second, we ran two instances of tar, one as a 
guest job and one as a host job. Figure 3(a) repre-
sents a run without throttling, and Figure 3(b) 
shows a run with throttling enabled. There is no 
caching between the two because they have dis-
joint input. The guest job is intended to be repre-
sentative of those used by cycle-stealing schedul-
ers such as Condor. Unless specified otherwise, a 
“guest” job is assumed to be constrained to 10% 
of the maximum I/O or network bandwidth, 
whereas a “host” process has unconstrained use of 
all bandwidth.  

In both figures, the guest job starts first, fol-
lowed somewhat later by the host job. At this 
point, the guest job throttles down to its 10% rate. 
When the host job finishes, the guest job throttles 
back up after the rate window empties. The se-
quence on the left is with throttling, on the right 
without. Note that the version with I/O throttling 
is less thrifty with resources (the guest job finish 
later). This is a design decision: our goal is to pre-
vent undue degradation of unconstrained host job 
performance at the expense of slowing down 
guest jobs. 

The host tar application took 35.5 seconds in 
isolation. It took 64.4 seconds without throttling 
and 42.1 seconds with throttling. This demon-
strates that throttling the guest job’s I/O to 500 
kB/s reduces the delay of host I/O from 81% to 
18%. 

We look at the behavior of one of the tar 
processes in more detail in Figure 4. The graph 
shows that despite the frequent and varied file I/O 
calls and the buffer cache, disk I/O’s get issued at 
regular intervals that precisely match the threshold 
value set for this experiment. Note that actual disk 
I/O sizes increase near the start as the file system 
read ahead becomes more aggressive.  

Our third set of micro-benchmark experiments 
is designed to look at the distribution of sleep 
times for a guest process. For this case, we ran 
three different applications.  The first application 
was again a run of the tar utility.  Second, we ran 
the agrep utility2 across the source directory for 
the Linux kernel looking for a simple pattern that 
did not occur in the files searched.  Third, we ran 
a compile workload that consisted of compiling a 
                                                   
2 A Unix command to search a file for a string or regular 
expression, with approximate matching capabilities. 
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Figure 3: File I/O of competing tar applications without (left) and with (right) file I/O policing. 
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Figure 4: I/O sizes vs. time for tar 
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library of C++ methods that were divided among 
34 files plus 45 header files.  This third test was 
designed to stress the gap between monitoring at 
the file request level and the disk I/O level since 
all of the common header files would remain in 
the file buffer cache for the duration of the ex-
periment.  

A histogram (100 buckets) of the sleep dura-
tions is shown in Figure 5. We have omitted those 
events that have no delay since their frequency 
completely dominates the rest of the values. 
Figure 5(a) shows the results for the tar applica-
tion.  In this figure, there is a large spike in the 
delay time at 20msec since this is exactly the 
mean delay required for the I/O for the most 
common sized I/O request, 10K bytes, to be lim-
ited to 500 KB/sec. Figure 5(b) shows the results 
for the compilation workload.  In this example, 
the most popular sleep time is the maximum sleep 
duration of 100msec.  This is due to the fact that 
at several periods during the application execu-
tion, the program is highly I/O intensive and our 
mechanism was straining to keep the I/O rate 
throttled down. Figure 5(c) shows the sleep time 
distribution for the agrep application. The results 
for this application show that the most popular 
sleep time (other than no sleep) was 2-3 ms. This 
is very close to the mean sleep time of 2.5 ms for 
this application. 

Fourth, we examine the relationship between 
file I/O and disk I/O using three applications, 

tar, agrep and compile, which have differ-
ent I/O patterns. File I/O can dilate because i) file 
I/O’s can be done in small sizes, but disk I/O is 
always rounded up to the next multiple of the 
page size, and ii) the buffer cache’s read-ahead 
policy may speculatively bring in disk blocks that 
are never referenced. File I/O can also attenuate 
due to buffer cache hits, which is a consequence 
of the I/O locality of the applications. We meas-
ured 1) the total amount of file I/O requested, 2) 
the actual I/O requests performed by the disk, 3) 
the total number of I/O events 4) the total number 
of I/O events that were delayed by sleep calls, 5) 
the total amount of sleep time, 6) the total runtime 
of the workload, and 7) the average actual disk 
I/O rate (total disk I/O’s divided by execution 
time). The results are shown in Table 1.  

When comparing the difference between file 
I/O and disk I/O, the file I/O is equal to the disk 
I/O for tar3, 14% less for agrep, and 233% lar-
ger for compile. Notice that for the two I/O in-
tensive applications, the overall I/O rate for the 
application is very close to the target rate.  

For the tar application, our mechanism 
worked fine with the aggressive read ahead used 
by the file system. For agrep, we observed a 
higher total I/O volume due to small reads being 
rounded to larger disk pages. The low file I/O 

                                                   
3 The tar file size is 52 MB. 
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number for compile, of course, is due to good 
buffer cache locality. 

There are two potential approaches to recoup-
ing this lost bandwidth. The first is to add a hook 
into the buffer cache to check for a cache miss 
before adding the I/O to our window, and decid-
ing whether to sleep and how long to sleep. We 
avoided this path because we wish to avoid kernel 
source modifications outside of our module when-
ever possible. We currently keep our entire system 
as a loadable kernel module, which uses only ex-
ternally available information such as the system 
call interface. This would be compromised if we 
put hooks deeper into the kernel.  

A second approach is to use statistics from the 
proc file system to apply a “dilation factor” to 
our limit calculations. We define the dilation fac-
tor as the ratio of file I/O and disk I/O requests. If 
the ratio is 1.0, each file I/O is being transformed 
into the same amount of disk activity, i.e. there is 
no caching or reuse. If the ratio is 0.5, e.g. 100 KB 
of file I/O is being transformed into only 50 KB of 
disk I/O, then the limited job is not fully utilizing 
it’s allocated bandwidth. Resources can be used 
more efficiently by multiplying the file I/O 

threshold by the inverse of the dilation factor. The 
disadvantage of this approach is that dynamic 
caching behavior will lead to time-varying dila-
tion factors, and poor policing. The advantages 
are better bandwidth utilization, and that the ap-
proach can be implemented entirely outside of the 
kernel. 

We investigated this approach by adding an-
other field in the I/O rate window to record the 
resulting disk I/O size. A rolling average of the 
dilation factor is used to scale the file I/O thresh-
old for future requests. 

The full story of the I/O dilation is seen when 
we look at the time varying behavior of the I/O.  
Figure 6 shows the average I/O rates for the com-
pile workload. The dark curve of each graph is for 
the file I/O rate and the light curve for the disk I/O 
rate. We first ran it without any I/O rate limit. 
Figure 6(a) shows that file I/O requests resulted in 
much less disk I/O because many header files 
were reused from the file buffer cache. The sec-
ond graph (b) presents the case when we limited 
the file I/O rate to 500 KB/sec. Notice that al-
though this workload still has considerable hits in 
the file buffer cache, our mechanism ensured that 

Metric Tar Agrep Compile 
Total File I/O  103.0 MB 50.0 MB 23.3 MB 
Total Disk I/O  103.0 MB 58.1 MB 10.0 MB 
Total I/O Events 17,430 11,526 3,859 
Total Sleep Events   6,928   3,324 1,004 
Total Sleep Time 178.0 sec 83.3 sec 29.1 Sec 
Total Execution Time 211.2 sec 108.7 sec 70.6 Sec 
Average Disk I/O Rate 487 KB/sec 534 KB/sec 141 KB/sec 

Table 1: I/O Application Behavior 
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Figure 6: File and Disk I/O Rates for the Compile Workload. 
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the actual disk I/O rate was less than the target 
rate of 500KB/sec. The requested I/O rate peaks 
are higher than our target limit, due to the fact that 
we average I/O requests over an effective 1.7 sec-
ond window (as noted above) and we are showing 
data over a 1 second window in this figure. Figure 
6(c) shows the behavior of the compile applica-
tion when the dilation factor is used to control the 
disk I/O rate. The curves demonstrate that the ap-
plication can take advantage of buffer hits while 
limiting the disk I/O rate to a certain level. The 
compile application was able to finish in 64 sec-
onds, which is 27 seconds earlier than using file 
I/O rate policing. Note that the disk I/O rate occa-
sionally peaks over the limit. This is because the 
dilation factor is derived from past I/O behavior. 
Any change in the dilation factor over time can 
cause inaccurate predictions. Overall, however, 
the actual disk I/O followed the limit quite well. 

5. Network I/O policing 

Policing network I/O is easier than file I/O be-
cause there is no analogue to the file buffer cache 
or read ahead, which dilate and attenuate the ef-
fective disk I/O rate. In this section, we present 
two applications of network I/O throttling using 
our rate windows.  

5.1 Linger -Longer: Throttling guest processes 
Most of the experiments in Section 4 assumed the 
use of rate windows in a Linger-Longer context. 
We ran one additional Linger-Longer experiment, 
this time with network I/O as the target. One of 
the main complaints about Condor and similar 
systems is that the act of moving a guest job from 
a newly loaded host often induces significant 
overhead to retrieve the application’s checkpoint. 

Further, periodic checkpointing for fault tolerance 
produces bursty network traffic. This experiment 
shows that even checkpointing operations are 
throttled and can be prevented from affecting host 
jobs.  

Figure 7 shows two instances of a guest proc-
ess moving off of a node because a host process 
suddenly becomes active. Moving off the node 
entails writing a 90MB checkpoint file over the 
network. This severely reduces available band-
width for the host workload (a web server4 in this 
case) in the unthrottled case shown in Figure 7(a). 
Only after the checkpoint is finished does the web 
server claim most of the bandwidth.  

In the throttled case shown in Figure 7(b), the 
condor daemon’s network write of the checkpoint 
consumes a majority of the bandwidth only until 
the host web server starts up. At this point, the 
system enters throttling mode and the bandwidth 
available to the checkpoint is reduced to the guest 
class’s threshold. Once the web server becomes 
idle again, the checkpoint resumes writing at the 
higher rate. 

5.2 Rate-based network clocking 
Finally, we look at the use of rate windows to per-
form an approximation of rate-based clocking of 
network traffic. Such clocking has been proposed 
as a method of preventing network contention and 
improving utilization in transport protocols. Spe-
cifically, modifying the TCP protocol stack to 
send out packets at a preset interval has advan-
tages in 1) avoiding TCP slow-start, 2) preventing 
burstiness as a result of ACK compression, and 3) 

                                                   
4 The host process could be any network intensive process 
such as an FTP or a Web browser. 
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Figure 7: Guest job checkpoint vs. host web server 
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preventing downstream congestion. With our cur-
rent placement of hooks high in the kernel, rate 
windows can only address the third motivation. 
Note, however, that our implementation is proto-
col independent, i.e. it works just as well for UDP 
as for TCP.  

Figure 8 shows achieved bandwidth for three 
Apache web servers running on a single host. 
Each server is driven by clients that repeatedly 
request the same file. Hence, all requests but the 
first are satisfied in the server’s cache and the per-
formance of the servers is completely limited by 
available bandwidth. The total available band-
width is ~12MB/sec and the three servers are lim-
ited to 1.5MB, 3MB, and 6MB, respectively. The 
maximum bandwidth achieved with the large files 
is 11.5MB/sec, and 8.6MB/sec with the small 
files. Hence, the thresholds do not permit the 
servers to use all of the available bandwidth in the 
first case, but do in the second.  

Note that the deviation from the threshold by 
the small-file streams (especially the largest 
stream) is not a failing. In fact, this is a problem-
atic use of rate windows since our guarantees are 
not-to-exceed guarantees, not at-least guarantees. 
Rate windows are actually ideal for this use be-
cause congestion problems only arise when band-
width exceeds specific bounds, so the guarantee is 
of the correct polarity. 

A second consequence of this characteristic is 
that rate windows implicitly smooth bursty traffic. 
Consider a rate-based stream that, despite the rate-
base clocking, encounters temporary congestion 
and backoff. When the transmissions continue, a 
straightforward implementation would attempt to 
“make up” the lost time by transmitting at above 

the desired rate for some amount of time. This, in 
turn, could cause more congestion.  

With rate windows, the decisions about how 
long or whether to sleep are based solely on the 
history contained in the window, which currently 
contains 100 or five seconds worth of I/O re-
quests, whichever is less. A rate-window-based 
stream will attempt to make up losses within the 
window, but “forgets” losses that occur before the 
window’s events. As a result, extra use of band-
width in order to make up delayed transmission is 
strictly, and implicitly, bounded by a combination 
of target bandwidth and window size. 

6. Related work 

Previous work on exploiting available idle time on 
workstation clusters used a conservative model 
that would only run processes when the local user 
was away from their workstation, and no local 
processes were runnable.  Condor [12], LSF [22], 
and NOW [2] use variations on a “social contract” 
to strictly limit interference with local users. 
However, even with these policies, there is some 
disruption of the local user when they return since 
the guest process must be evicted and the local 
state restored. The Linger-Longer approach per-
mits slightly more disruption of the user, but tries 
to limit the delay to an acceptable level. One sys-
tem that used non-idle workstations was the 
Stealth distributed scheduler [11]. It implemented 
a priority-based approach to running guest proc-
esses. However none of the tradeoffs in how long 
to run guest processes, or the potential of running 
parallel programs were investigated.  

In the area of operating system support for 
providing resource management, research and 
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Figure 8: Three web servers: The numbers on the left are for 1.7MB files, for 71KB files on the right.  
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commercial operating systems have provided 
similar functionality. In IRIX [18], the Miser fea-
ture provides deterministic scheduling of batch 
jobs. Miser manages a set of resources, including 
logical CPUs and physical memory, that Miser 
batch jobs can reserve and use in preference to 
interactive jobs. This strategy is almost the oppo-
site of our approach, which promotes interactive 
jobs. 

Aron and Druschel’s soft timers [1] provide a 
way to implement rate-based clocking of network 
protocols.  Although their motivation, avoiding 
the penalty of TCP slow-start for small file trans-
fers over high delay-bandwidth networks, is dif-
ferent than ours, limiting the fraction of the 
server’s network bandwidth that a single http cli-
ent or virtual host server gets, both techniques can 
be used to achieve similar ends.   

Also, many have studied general quality of 
service (QoS) support for server applications. The 
reservation domains of Eclipse [5], the Software 
Performance Units of Verghese et al. [20], and 
Resource Containers [4] can group a set of proc-
esses or threads as a unit for resource scheduling. 
This is similar to our job classes. The Nemesis 
kernel [15] also provides QoS with rate-based 
real-time scheduling for I/O as well as CPU. 
However, those systems are integrated deep into 
the kernel, while our mechanism resides between 
the kernel and the user-level I/O library and can 
be loaded and unloaded at run-time. Our mecha-
nism is light-weight since we do not add any extra 
queues for resource scheduling. Our mechanism 
just intercepts resource requests, keeps track of 
the rate, and puts them into sleep for an appropri-
ate time if the requests seem to exceed the limit. 
However, our rate windows mechanisms can be 
used as a light-weight and portable scheduling 
mechanism to support those concepts. 

The idea of regulating traffic rates in the net-
work has been extensively studied. Congestion 
avoidance schemes such as leaky bucket [19] and 
its variants [7, 21] use averages over various time 
intervals to determine which traffic is within its 
negotiated bandwidth.  However, since these ap-
proaches are designed for policing traffic at 
routers, they must drop non-conforming traffic.  
In contrast, since our approach is at the source, we 
can delay traffic to enforce bandwidth limits. 

The idea of resource partitioning through the 
use of virtual machines has been popular both in 

the 1970s [9] as well as in recent projects such as 
Disco [6].  The key difference is that while virtual 
machines provide hard isolation of resource be-
tween VMs at considerable runtime overhead, our 
approach is a simple extension to an existing op-
erating system or runtime library. 

7. Conclusions and Future Work 

We have presented a simple and portable mecha-
nism that allows an operating system to throttle 
the rate at which disk and network communication 
is performed. Our experiments demonstrated that 
we are able to enforce these resource limits on 
applications with little overhead.   

For I/O bound applications, we are able to en-
force limits at the physical device level despite the 
imposition of the buffer cache and disk read-
ahead mechanisms. Further, for many applica-
tions, we can enforce our limits on the actual disk 
I/O instead of the file I/O by compensating for the 
file-to-disk dilation factor. The result is more effi-
cient use of the guest job’s allocated bandwidth.  

For the network case, we demonstrated that 
rate windows allow effective bandwidth sharing 
among communication-bound processes. We also 
used them to implement policies that protect a 
host process’s access to network resources. This 
protection is applied to all network accesses by all 
guest jobs that are running on the local machine, 
and also to the large network I/O’s that occur 
when such processes try to migrate their address 
spaces off of the local machine.  

Our technique is simple, general purpose, and 
flexible. One obvious area of future work is to 
provide a complete study of the ability of the sys-
tem to handle finer granularity policing of re-
sources by dynamically adjusting the window 
size. Since our mechanism requires only the abil-
ity to monitor and delay user level I/O requests, 
we could implement our approach in user space 
libraries. 

Finally, we plan to evaluate the overall effec-
tiveness of our resource isolation techniques for a 
full-scale cycle-stealing system. 
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