
Efficient Network and I/O Throttling for Fine-Grain Cycle Stealing

Kyung D. Ryu Jeffrey K. Hollingsworth Peter J. Keleher

Dept. of Computer Science and
Engineering

Arizona State University
Tempe, AZ 85287-5406

 Dept. of Computer Science
University of Maryland

College Park, MD 20740

 Dept. of Computer Science
University of Maryland

College Park, MD 20740

kyung.ryu@asu.edu hollings@cs.umd.edu Keleher@cs.umd.edu

Abstract
This paper proposes and evaluates a new mechanism, rate windows, for I/O and network rate po-
licing. The goal of the proposed system is to provide a simple, yet effective way to enforce re-
source limits on target classes of jobs in a system. This work was motivated by our Linger Longer
infrastructure, which harvests idle cycles in networks of workstations. Network and I/O throttling
is crucial because Linger Longer can leave guest jobs on non-idle nodes and machine owners
should not be adversely affected. Our approach is quite simple. We use a sliding window of recent
events to compute the average rate for a target resource. The assigned limit is enforced by the
simple expedient of putting application processes to sleep when they issue requests that would
bring their resource utilization out of the allowable profile. Our I/O system call intercept model
makes the rate windows mechanism light-weight and highly portable. Our experimental results
show that we are able to limit resource usage to within a few percent of target usages.

1. Introduction

This paper proposes and evaluates rate windows, a
new mechanism for I/O and network rate policing.
Integrated with our existing Linger-Longer infra-
structure for policing CPU and memory consump-
tion [17], rate windows give unprecedented con-
trol over the resource use of user applications.
More specifically, they are a low-overhead facility
that gives us the ability to set hard per-process
bounds on I/O and network usage.

Current general-purpose UNIX systems pro-
vide no support for prioritizing access to other
resources such as memory, communication and
I/O. Priorities are, to some degree, implied by the
corresponding CPU scheduling priorities. For ex-
ample, physical pages used by a lower-priority
process will often be lost to higher-priority proc-

esses. LRU-like page replacement policies are
more likely to page out the lower-priority proc-
ess's pages, because it runs less frequently. How-
ever, this might not be true with a higher-priority
process that is not computationally intensive, and
a lower priority process that is. We therefore need
an additional mechanism to control the memory
allocation between local and guest processes.
Similarly, I/O and network access by guest jobs
can interfere with host jobs that are doing I/O or
accessing the network. To prevent this, I/O and
network policing mechanisms are needed.

Our rate window mechanism has applications
in several areas; we perform a detailed investiga-
tion of two in this paper. First, we show that net-
work and I/O throttling is crucial in order to pro-
vide guarantees to users who allow their worksta-
tions to be used in Condor-like systems. Condor-
like facilities allow guest processes to efficiently
exploit otherwise-idle workstation resources. The
opportunity for harvesting cycles in idle worksta-
tions has long been recognized [13], since the ma-
jority of workstation cycles go unused. In combi-
nation with ever-increasing needs for cycles, this
presents an obvious opportunity to better exploit
existing resources.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwise, to repub-
lish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

SC2001 Nov. 2001, Denver © 2001 ACM 1-58113-293-X/01/0011
$5.00

 1

However, most such policies waste many op-
portunities to exploit cycles because of overly
conservative estimates of resource contention. Our
Linger-Longer approach [16] exploits these op-
portunities by delaying migrating guest processes
off of a machine in the hope of exploiting fine-
grained idle periods that exist even while users are
actively using their computers. These idle periods,
on the order of tens of milliseconds, occur when
users are thinking, or waiting for external events
such as disks or networks. Our prior work [17]
consisted of new mechanisms and policies that
limit the use of CPU cycles and memory by guest
jobs. The work proposed in this paper comple-
ments that work in extending similar protection to
network and I/O bandwidth usage.

Second, we show that rate windows can be
used to efficiently provide rate policing of net-
work connections. Rate limiting is useful for man-
aging resource allocations of competing users
(such as virtual hosting of web servers) and also
can be used for rate-based clocking of network
protocols as a means of improving the utilization
of networks with high bandwidth-delay products
[8, 14].

The rest of this paper is organized as follows.
Section 2 reviews the CPU and memory policing
mechanisms for the Linger-Longer infrastructure.
Section 3 describes the design and implementation
of rate windows. Section 4 describes the use of
rate windows in policing file I/O, and Section 5
describes its use with network I/O. Finally, Sec-
tion 6 reviews related work, and Section 7 con-
cludes.

2. CPU and memory policing

Before discussing rate windows, we place this
work in the context of the Linger-Longer re-
source-policing infrastructure [16]. The Linger-
Longer infrastructure is based on the thesis that
current Condor-like [12] policies waste many op-
portunities to exploit idle cycles because of overly
conservative estimates of resource contention. We
believe that overall throughput is maximized if
systems implement fine-grained cycle stealing by
leaving guest jobs on a machine even when a pri-
mary user is present and host jobs are running. In
earlier work [16], our trace-driven simulations
demonstrated that Linger-Longer can harness up
to 60% more idle cycles than the immediate evic-
tion policy adopted by most of the existing sys-

tems. However, the host job will be adversely af-
fected unless the guest job’s resource use is
strictly limited. Our earlier work strictly bounded
CPU and memory use by guest jobs through the
use of a few, simple modifications to existing ker-
nel policies.

These policies rely on two new mechanisms.
First, a new guest priority prevents guest proc-
esses from running when runnable host processes
are present. The change essentially establishes
guest processes as a different class, such that
guest processes are not chosen if any runnable
host processes exist. This is true even if the host
processes have lower runtime priorities than the
guest process. Note that running with “nice –19”
is not sufficient, as the nice’d process can still
consume between 8%, 15%, and 40% of the CPU
for Linux (2.0.32), Solaris (SunOS 5.5), and AIX
(4.2), respectively [17].

Our second mechanism limited guest con-
sumption of memory resources. The cost of re-
claiming page frames from a running process is
negligible for clean pages, but quite large for
modified pages because they need to be flushed to
disk before being reclaimed. Our approach does-
not impose any hard restrictions on the number of
physical pages that can be used by a guest proc-
ess. Instead, we implemented a policy that estab-
lishes low and high thresholds for the number of
physical pages used by guest processes. We modi-
fied the Linux kernel to support this prioritized
page replacement. Two new global kernel vari-
ables were added for the memory thresholds, and
are configurable at run-time via system calls.

The kernel keeps track of resident memory
size for guest processes and host processes. Peri-
odically, the virtual memory system triggers the
page-out mechanism. When it scans in-memory
pages for replacement, it checks the resident
memory size of guest processes against the mem-
ory thresholds. If they are below the lower thresh-
olds, the host processes’ pages are scanned first
for page-out. Resident sizes of guest processes
larger than the upper threshold cause the guest
processes’ pages to be scanned first. Between the
two thresholds, older pages are paged out first no
matter what processes own them. These thresh-
olds are usually set very low (5-10% of the total
memory) so as not to affect memory intensive
host jobs.

 2

3. Rate Windows
Rate windows are proposed here as a simple,
portable, and effective strategy for enforcing lim-
its on I/O and network bandwidth, analogous to
the limits on CPU and memory usage. The rest of
this section describes our rate-window policies,
and the mechanisms that are needed to support I/O
throttling.
3.1 Policy
First, we distinguish between “unconstrained” and
“constrained” job classes. The default for all proc-
esses is unconstrained; jobs must be explicitly put
into constrained classes. The unconstrained class
is allowed to consume all available I/O. Each dis-
tinct constrained class has a different threshold
bandwidth, defining the maximum aggregate
bandwidth that all processes in that class can con-
sume. As an optimization, however, if there is
only one class of constrained jobs, and no I/O-
bound unconstrained jobs, the constrained jobs are
allowed unfettered access to the available band-
width.

We identify the presence of unconstrained
I/O-bound jobs by monitoring I/O bandwidth,
moving the system into the throttled state when
unconstrained bandwidth exceeds threshhigh, and
into the unthrottled state when unconstrained
bandwidth drops below threshlow. Note that
threshlow is lower than threshhigh, providing hys-
teresis to the system to prevent oscillations be-
tween throttled and un-throttled mode when the
I/O rate is near the threshold. The state of the sys-
tem is reflected in the global variable throt-
tled. Note that the current unconstrained band-
width is not an instantaneous measure; it is meas-
ured over the life of the rate window, defined be-
low.

3.2 Mechanism
The implementation of rate windows is

straightforward. We currently have a hard-coded
set of job equivalence classes, although this could
be easily generalized for an arbitrary number.
Each class has two kernel window structures, one
for file I/O and one for network I/O. Each window
structure contains a circular queue, implemented
via a 100-element array (see Figure 1).

The window structure describes the last I/O
operations performed by jobs in the class, plus a
few other scalar variables. The window structure
only describes I/O events that occurred during the
previous 5 seconds, so there may be fewer than
100 operations in the array. We experimented
with several different window sizes, finding little
sensitivity to the exact value. Nonetheless, it is
clearly possible that new environments or applica-
tions could be best served by using other values.
We provide a means of tuning these and other pa-
rameters from a user-level tool.

We implemented our mechanism via a load-
able kernel module which intercepts each of the
kernel calls for I/O and network communication:
read(), write(), send(), and recv().
Whenever such system functions are triggered, we
first call rate_check() with the process ID,
I/O length, and I/O type and then call the original
system call. The process ID is used to map to an
I/O class, and the I/O type is used to distinguish
between file and network I/O. The
rate_check() routine maintains a sliding
window of operations performed for each class of
service and for the overall system. However, to
prevent using too old of information, we limit the
sliding window to a fixed interval of time (cur-
rently 5 seconds).

At the time that a constrained process at-
tempts to perform I/O, we define the window

4KB 16KB60KB

100
msec

500
msec

80
msec

12KB

75
msec

5 seconds

100 items

Avg.
Rate

Figure 1: Maintaining a sliding window of resource utilization.

 3

bandwidth, Bw, as the total amount of I/O in the
window’s operations, including the new opera-
tion. We define Tw, the window time, as the inter-
val from the beginning of the oldest operation in
the window until the expected completion of the
new operation, assuming it starts immediately. Let
Rt be the threshold bandwidth per second for this
class. We then allow the new operation to proceed
immediately if the class is currently throttled and:

w
t

w

B
R

T
≤

Otherwise, we calculate the sleep() delay as
follows:

delay w
w

t

B
T

R
= −

And then the kernel suspends the process for de-
lay time units before calling the original I/O sys-
tem call. This process is illustrated graphically in
Figure 2. Note that we have upper and lower
bounds on allowable sleep times.

Sleep durations that are too small degrade
overall efficiency, so durations under our lower
bound are set to zero. Sleep durations that are too
large tend to make the stream bursty. If our com-
puted delay is above the computed threshold we
break the I/O into multiple pieces and spread the
total delay over the pieces. This will not affect
application execution since file I/O requests will
eventually be broken into individual disk blocks
and for network connections TCP provides a byte-
oriented stream rather than a record oriented one.

 We chose Linux as our target operating sys-
tem for several reasons. First, it is one of the most
widely used UNIX operating systems. Second, the
source code is open and widely available. Because

our throttling mechanisms are implemented as a
loadable kernel module, end users can easily load
and enable them at run-time. By contrast, a source
code patch would require rebuilding a kernel and
rebooting a machine.

Also, since our mechanism simply requires
the ability to intercept I/O calls, it would be easy
to implement on other systems that defined an
API to intercept I/O calls. Windows 2000 (nee
Windows NT) and the stackable file system [10]
provide the required calls.

In order to provide the finer granularity of
sleep time to allow our policing to be imple-
mented, we augmented the standard 2.2 Linux
kernel with extensions developed by the KURT
Real-time Linux project [3]. KURT’s microsec-
ond resolution timer support was enabled since
Linux 2.2 can support only a 10 millisecond reso-
lution timer for sleep1.

4. File I/O Policing

In order to validate our approach, we con-
ducted a series of micro-benchmarks and applica-
tion benchmarks. The purpose of these experi-
ments is three fold. First, we want to show that
our mechanism does not introduce any significant
delay on normal operation of the system. Second,
we want to show that we can effectively police the
I/O rates. Third, since our policing mechanism
sits above the file buffer cache, it will be conser-
vative in policing the disk since hits in cache will
be charged against a job classes’s overall file I/O
limit. We wanted to measure this affect.

1 This is due to the default setup of the timer unit on Linux.
Linux 2.4 can now support a higher resolution timer using
APIC, so the KURT patch will not be needed.

Rate Clocked
Process

?

No

Yes
Exceeds

Target Rate
?

Yes
Compute

Sleep Interval &
Sleep

No

Avg.
Rate

Target
Rate

Library

Kernel

Library

Application

Rate Window

I/O or
Network
Request

Kernel

Application

Figure 2: Policing I/O Requests.

 4

We first measured resource usage in order to
verify that the use of rate windows does not add
significant overhead to the system. We ran a sin-
gle tar program by itself both with and without
rate windows enabled. We did not set the I/O limit
since we wished to measure the overhead of main-
taining rate windows and computing delays. The
difference in completion time of the tar applica-
tion with rate windows enabled was less than the
variation between several runs of the experiment.
This was expected, as there are no computation-
ally expensive portions of the algorithm.

Second, we ran two instances of tar, one as a
guest job and one as a host job. Figure 3(a) repre-
sents a run without throttling, and Figure 3(b)
shows a run with throttling enabled. There is no
caching between the two because they have dis-
joint input. The guest job is intended to be repre-
sentative of those used by cycle-stealing schedul-
ers such as Condor. Unless specified otherwise, a
“guest” job is assumed to be constrained to 10%
of the maximum I/O or network bandwidth,
whereas a “host” process has unconstrained use of
all bandwidth.

In both figures, the guest job starts first, fol-
lowed somewhat later by the host job. At this
point, the guest job throttles down to its 10% rate.
When the host job finishes, the guest job throttles
back up after the rate window empties. The se-
quence on the left is with throttling, on the right
without. Note that the version with I/O throttling
is less thrifty with resources (the guest job finish
later). This is a design decision: our goal is to pre-
vent undue degradation of unconstrained host job
performance at the expense of slowing down
guest jobs.

The host tar application took 35.5 seconds in
isolation. It took 64.4 seconds without throttling
and 42.1 seconds with throttling. This demon-
strates that throttling the guest job’s I/O to 500
kB/s reduces the delay of host I/O from 81% to
18%.

We look at the behavior of one of the tar
processes in more detail in Figure 4. The graph
shows that despite the frequent and varied file I/O
calls and the buffer cache, disk I/O’s get issued at
regular intervals that precisely match the threshold
value set for this experiment. Note that actual disk
I/O sizes increase near the start as the file system
read ahead becomes more aggressive.

Our third set of micro-benchmark experiments
is designed to look at the distribution of sleep
times for a guest process. For this case, we ran
three different applications. The first application
was again a run of the tar utility. Second, we ran
the agrep utility2 across the source directory for
the Linux kernel looking for a simple pattern that
did not occur in the files searched. Third, we ran
a compile workload that consisted of compiling a

2 A Unix command to search a file for a string or regular
expression, with approximate matching capabilities.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

time (sec)

IO
 r

at
e

(k
B

/s
)

host

guest

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90

time (sec)

I0
 r

at
e

(k
B

/s
)

host

guest

(a) (b)

Figure 3: File I/O of competing tar applications without (left) and with (right) file I/O policing.

1

100

10,000

1,000,000

0 1 2 3 4 5
Time (sec)

I/O
 s

iz
e

(B
yt

es
)

Application Requests

Disk Requests

Figure 4: I/O sizes vs. time for tar

 5

library of C++ methods that were divided among
34 files plus 45 header files. This third test was
designed to stress the gap between monitoring at
the file request level and the disk I/O level since
all of the common header files would remain in
the file buffer cache for the duration of the ex-
periment.

A histogram (100 buckets) of the sleep dura-
tions is shown in Figure 5. We have omitted those
events that have no delay since their frequency
completely dominates the rest of the values.
Figure 5(a) shows the results for the tar applica-
tion. In this figure, there is a large spike in the
delay time at 20msec since this is exactly the
mean delay required for the I/O for the most
common sized I/O request, 10K bytes, to be lim-
ited to 500 KB/sec. Figure 5(b) shows the results
for the compilation workload. In this example,
the most popular sleep time is the maximum sleep
duration of 100msec. This is due to the fact that
at several periods during the application execu-
tion, the program is highly I/O intensive and our
mechanism was straining to keep the I/O rate
throttled down. Figure 5(c) shows the sleep time
distribution for the agrep application. The results
for this application show that the most popular
sleep time (other than no sleep) was 2-3 ms. This
is very close to the mean sleep time of 2.5 ms for
this application.

Fourth, we examine the relationship between
file I/O and disk I/O using three applications,

tar, agrep and compile, which have differ-
ent I/O patterns. File I/O can dilate because i) file
I/O’s can be done in small sizes, but disk I/O is
always rounded up to the next multiple of the
page size, and ii) the buffer cache’s read-ahead
policy may speculatively bring in disk blocks that
are never referenced. File I/O can also attenuate
due to buffer cache hits, which is a consequence
of the I/O locality of the applications. We meas-
ured 1) the total amount of file I/O requested, 2)
the actual I/O requests performed by the disk, 3)
the total number of I/O events 4) the total number
of I/O events that were delayed by sleep calls, 5)
the total amount of sleep time, 6) the total runtime
of the workload, and 7) the average actual disk
I/O rate (total disk I/O’s divided by execution
time). The results are shown in Table 1.

When comparing the difference between file
I/O and disk I/O, the file I/O is equal to the disk
I/O for tar3, 14% less for agrep, and 233% lar-
ger for compile. Notice that for the two I/O in-
tensive applications, the overall I/O rate for the
application is very close to the target rate.

For the tar application, our mechanism
worked fine with the aggressive read ahead used
by the file system. For agrep, we observed a
higher total I/O volume due to small reads being
rounded to larger disk pages. The low file I/O

3 The tar file size is 52 MB.

0%

5%

10%

15%

20%

0 10 20 30 40 50 60 70 80 90
Sleep Time (msec)

0%

2%

4%

6%

8%

10%

0 10 20 30 40 50 60 70 80 90
Sleep Time (msec)

(a) Tar (b) Compile Workload

0%
2%
4%
6%
8%

10%

0 10 20 30 40 50 60 70 80 90
Sleep Time (msec)

(c) Agrep

Figure 5: Distribution of Sleep Times for Tar program.

 6

number for compile, of course, is due to good
buffer cache locality.

There are two potential approaches to recoup-
ing this lost bandwidth. The first is to add a hook
into the buffer cache to check for a cache miss
before adding the I/O to our window, and decid-
ing whether to sleep and how long to sleep. We
avoided this path because we wish to avoid kernel
source modifications outside of our module when-
ever possible. We currently keep our entire system
as a loadable kernel module, which uses only ex-
ternally available information such as the system
call interface. This would be compromised if we
put hooks deeper into the kernel.

A second approach is to use statistics from the
proc file system to apply a “dilation factor” to
our limit calculations. We define the dilation fac-
tor as the ratio of file I/O and disk I/O requests. If
the ratio is 1.0, each file I/O is being transformed
into the same amount of disk activity, i.e. there is
no caching or reuse. If the ratio is 0.5, e.g. 100 KB
of file I/O is being transformed into only 50 KB of
disk I/O, then the limited job is not fully utilizing
it’s allocated bandwidth. Resources can be used
more efficiently by multiplying the file I/O

threshold by the inverse of the dilation factor. The
disadvantage of this approach is that dynamic
caching behavior will lead to time-varying dila-
tion factors, and poor policing. The advantages
are better bandwidth utilization, and that the ap-
proach can be implemented entirely outside of the
kernel.

We investigated this approach by adding an-
other field in the I/O rate window to record the
resulting disk I/O size. A rolling average of the
dilation factor is used to scale the file I/O thresh-
old for future requests.

The full story of the I/O dilation is seen when
we look at the time varying behavior of the I/O.
Figure 6 shows the average I/O rates for the com-
pile workload. The dark curve of each graph is for
the file I/O rate and the light curve for the disk I/O
rate. We first ran it without any I/O rate limit.
Figure 6(a) shows that file I/O requests resulted in
much less disk I/O because many header files
were reused from the file buffer cache. The sec-
ond graph (b) presents the case when we limited
the file I/O rate to 500 KB/sec. Notice that al-
though this workload still has considerable hits in
the file buffer cache, our mechanism ensured that

Metric Tar Agrep Compile
Total File I/O 103.0 MB 50.0 MB 23.3 MB
Total Disk I/O 103.0 MB 58.1 MB 10.0 MB
Total I/O Events 17,430 11,526 3,859
Total Sleep Events 6,928 3,324 1,004
Total Sleep Time 178.0 sec 83.3 sec 29.1 Sec
Total Execution Time 211.2 sec 108.7 sec 70.6 Sec
Average Disk I/O Rate 487 KB/sec 534 KB/sec 141 KB/sec

Table 1: I/O Application Behavior

0

500

1000

1500

2000

0 10 20 30 40 50
Time (sec)

R
at

e
(K

B
/s

)

File I/O

Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

Time (sec)

R
at

e
(K

B
/s

)

File I/O

Disk I/O

0

500

1000

1500

2000

0 10 20 30 40 50 60
Time (sec)

R
at

e
(K

B
/s

)

File I/O

Disk I/O

(a) No rate limit (b) File I/O limit (500 KB/s) (c) Disk I/O limit (500 KB/s)

Figure 6: File and Disk I/O Rates for the Compile Workload.

 7

the actual disk I/O rate was less than the target
rate of 500KB/sec. The requested I/O rate peaks
are higher than our target limit, due to the fact that
we average I/O requests over an effective 1.7 sec-
ond window (as noted above) and we are showing
data over a 1 second window in this figure. Figure
6(c) shows the behavior of the compile applica-
tion when the dilation factor is used to control the
disk I/O rate. The curves demonstrate that the ap-
plication can take advantage of buffer hits while
limiting the disk I/O rate to a certain level. The
compile application was able to finish in 64 sec-
onds, which is 27 seconds earlier than using file
I/O rate policing. Note that the disk I/O rate occa-
sionally peaks over the limit. This is because the
dilation factor is derived from past I/O behavior.
Any change in the dilation factor over time can
cause inaccurate predictions. Overall, however,
the actual disk I/O followed the limit quite well.

5. Network I/O policing

Policing network I/O is easier than file I/O be-
cause there is no analogue to the file buffer cache
or read ahead, which dilate and attenuate the ef-
fective disk I/O rate. In this section, we present
two applications of network I/O throttling using
our rate windows.

5.1 Linger -Longer: Throttling guest processes
Most of the experiments in Section 4 assumed the
use of rate windows in a Linger-Longer context.
We ran one additional Linger-Longer experiment,
this time with network I/O as the target. One of
the main complaints about Condor and similar
systems is that the act of moving a guest job from
a newly loaded host often induces significant
overhead to retrieve the application’s checkpoint.

Further, periodic checkpointing for fault tolerance
produces bursty network traffic. This experiment
shows that even checkpointing operations are
throttled and can be prevented from affecting host
jobs.

Figure 7 shows two instances of a guest proc-
ess moving off of a node because a host process
suddenly becomes active. Moving off the node
entails writing a 90MB checkpoint file over the
network. This severely reduces available band-
width for the host workload (a web server4 in this
case) in the unthrottled case shown in Figure 7(a).
Only after the checkpoint is finished does the web
server claim most of the bandwidth.

In the throttled case shown in Figure 7(b), the
condor daemon’s network write of the checkpoint
consumes a majority of the bandwidth only until
the host web server starts up. At this point, the
system enters throttling mode and the bandwidth
available to the checkpoint is reduced to the guest
class’s threshold. Once the web server becomes
idle again, the checkpoint resumes writing at the
higher rate.

5.2 Rate-based network clocking
Finally, we look at the use of rate windows to per-
form an approximation of rate-based clocking of
network traffic. Such clocking has been proposed
as a method of preventing network contention and
improving utilization in transport protocols. Spe-
cifically, modifying the TCP protocol stack to
send out packets at a preset interval has advan-
tages in 1) avoiding TCP slow-start, 2) preventing
burstiness as a result of ACK compression, and 3)

4 The host process could be any network intensive process
such as an FTP or a Web browser.

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)

C
o

m
m

. B
an

d
w

id
th

 (
kB

/s
)

guest ckpt

web server

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)

C
o

m
m

. B
an

d
w

id
th

 (
kB

/s
) guest ckpt.

web server

(a) (b)

Figure 7: Guest job checkpoint vs. host web server

 8

preventing downstream congestion. With our cur-
rent placement of hooks high in the kernel, rate
windows can only address the third motivation.
Note, however, that our implementation is proto-
col independent, i.e. it works just as well for UDP
as for TCP.

Figure 8 shows achieved bandwidth for three
Apache web servers running on a single host.
Each server is driven by clients that repeatedly
request the same file. Hence, all requests but the
first are satisfied in the server’s cache and the per-
formance of the servers is completely limited by
available bandwidth. The total available band-
width is ~12MB/sec and the three servers are lim-
ited to 1.5MB, 3MB, and 6MB, respectively. The
maximum bandwidth achieved with the large files
is 11.5MB/sec, and 8.6MB/sec with the small
files. Hence, the thresholds do not permit the
servers to use all of the available bandwidth in the
first case, but do in the second.

Note that the deviation from the threshold by
the small-file streams (especially the largest
stream) is not a failing. In fact, this is a problem-
atic use of rate windows since our guarantees are
not-to-exceed guarantees, not at-least guarantees.
Rate windows are actually ideal for this use be-
cause congestion problems only arise when band-
width exceeds specific bounds, so the guarantee is
of the correct polarity.

A second consequence of this characteristic is
that rate windows implicitly smooth bursty traffic.
Consider a rate-based stream that, despite the rate-
base clocking, encounters temporary congestion
and backoff. When the transmissions continue, a
straightforward implementation would attempt to
“make up” the lost time by transmitting at above

the desired rate for some amount of time. This, in
turn, could cause more congestion.

With rate windows, the decisions about how
long or whether to sleep are based solely on the
history contained in the window, which currently
contains 100 or five seconds worth of I/O re-
quests, whichever is less. A rate-window-based
stream will attempt to make up losses within the
window, but “forgets” losses that occur before the
window’s events. As a result, extra use of band-
width in order to make up delayed transmission is
strictly, and implicitly, bounded by a combination
of target bandwidth and window size.

6. Related work

Previous work on exploiting available idle time on
workstation clusters used a conservative model
that would only run processes when the local user
was away from their workstation, and no local
processes were runnable. Condor [12], LSF [22],
and NOW [2] use variations on a “social contract”
to strictly limit interference with local users.
However, even with these policies, there is some
disruption of the local user when they return since
the guest process must be evicted and the local
state restored. The Linger-Longer approach per-
mits slightly more disruption of the user, but tries
to limit the delay to an acceptable level. One sys-
tem that used non-idle workstations was the
Stealth distributed scheduler [11]. It implemented
a priority-based approach to running guest proc-
esses. However none of the tradeoffs in how long
to run guest processes, or the potential of running
parallel programs were investigated.

In the area of operating system support for
providing resource management, research and

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (sec)

B
an

d
w

id
th

 (
K

B
/s

ec
)

class 1

class 2

class 3

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

time (sec)

B
an

d
w

id
th

 (
K

B
/s

ec
)

class 1

class 2

class 3

Figure 8: Three web servers: The numbers on the left are for 1.7MB files, for 71KB files on the right.

 9

commercial operating systems have provided
similar functionality. In IRIX [18], the Miser fea-
ture provides deterministic scheduling of batch
jobs. Miser manages a set of resources, including
logical CPUs and physical memory, that Miser
batch jobs can reserve and use in preference to
interactive jobs. This strategy is almost the oppo-
site of our approach, which promotes interactive
jobs.

Aron and Druschel’s soft timers [1] provide a
way to implement rate-based clocking of network
protocols. Although their motivation, avoiding
the penalty of TCP slow-start for small file trans-
fers over high delay-bandwidth networks, is dif-
ferent than ours, limiting the fraction of the
server’s network bandwidth that a single http cli-
ent or virtual host server gets, both techniques can
be used to achieve similar ends.

Also, many have studied general quality of
service (QoS) support for server applications. The
reservation domains of Eclipse [5], the Software
Performance Units of Verghese et al. [20], and
Resource Containers [4] can group a set of proc-
esses or threads as a unit for resource scheduling.
This is similar to our job classes. The Nemesis
kernel [15] also provides QoS with rate-based
real-time scheduling for I/O as well as CPU.
However, those systems are integrated deep into
the kernel, while our mechanism resides between
the kernel and the user-level I/O library and can
be loaded and unloaded at run-time. Our mecha-
nism is light-weight since we do not add any extra
queues for resource scheduling. Our mechanism
just intercepts resource requests, keeps track of
the rate, and puts them into sleep for an appropri-
ate time if the requests seem to exceed the limit.
However, our rate windows mechanisms can be
used as a light-weight and portable scheduling
mechanism to support those concepts.

The idea of regulating traffic rates in the net-
work has been extensively studied. Congestion
avoidance schemes such as leaky bucket [19] and
its variants [7, 21] use averages over various time
intervals to determine which traffic is within its
negotiated bandwidth. However, since these ap-
proaches are designed for policing traffic at
routers, they must drop non-conforming traffic.
In contrast, since our approach is at the source, we
can delay traffic to enforce bandwidth limits.

The idea of resource partitioning through the
use of virtual machines has been popular both in

the 1970s [9] as well as in recent projects such as
Disco [6]. The key difference is that while virtual
machines provide hard isolation of resource be-
tween VMs at considerable runtime overhead, our
approach is a simple extension to an existing op-
erating system or runtime library.

7. Conclusions and Future Work

We have presented a simple and portable mecha-
nism that allows an operating system to throttle
the rate at which disk and network communication
is performed. Our experiments demonstrated that
we are able to enforce these resource limits on
applications with little overhead.

For I/O bound applications, we are able to en-
force limits at the physical device level despite the
imposition of the buffer cache and disk read-
ahead mechanisms. Further, for many applica-
tions, we can enforce our limits on the actual disk
I/O instead of the file I/O by compensating for the
file-to-disk dilation factor. The result is more effi-
cient use of the guest job’s allocated bandwidth.

For the network case, we demonstrated that
rate windows allow effective bandwidth sharing
among communication-bound processes. We also
used them to implement policies that protect a
host process’s access to network resources. This
protection is applied to all network accesses by all
guest jobs that are running on the local machine,
and also to the large network I/O’s that occur
when such processes try to migrate their address
spaces off of the local machine.

Our technique is simple, general purpose, and
flexible. One obvious area of future work is to
provide a complete study of the ability of the sys-
tem to handle finer granularity policing of re-
sources by dynamically adjusting the window
size. Since our mechanism requires only the abil-
ity to monitor and delay user level I/O requests,
we could implement our approach in user space
libraries.

Finally, we plan to evaluate the overall effec-
tiveness of our resource isolation techniques for a
full-scale cycle-stealing system.

References

1. M. Aron and P. Durschel, "Soft Timers: efficient
microsecond software timer support for network
processing," SOSP. Dec. 1999, Kiawah Island,
SC, pp. 232-246.

 10

2. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T.
Liu, T. E. Anderson, and D. A. Patterson, "The
Interaction of Parallel and Sequential Workloads
on a Network of Workstations," SIGMETRICS.
May 1995, Ottawa, pp. 267-278.

3. A. Atlas and A. Bestavros, "Design and imple-
mentation of statistical rate monotonic scheduling
in KURT Linux," Proceedings 20th IEEE Real-
Time Systems Symposium. Dec. 1999, Phoenix,
AZ, pp. 272-6.

4. G. Banga, P. Druschel, and J. Mogul, "Resource
containers: A new facility for resource manage-
ment in server systems," USENIX 3rd Symposium
on Operating System Design and Implementation.
October 1999, New Orleans, LA.

5. J. Bruno, E. Gabber, B. Ozden, and A. Silber-
schatz, "The Eclipse operating system: Providing
Quality of Service via Reservation Domains,"
USENIX 1998 Annual Technical Conference.
June 1998, New Orleans, Louisiana.

6. E. Bugnion, S. Devine, and M. Rosenblum,
"Disco: Running Commodity Operating Systems
on Scalabe Multiprocessors," SOSP. Oct 1997,
pp. 143-156.

7. T. Faber, L. H. Landweber, and A. Mukherjee,
"Dynamic Time Windows: packet admission con-
trol with feedback," SIGCOMM. Sept 1992, pp.
124 - 135.

8. W. C. Feng, D. D. Kandlur, D. Saha, and K. G.
Shin, "Understanding and improving TCP per-
formance over networks with minimum rate
guarntees," IEEE/ACM Transactions on Network-
ing, 7(2), 1999, pp. 173-187.

9. R. P. Goldberg, "Survey of Virtual Machine Re-
search," IEEE Computer Magazine, 7(6), 1974,
pp. 34-45.

10. J. S. Heidemann and G. J. Popek, "File-system
development with stackable layers," ACM Trans.
Computer Systems, 12(1), 1994, pp. 58-89.

11. P. Krueger and R. Chawla, "The Stealth Distrib-
uted Scheduler," International Conference on
Distributed Computing Systems (ICDCS). May
1991, Arlington, TX, pp. 336-343.

12. M. Litzkow, M. Livny, and M. Mutka, "Condor -
A Hunter of Idle Workstations," International
Conference on Distributed Computing Systems.
June 1988, pp. 104-111.

13. M. W. Mutka and M. Livny, "The available ca-
pacity of a privately owned workstation environ-
ment," Performance Evaluation, 12, 1991, pp.
269-284.

14. V. N. Padmanabhan and R. H. Katz, "TCP Fast
Start: A Techniques for Speeding Up Web Trans-
fers," IEEE GLOBECOMM. Nov. 1998, Sydney,
Australia, pp. 41-46.

15. D. Reed and R. Fairbairns, The Nemesis Ker-
nelOverview,
http://citeseer.nj.nec.com/reed97nemesis.html,
May 20, 1997.

16. K. D. Ryu and J. K. Hollingsworth, "Exploiting
Fine Grained Idle Periods in Networks of Work-
stations," IEEE Transactions on Parallel and Dis-
tributed Computing, 11(7), 2000.

17. K. D. Ryu, J. K. Hollingsworth, and P. J. Keleher,
"Mechanisms and Policies for Supporting Fine-
Grained Cycle Stealing," ICS. June 1999, Rhodes,
Greece, pp. 93-100.

18. SiliconGraphics, IRIX 6.4 Technical Brief,
http://www.sgi.com/software/irix6.5/techbrief.pdf
, 1998.

19. J. S. Turner, "New Directions in Communications
(or Which Way to the Information Age?)," IEEE
Communications Magazine, 24(10), 1986, pp. 8-
15.

20. B. Verghese, A. Gupta, and M. Rosenblum, "Per-
formance Isolation: Sharing and Isolation in
Shared-Memory Multiprocessors," ASPLOS. Oct.
1998, San Jose, CA, pp. 181-192.

21. L. Zhang, "Virtual Clock: A New Traffic Control
Algorithm for Packet Switching Networks," SIG-
COMM. Sept. 1990, pp. 19-29.

22. S. Zhou, X. Zheng, J. Wang, and P. Delisle,
"Utopia: a Load Sharing Facility for Large, Het-
erogeneous Distributed Computer Systems," SPE,
23(12), 1993, pp. 1305-1336.

