An Evolutionary Random Policy Search Algorithm for Solving Markov Decision Processes

Jiaqiao Hu
Department of Electrical and Computer Engineering & Institute for Systems Research
jqhu@glue.umd.edu
May, 2005
Problem Setting - MDPs

• MDP is defined as a tuple \((X, A, P, R, \alpha)\)
 - finite state space \(X\); \(x_t\): state at time \(t\)
 - general action space \(A\)
 - transition probabilities \(P_{x,y}(a)\)
 - non-negative bounded one-stage cost function \(R(x,a)\)
 - discount factor \(\alpha \in (0,1)\)

• Objective: find a stationary policy \(\pi^*\) to minimize the infinite-horizon expected total discounted cost

\[
J^{\pi^*}(x) = \inf_{\pi \in \Pi} J^{\pi}(x), \quad \text{where}
\]

\[
J^{\pi}(x) = \mathbb{E} \left[\sum_{t=0}^{\infty} \alpha^t R(x_t, \pi(x_t)) \mid x_0 = x \right], \quad \forall \ x \in X
\]
Solution Methods Overview - MDPs

• Standard techniques

 - **value iteration (VI)**: compute a sequence of functions
 \(\{J_k : k = 0, 1, \ldots \} \) via the recursion
 \[
 J_{k+1}(x) = \min_{a \in A} \left[R(x, a) + \alpha \sum_{y \in X} P_{x,y}(a) J_k(y) \right], \ \forall x \in X.
 \]

 - **policy iteration (PI)**

 • policy evaluation
 \[
 J^{\pi_k}(x) = R(x, \pi(x)) + \alpha \sum_{y \in X} P_{x,y}(\pi(x)) J^{\pi_k}(y), \ \forall x \in X
 \]

 • policy improvement
 \[
 \pi_{k+1}(x) = \arg\min_{a \in A} \left[R(x, a) + \alpha \sum_{y \in X} P_{x,y}(a) J^{\pi_k}(y) \right], \ \forall x \in X
 \]
Solution Methods Overview - MDPs

• **State space reduction techniques**
 - **state aggregation** (Bertsekas and Castanon 1989)
 - **value function approximation** (Bellman et al. 1963; Tsitsiklis and Van Roy 1994; Trick and Zin 1997; De Farias and Van Roy 2003 etc.)
 - **randomization** (Rust 1997)
 - **simulation-based approaches**
 - *temporal difference* (Sutton 1988)
 - *Q-learning* (Watkins 1989)
 - *other techniques* (Chang et al. 2003; Chang et al. 2004; Mannor et al. 2003)

• **Action space reduction techniques**
 - **action elimination procedures** (McQueen 1966; Even-Dar et al. 2003)
ERPS for Solving MDPs

• **Motivation:** solving general MDPs is at least as hard as solving non-linear optimization problems

• **Methodology:** use global optimization strategies to improve the performance of the current MDP solution techniques
 - evolutionary, population-based approaches directly searching the policy space
 * complement state space reduction techniques
 * avoid optimization over the entire action space
 * robustness
ERPS for Solving MDPs

- **Target problems:** X small; A large or uncountable
 - examples: queueing control; job-shop scheduling etc.

- **Key steps:** For a set of policies $\Lambda_k = \{\pi_1, \pi_2, \ldots, \pi_N\}$
 - generate elite policy π^*_{k+1} via Policy Improvement with Cost Swapping (PICS)

$$
\pi^*_{k+1}(x) = \arg\min_{u \in \Lambda_k(x)} \left\{ R(x, u) + \alpha \sum_{y \in X} P_{x, y}(u)[\min_{\pi_j \in \Lambda} J^{\pi_j}(y)] \right\},
$$

- construct the next population of policies Λ_{k+1} based on π^*_{k+1} and random sampling of the entire action space.
ERPS for Solving MDPs

- **Initialization:** select initial population Λ_0, exploitation probability q_0, action selection distribution P, set $k=0$.

- **Repeat until a specified stopping rule is satisfied:**
 - generate elite policy π_*^{k+1} via PICS
 - generate other policies in the next population: based on $U_j \sim U(0,1)$ i.i.d.,
 - * if $U_j \leq q_0$ (exploitation)
 - choose $\pi_j^{k+1}(x)$ from small neighborhood of $\pi_*^{k+1}(x)$,
 - * else (exploration)
 - choose $\pi_j^{k+1}(x)$ according to P.
 - Construct $\Lambda_{k+1}=\{\pi_*^{k+1}, \pi_2^{k+1}, \ldots, \pi_N^{k+1}\}$, Set $k = k + 1$.
ERPS for Solving MDPs

• Properties

- avoid optimization over the entire action space
- improve a population of policies, i.e.,
 \[J^{\pi_{k+1}}(x) \leq \min_{\pi_j^k \in \Lambda_k} J^{\pi_j^k}(x), \quad \forall x \in X. \]
- monotonicity among elite policies
 \[J^{\pi_{k+1}^*}(x) \leq J^{\pi_k^*}(x), \quad \forall x \in X, \forall k = 0,1,\ldots \]
- convergence w.p.1. to optimal value function
 \[\lim_{k \to \infty} J^{\pi_k^*}(x) = J^*(x), \quad \forall x \in X \quad \text{w.p.1.} \]
ERPS for Solving MDPs

• **Numerical examples:** single-server queue

 - finite buffer size $L=48$ (state space size 50)
 - at most one arrival each period of time with probability 0.2, service completion probability $a \in [0,1]$.
 - state $x_t = \#$ jobs in system
 - action: service completion probability a
 - discount factor $\alpha=0.98$
 - one-stage cost function: $R(x,a) = x+50 \, a^2$
 - population size $N=10$
ERPS for Solving MDPs

Running time required for PI and ERPS to find optimal solution as a function of the size of the action space
ERPS for Solving MDPs

Results for continuous action space $A=[0,1]$. $\text{relerr} = \frac{\|J - J^*\|_\infty}{\|J^*\|_\infty}$

<table>
<thead>
<tr>
<th>algorithms</th>
<th>parameters</th>
<th>Avg. time (std err)</th>
<th>Mean relerr (std err)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPS</td>
<td>$q_0=0.50$</td>
<td>2.27 (0.09)</td>
<td>6.41e-13 (7.07e-14)</td>
</tr>
<tr>
<td>$r=1/4000$</td>
<td>$q_0=0.75$</td>
<td>2.92 (0.08)</td>
<td>1.92e-13 (2.69e-14)</td>
</tr>
<tr>
<td>ERPS</td>
<td>$q_0=0.50$</td>
<td>2.91 (0.10)</td>
<td>1.08e-13 (1.59e-14)</td>
</tr>
<tr>
<td>$r=1/8000$</td>
<td>$q_0=0.75$</td>
<td>3.50 (0.11)</td>
<td>6.84e-14 (1.03e-14)</td>
</tr>
<tr>
<td>ERPS</td>
<td>$q_0=0.50$</td>
<td>3.25 (0.10)</td>
<td>3.06e-14 (4.56e-15)</td>
</tr>
<tr>
<td>$r=1/16000$</td>
<td>$q_0=0.75$</td>
<td>3.68 (0.10)</td>
<td>1.89e-14 (2.50e-15)</td>
</tr>
<tr>
<td>PI</td>
<td>h=1/16000</td>
<td>23 (N/A)</td>
<td>4.74e-10 (N/A)</td>
</tr>
<tr>
<td></td>
<td>h=1/32000</td>
<td>47 (N/A)</td>
<td>9.52e-11 (N/A)</td>
</tr>
<tr>
<td></td>
<td>h=1/128000</td>
<td>191 (N/A)</td>
<td>6.12e-12 (N/A)</td>
</tr>
<tr>
<td></td>
<td>h=1/512000</td>
<td>781 (N/A)</td>
<td>3.96e-13 (N/A)</td>
</tr>
</tbody>
</table>
ERPS for Solving MDPs

• **Conclusions**
 - evolutionary, population-based approach with guaranteed theoretical convergence
 - much lower computational time than standard PI
 - parallel computing

• **Open problem**
 - performance relies on neighborhood structure, action selection distribution P, and exploitation probability q_0.