Robust ECN Signaling with Nonces

David Wetherall, David Ely, and Neil Spring
University of Washington
50th IETF
March, 2001
Problem

Bugs and misbehavior may hide ECN marks from the sender

ECT – ECN Capable Transport
CE – Congestion Experienced
CWR – Congestion Window Reduced
ECE – ECN-Echo

① ECN properly echoed
② CE improperly hidden
③ Sender infers no congestion
④ Then sends too fast

David Wetherall, David Ely, and Neil Spring
Motivation

[SCWA99] lists how and why receivers can fool senders

- Ack division, DupACK spoofing
- Challenging to implement
- Easy to protect against at server

Receivers can’t hide drops if they want data.
Receivers can hide ECN marks and still get data.

Want robust ECN mechanism

- Don’t assume senders trust receivers
How to hide congestion signals

```
51: static __inline__ void
52: TCP_ECN_send(....)
...
67: if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
68: skb->h.th->ece = 1;

Misbehaving:

68: skb->h.th->ece = 0;
```
ECN nonce review

One-bit random nonce sent with each packet
 - Using same IP header bits as ECT/CE

Nonce is erased to signal congestion

Sum (parity) of nonces returned with each ack
 - A new bit from TCP’s reserved field

Sender verifies clear ECN-echo with nonce sum:
 - Incorrect sum implies failure
 - Should disable ECN and reduce sending rate
Visual ECN nonce review

1. ECN properly echoed
2. Nonce sum (NS) ignored
3. Synch. NS after CWR

1. CE improperly hidden
2. Guessed NS is wrong
3. Sender disables ECN
TCP processing state

Receiver stores
- Nonce bit for each out of order packet
- Current nonce sum

Sender stores
- Nonce sum expected for each unack’d packet
- Synchronization offset bit

Packet adds TCP header bit for nonce sum:

<table>
<thead>
<tr>
<th>4 bit header length</th>
<th>reserved (3 bits)</th>
<th>NS</th>
<th>C</th>
<th>W</th>
<th>E</th>
<th>U</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>P</th>
<th>S</th>
<th>T</th>
<th>S</th>
<th>Y</th>
<th>I</th>
<th>N</th>
<th>N</th>
</tr>
</thead>
</table>

David Wetherall, David Ely, and Neil Spring 7
Penalty

Disabling ECN is not sufficient incentive to behave
Set \(cwnd = ssthresh = 1 \)

- Intended to negate gains from misbehavior

![Normal cwnd sawtooth](image1)

![cwnd=1 on misbehavior](image2)

(but not disabling ECN)
Alternative approaches

Test correct operation by setting CE bit at sender.
- If it is correctly echoed, receiver is behaving
- Performance or accuracy cost

Off-line testing like TBIT
- Blacklist misbehaving destination IP’s

ECN nonce protects all packets
Backward compatibility

How do we deal with existing ECT/CE implementations?

Routers: straightforward, described in latest ECN draft

TCPs:

- Use third bit in negotiation procedure? (111 \rightarrow 101)
- Easy to notice when nonce is unsupported? (111 \rightarrow 001)
- Support nonce-less ECN for transition period?
SACKs

Should nonces cover SACK’d packets?

ECN-echo set for subsequent acks

Nonce applies only to in-order acknowledged segments
SACKs don’t increase the window.

David Wetherall, David Ely, and Neil Spring
Conclusion

ECN without nonces allows receivers to hide signals
- Hard to verify correct behavior
- Misbehaving receivers benefit

ECN with nonces prevents concealment
- One more header bit
- Minor TCP state
Questions? Insults?

Doc: draft-ietf-tsvwg-tcp-nonce-00.txt
Offline: nspring@cs.washington.edu