
Finding Bugs in Java Native Interface Programs
Goh Kondoh Tamiya Onodera

Tokyo Research Laboratory
IBM Research

1623-14, Shimotsuruma, Yamato-shi
Kanagawa-ken, Japan

+81-46-215-4584, +81-46-215-4645
{gkondo,tonodera}@jp.ibm.com

ABSTRACT
In this paper, we describe static analysis techniques for finding
bugs in programs using the Java Native Interface (JNI). The JNI is
both tedious and error-prone because there are many JNI-specific
mistakes that are not caught by a native compiler. This paper is
focused on four kinds of common mistakes. First, explicit
statements to handle a possible exception need to be inserted after
a statement calling a Java method. However, such statements tend
to be forgotten. We present a typestate analysis to detect this
exception-handling mistake. Second, while the native code can
allocate resources in a Java VM, those resources must be
manually released, unlike Java. Mistakes in resource management
cause leaks and other errors. To detect Java resource errors, we
used the typestate analysis also used for detecting general
memory errors. Third, if a reference to a Java resource lives
across multiple native method invocations, it should be converted
into a global reference. However, programmers sometimes forget
this rule and, for example, store a local reference in a global
variable for later uses. We provide a syntax checker that detects
this bad coding practice. Fourth, no JNI function should be called
in a critical region. If called there, the current thread might block
and cause a deadlock. Misinterpreting the end of the critical
region, programmers occasionally break this rule. We present a
simple typestate analysis to detect an improper JNI function call
in a critical region.

We have implemented our analysis techniques in a bug-finding
tool called BEAM, and executed it on opensource software
including JNI code. In the experiment, our analysis techniques
found 86 JNI-specific bugs without any overhead and increased
the total number of bug reports by 76%.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
correctness proofs, reliability, validation. D.3.3 [Programming
Languages]: Language Constructs and Features – constraints,
data types and structures, polymorphism, procedures, functions,
and subroutines.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation,
Languages, Verification.

Keywords
Java Native Interface, static analysis, typestate analysis

1. INTRODUCTION
A foreign function interface (FFI) allows code written in one
language to call code written in another language. Many
programming languages support their own FFIs, and Java’s
version is called the Java Native Interface (JNI). However, the
JNI is tedious to use and error-prone. For example, the
programmer’s guide [10] devotes an entire chapter, Traps and
Pitfalls, to 15 of the most common programming errors (Table 1).
To express a simple expression that can be written as just a few
terms in Java, JNI typically requires several lines in native code.
Also, some JNI functions must be called in a specific order. As a
result, code using the JNI is more likely to have bugs than code
without JNI calls. These JNI mistakes are not caught by the
compiler. We encountered these problems with JNI programming
while we were developing a static analysis tool for Java in BEAM
[3]. In an early phase of the development, we integrated a Java
parser written in Java with the BEAM modules written in C and
C++. During this development we encountered most of the
problems described in Table 1, and that motivated us to create a
JNI bug-finding tool.

Table 1 spans from high-level design issues to bad coding
practices at low levels. The design issues 5, 6, 7, 14 and 15 are
beyond our scope because they depend on the target software and
cannot be checked automatically by a static analysis tool. We
worked on the other problems, especially those not covered by
prior research, and prioritized them according to their severity.
We selected the problems marked with symbol ‘X’ and also added
the problem of calling a JNI function from a critical region, which
is described later.

A type inference system [6] is a useful approach for Problems 2
and 3. We implemented such a system and found it somewhat
useful during the coding phases. However, it did not perform well
in our experiments (for reasons explained in Section 6.2).
Problem 4 can easily be detected by a syntax checker or a
compiler warning (such as a –Wconversion warning). BEAM
already included a checking tool for this kind of bug, but it also
failed to produce some of the relevant warning messages in our
experiments. Therefore, we do not further discuss these tools in
this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-050-0/08/07...$5.00.

109

Problems 8, 9, 10, and 12 are future work, mostly due to limited
interest from our customers and limited need based on our
experiences. Each of these problems would also require a
customized syntax checker, in contrast to allowing a generalized
approach based on a standard dataflow analysis framework.

Thus, our goal was to find the errors related to Problems 1, 11,
and 13 and the problem of calling a JNI function in a critical
region. This paper’s contributions are:

• We present static analysis techniques for JNI programs to
detect:

 mistakes of error checking,

 memory leaks,

 invalid uses of a local reference, and

 JNI function calls in critical regions.

• We describe the implementation details for these techniques
and experimental results with some benchmark programs.

Table 1: Traps, pitfalls, and the coverage of our tools and
existing work. The second and third columns correspond to our
tool and prior work.

Problems Our
focus

Prior
work

1. Error Checking X

2. Passing Invalid Arguments to JNI
Functions [6] [15]

3. Confusing jclass with jobject [6]

4. Truncating jboolean Arguments compile
r

5. Boundaries between Java Application
and Native Code

6. Confusing IDs with References

7. Caching Field and Method IDs

8. Terminating Unicode Strings

9. Violating Access Control Rules

10. Disregarding Internationalization

11. Retaining Virtual Machine Resources X

12. Excessive Local Reference Creation

13. Using Invalid Local References X

14. Using the JNIEnv across Threads

15. Mismatched Thread Models

This paper is organized as follows: In Section 2, we describe our
analysis target JNI and define the kinds of mistakes our analysis
should detect. In Section 3, we present our analysis techniques for
detecting these problems. In Section 4, we give implementation
details about our analytic tool and experimental results on some
benchmarks. In Section 6 we compare our system to other

research and we conclude with the utility of our analysis in
Section 7.

2. JNI MISTAKES
In this section, we describe and give examples of the four
common mistakes we try to detect. We selected these four
because they seem common in open source software and because
we had experiences of encountering them.

2.1 Error Checking
In Java, a method declaration explicitly includes one or more
types of exceptions which may be thrown. A method invocation
expression can appear in a try block that is followed by catch
clauses corresponding to the exception types it can throw. These
correspondences among the types of thrown exceptions, the types
of caught exceptions, and the exceptions in the method
declarations are checked by a compiler for Java programs.

Using JNI, a programmer can write native code calling a Java
method that can throw an exception. Such a thrown exception is
not related to the exceptions or try-catch statements in C++.
Rather, it comes from the JNI function ExceptionOccurred.
Therefore, JNI programmers need to insert exception checking
code which works in the same way as Java’s catch statement after
a Java method invocation. This exception checking code is often
forgotten because no compiler will notice that it is missing.

In order to invoke a Java method from native code, the following
three steps are required for an instance method:

• The native code first calls GetMethodID, which performs a
lookup for the method in the given class. The lookup is based
on the name and type descriptor of the method. If the method
does not exist, GetMethodID returns NULL and a
NoSuchMethodError instance is created in a pending
state.

• If the method was found in the previous step, the native code
then calls Call<Type>Method where <Type> is the
return type of the method. The receiver object, the method ID
and the actual arguments are passed to this JNI function.

• The native code checks if an exception was raised in the
previous step by calling the JNI function ExceptionCheck
or ExceptionOccurred. If an exception was thrown, the
native code clears the exception after handling the error or
returns to Java with the exception pending.

These steps are very similar to those of reflected method invocations
in Java except for the third one. For a reflection call in Java, a try-
catch statement must be placed to handle the thrown exception of
type
java.lang.reflect.InvocationTargetException. In
native code, the exception of a Java type cannot be caught by any
language construct such as the try-catch statement in C++.
Figure 1 illustrates how to invoke the Java methods foo() and
bar() on an object reference obj in C++ and how to check for
the occurrence of an exception. Looking only at this native code,
neither programmers nor compilers can tell whether or not the
method foo() can throw an exception. However, this code never
ignores the thrown exception because it conservatively assumes
that foo() can throw an exception. Not all methods throw an

110

exception, but most of them can. According to [10], programmers
are required to perform an explicit exception check after every
JNI function call that could possibly throw an exception. This
example is safe because the exception thrown from foo()will be
never ignored.

Figure 2 shows an example programmers tend to write. This
example does not include the exception checking between the two
Java method invocations. Note that the second invocation ignores
an exception if it is raised by the first one. Java virtual machine
features dynamic checks for JNI function calls if the -Xcheck:jni
option is enabled. IBM J9 VM [2] with this option generates
warnings for this kind of code even if it is executed without
throwing an exception. If the programmer of this code is sure that
foo() never throws an exception, omitting the exception
checking may make sense. However, the checking is required in
general.

Furthermore, JNI functions can be called by a helper function as
well as a top-level native method implementation function in
native code. For example, in Figure 3, just looking at the main
function, we do not know whether or not an exception handling
mistake exists after returning from the helper function
CallFooWrapper. Although CallFooWrapper does not
check if an exception is thrown, it does not always mean an error
because the exception can be correctly returned to Java if
CallFooWrapper is called at the end of the native method
execution. Therefore, in order to detect errors at helper function
call sites we need to have an interprocedural analysis. Fortunately,
this interprocedural analysis would be easy because it would not
require context sensitivity: Whatever argument is passed to a
function, we can assume that a JNI function to be called inside
can produce an exception. This is analogous to that a Java method
which declares an exception must be always called in an
appropriate try-catch statement or a method rethrowing it.

Figure 3: An example calling a function possibly throwing an
exception

2.2 Retaining Virtual Machine Resource
The second type of common mistakes is retaining virtual machine
resource. Native code can dynamically allocate a Java virtual
machine resource by the allocator functions:
• GetStringChars(JNIEnv *env, jstring

str,jboolean *isCopy)

• GetStringUTFChars(JNIEnv *env, jstring
str,jboolean *isCopy)

• Get<Type>ArrayElements(JNIEnv *env,
<ArrayType> array,jboolean *isCopy) where
<Type> is one of Boolean, Byte, Char, Short, Int, Long,
Float, and Double

These functions return NULL if and only if invocation of them
has thrown an exception, whose type is OutOfMemoryError.

The resource must be freed later by the corresponding deallocator
functions:
• ReleaseStringChars

• ReleaseStringUTFChars

• Release<Type>ArrayElements

Programmers tend to forget calling deallocator functions,
typically in an exception handling path.
In addition, some programmers have a misunderstanding about
the third parameter isCopy of the allocator JNI functions. The
isCopy parameter is of the pointer-to-jboolean type. During an
allocator call, JNI_TRUE is assigned to *isCopy if a copy has
been made for the return value. Otherwise, JNI_FALSE is
assigned. Some programmers think that if *isCopy is
JNI_FALSE (e.g. Figure 4) or if they pass NULL to isCopy
(e.g. GetStringChars(env, jstr, NULL)) the returned
resource does not need to be released later. However, regardless

jclass cls = env->GetObjectClass(obj);

jmethodID mid =

env->GetMethodID(cls, "foo", "()V");

env->CallVoidMethod(obj, mid);

if (env->ExceptionCheck()) {

 /* error handling */

 env->ExceptionClear(); /* or return */

}

mid = env->GetMethodID(cls, "bar", "()V");

env->CallVoidMethod(obj, mid);

Figure 1: A native code example calling a Java method

jclass cls = env->GetObjectClass(obj);

jmethodID mid =

env->GetMethodID(cls, "foo", "()V");

env->CallVoidMethod(obj, mid);

mid = env->GetMethodID(cls, "bar", "()V");

env->CallVoidMethod(obj, mid);

Figure 2: An example possibly ignoring an exception

void CallFooWrapper(JNIEnv *env, jobject obj)

{

jclass cls = env->GetObjectClass(obj);

jmethodID mid =

env->GetMethodID(cls, "foo", "()V");

env->CallVoidMethod(obj, mid);

}

void main(JNIEnv *env)

{

jobject obj1 = …;

jobject obj2 = …;

…

CallFooWrapper(env, obj1);

/* should exception checking be here?*/

jclass cls = env->GetObjectClass(obj2);

jmethodID mid =

env->GetMethodID(cls, "foo", "()V");

env->CallVoidMethod(obj2, mid);

}

111

of isCopy or *isCopy, the corresponding deallocator
function should be called.

Of course, virtual machine resources should not be released more
than once, or accessed after freed. We deal with these invalid uses
of deallocated resources as well as leaks.

2.3 Using Invalid Local References
There is a design pattern in which one native method stores a Java
object into a global variable at static initialization time and
another method uses it later. Because the reference to the Java
object lives across method calls, it must be a global reference
rather than a local reference. However, some programmers forget
to convert the local reference to the class object into a global one
as Figure 5. The local reference should be converted into a global
reference by the NewGlobalRef function before assigned.

2.4 Calling a JNI Function in a Critical
Region
The fourth thing programmers need to care is to avoid JNI function
calls in a critical region which starts with a call to
GetStringCritical/GetPrimitiveArrayCritical
and ends with ReleaseStringCritical /
ReleasePrimitiveArrayCritical. Such a JNI function
call between these calls to critical functions, for example, as shown
in Figure 6, may cause the current thread to block.
Note that we could overlap (not necessarily nest) multiple pairs of
GetStringCritical (GetPrimitiveArrayCritical) and
ReleaseStringCritical
(ReleasePrimitiveArrayCritical). This situation could make
programmers write more invalid function calls than usual.

 Although this mistake is not mentioned in the Traps and Pitfalls
chapter of [10]1, we think it is as important as the other mistakes.

3. DETECTING JNI MISTAKES
Below, we describe the design of our analysis for each JNI
problem. Our approach is based on typestate analysis [13] and
syntax checking.

3.1 Typestate Analysis for Exception
First, we present an analysis which detects lacks of exception
checks between Java method invocations. This analysis is based
on typestate analysis and its typestate configuration is defined as
Figure 7.

Figure 7: Typestate configuration for the exception analysis
In this analysis, three states are defined: Cleared in which no
exception is pending, Unchecked in which it is unknown
whether an exception is thrown or not, and Thrown in which an
exception is pending. Calls to JNI functions which invoke Java
methods (e.g CallVoidMethod) trigger transition to the
Unchecked state. Also, these function calls are required to be in
the Cleared state. If it is in the Unchecked state, the analysis
reports an error because an exception might be pending before the
call and ignored during the call. Of course, if it is in the Thrown
state, the analysis also reports the same error. The state transits
from Unchecked to Cleared if an ExceptionCheck call
returns false. Otherwise it goes to Thrown. In order to go back to
the Cleared state from the Thrown state, a call to

1 We suspect that the reason this problem is not adopted is it is

relatively a new problem. These critical JNI function are newly
introduced in JDK 1.2

if jvm_env->ExceptionCheck()
returns false

jvm_env->ExceptionClear()

Cleared

Unchecked
Thrown

jvm_env->CallVoidMethod(...)

CallInCriticalRegion(JNIEnv *env,

jobject obj, jstring jstr)

{

 jboolean isCopy;

 const jchar *cstr =

env->GetStringCritical(jstr, &isCopy);

 /* Any JNI function must not called here */

 env->CallVoidMethod(obj, mid);

 env->ReleaseStringCritical(jstr, cstr);

}

static jclass fooCls;

JNIEXPORT void JNICALL

Java_Foo_initialize(JNIEnv *env, jclass cls)

{ /* fooCls should be converted into global */

 fooCls = (*env)->FindClass(env, "Foo");

}

JNIEXPORT void JNICALL

Java_Foo_bar(JNIEnv *env, jobject object)

{

/*fooCls is no longer valid */

jmethodID mid =

(*env)->GetMethodID(env, fooCls, "foo", "()V");

 …

}

jboolean isCopy;

const char *cstr =

(*env)->GetStringChars(env, jstr, &isCopy);

…

if (isCopy) {

(*env)->ReleaseStringChars(env, jstr, cstr);

}

Figure 4: An improper example retaining a VM resource

Figure 5: An example using an invalid local reference

Figure 6: An improper example calling a JNI function in a
critiacal region

if jvm_env->ExceptionCheck()
returns true

112

ExceptionClear is required. If native code finishes at the
Unchecked or Thrown state, we should not report any error
because the pending exception will be handled by Java code
correctly.

This typestate analysis can be solved as a dataflow problem. Its
lattice would be the powerset lattice of 2{Cleared, Unchecked, Thrown}
ordered by inclusion. The transfer function changes the states as
described above.

3.2 Typestate Analysis for Virtual Machine
Resources
Errors related virtual machine resources can be detected by
another simple typestate analysis configured as Figure 8. A
memory block returned by an allocator function immediately
enters into the Allocated state. It goes to the Deallocated state
when a corresponding deallocator function is called on that
memory block.
If a memory block remains in the Allocated state at the end of
native code, the analysis reports a memory leak. In addition, it
also reports an error if a Deallocated memory block is accessed
or passed to a deallocator function.

Figure 8: Typestate configuration for VM resources
Although the above configuration is efficient to detect leaks, it
produces a false positive for code shown in Figure 9. This is
because it does not take into account allocation failure. The
allocation functions do not allocate the resource if their invocation
has thrown an exception. Although the exception, which is of the
OutOfMemoryError type, is seldom raised, we can avoid
generating a false positive by using the typestate configuration
depicted in Figure 10.

Figure 9: An example from which the simple configuration
produces a false positive

In this configuration, if invocation of the allocation functions
returns NULL or throws an exception, the first argument for the
JNI environment goes into the Thrown state. Otherwise it goes
into the Cleared state and the allocated resource moves equally
to Figure 8. Note that the Thrown and Cleared states are
identical to the ones shown in Figure 7 and also used by the
exception analysis described before.

Figure 10: Typestate configuration for the exception of VM
resource allocation. The upper states are used for the VM
environment (i.e. the first or ‘this’ argument of the allocator
functions) and the lower states are used for each resource
allocated successfully (i.e. the return value of the allocator
functions).

3.3 Syntax Check for Using Invalid Local
References
The main cause of using an invalid local reference is its
assignment into a global variable. We detect such an assignment
by a syntax checker. It just finds an assignment whose left hand
side is a global variable and right hand side takes the value
returned by a function call other than NewGlobalRef and
NewWeakGlobalRef.

This simple analysis generates a false positive for code shown in
Figure 11 where the global variable is overwritten by a global
reference. To avoid generating this false positive and to
completely find true positives, we should have reaching definition
analysis. However, we selected the syntax checker because its
implementation cost is significantly smaller than dataflow
analysis. We simply ignore a global variable which has multiple
assignments in a function.

3.4 Typestate Analysis for Calling a JNI
Function in a Critical Region
A function call in a critical region can be detected by yet another
typestate analysis that is configured as Figure 12. There are two
states, Critical and NotCritical. When the GetStringCritical
or GetPrimitiveArrayCritical function is called, the
native code unconditionally goes into the Critical state regardless

Allocated Deallocated

Cleared

Thrown

for each allocated resource
allocation
successful

for global
environment

allocation
failure

deallocation

Allocated Deallocated

GetStringChars,

GetStringUTFChars, …

ReleaseStringChars,

ReleaseStringUTFChars, …

 utf = env->GetStringUTFChars(str, NULL);

 if (env->ExceptionOccurred())

 return NULL;

static jclass fooCls;

JNIEXPORT void JNICALL

Java_Foo_initialize(JNIEnv *env, jclass cls)

{

 fooCls = (*env)->FindClass(env, "Foo");

 fooCls = (*env)->NewGlobalRef(env, fooCls);

}

Figure 11: An example correctly assigning a global
reference

113

of the current state. When the ReleaseStringCritical or
ReleasePrimitiveArrayCritical function is called, it
unconditionally goes to the NotCritical state regardless of the
current state. Other JNI function calls are required to be in the
NotCritical state. This problem can be also solved as a dataflow
problem by converting this typestate configuration into a
powerset lattice.

Figure 12: Typestate configuration for Calling a JNI Function
in a Critical Region
This typestate analysis is sound but not complete because it
cannot detect an absence of the release functions when critical
regions are overlapped. In order to deal with overlapping, more
accurate typestate configuration is necessary. Figure 13 shows
typestate configuration for at most three critical regions. In this
configuration 1, 2 and 3+ which represent the number of overlaps
are introduced instead of Critical. Transitions are conditional on
the current state and the native method function is required to be
in the NotCritical state at the beginning. This configuration is
more accurate than the previous one but still incomplete.
The complete configuration should have infinite states,
NotCritical, 1, 2, 3, … like a counter automaton with a variable
for the number of overlaps. When implementing this typestate
analysis with this infinite configuration on a dataflow analysis
framework, a powerset lattice cannot be used because of infinite
height. Instead, a flat lattice is used. We will discuss if this
completeness matters in real applications in Section 5.

Figure 13: Typestate configuration for at most three
overlapping critical regions

4. IMPLEMENTATION
We have implemented the typestate analysis described in Section
3.1, and 3.4 on BEAM. BEAM has extensibility for typestate
checking by a user-defined typestate configuration. In this

configuration, users can specify requirements for a function, namely
states in which an argument of a function must be before called.
They can also specify the effect of a function, namely states an
argument of the function goes after called. Although Figure 7 just
describes about CallVoidMethod, ExceptionCheck, and
ExceptionClear, we have defined typestate configuration for
all the JNI functions which are defined as members of a struct in
C++.
BEAM has built-in typestate configuration similar to Figure 8 and
allows users to write specification about memory allocator and
deallocator functions. For the typestate analysis described in Section
3.2, we have defined such attributes for C++ JNI functions listed in
section 2.2. With those attributes, BEAM can detect virtual machine
memory leaks, multiple deallocations of a resource and use of
deallocated resources.

In C, JNI functions are called indirectly through a pointer in a
struct as shown in Figure 14. Ideally, we should resolve which
function can be called at an indirect call site by pointer analysis.
However, we did not find any assignment to the pointer member
variables except for the initialization of the env struct in any
application or JVM code. Therefore, we have extended BEAM as
it can interpret typestate configuration defined for pointer
variables and gave the same properties as ones defined for C++
functions.
BEAM has capability of interprocedural analysis (IPA). In the
first phase, BEAM’s IPA analyzes a function with our typestate
configuration and generates some information about requirements
for calling context and a set of possible states after a call. The
second phase analyzes a function, which may call another
function, with the information obtained by the previous phase.
Unfortunately, the analysis in the first phase is flow-insensitive.
Therefore, it generates less accurate information than flow-
sensitive one. For example, the flow-insensitive analysis is not
able to find out the function CallFooWrapper2 in Figure 15
finishes in the Unchecked state whereas the flow-sensitive
analysis is.
In addition to typestate analysis, we have implemented the syntax
checker described in Section 3.3 on BEAM as well. BEAM
allows developers to implement their own checkers analyzing its
internal representations, namely its abstract syntax tree and
flowgraph. We decided to implement our syntax checker to
analyze the flowgraph. BEAM represents a JNI function call in C
in flowgraph in the same way as the equivalent call in C++, while
this is not the case in the abstract syntax tree. For example, C and
C++ JNI function calls in Figure 14 are converted into a
flowgraph node called CALL with the same three incoming edges.
Thus, we need to have only one implementation for both
languages. Even if native code is written in a third language, we

1 Not
Critical 2 3+

ReleaseStringCritical

ReleasePrimitiveArrayCritical

GetStringCritical

GetPrimitiveArrayCritical

Critical

NotCritical

ReleaseStringCritical

ReleasePrimitiveArrayCritical

GetStringCritical

GetPrimitiveArrayCritical

C++:
 mid = env->GetMethodID(cls, "foo", "()V");
env->CallVoidMethod(obj, mid)

C:
mid =(*env)->GetMethodID(env, cls, "foo",

"()V");

(*env)->CallVoidMethod(env, obj, mid)

Figure 14: Function call difference between C++ and C

114

will be able to reuse the implementation. Another reason we
chose the flowgraph as our analysis target is that BEAM does
optimization on the flowgraph and it brings us efficiency.

Figure 15: An example which might throw an exception

5. EXPERIMENTAL RESULTS
We executed our JNI analysis tool on four open source software
projects shown in Table 2. We analyzed source code snapshots
obtained from their code repository. Their SVN/ BZR revisions or
CVS dates are shown in Column 2. In this experiment, we only
analyzed files which include a JNI environment access (i.e. ones
in which “JNIEnv” is found by grep.) The numbers of such files
and their lines are shown in Columns 4 and 5, respectively. We
first try the simple configurations shown in Figure 8 and Figure
12 for the detection of VM resource leaks and calling JNI
function call in a critical region, respectively.

Table 2: Benchmark programs

 revision/
CVS date description # of

files
of
lines

Harmony [1] r566512 Java class
library 159 53159

Java Gnome
[9] 411 Java interface

to Gnome 20 3670

Gnu
Classpath [7]

2008-01-
22

Java class
library 69 27364

Mozilla
Firefox [5]

2008-01-
22 web browser 22 22427

In addition to our JNI experiments, we executed BEAM without
our JNI analysis features on the same file set to see how much the
JNI analysis features cost. It ran at the same speed and generated
the same non-JNI bug reports. Thus we do not report
experimental results of BEAM by itself. We can conclude that
our JNI analysis feature does not make a penalty of both precision
and speed.

Table 3 shows results of our analyses on the benchmark programs.
We ran BEAM against these programs under Linux 2.6 on an
unloaded IBM IntelliStation M Pro which contains a 2.66 GHz
Intel Core2 processor and 3GB of RAM. Row 2 represents the
number of bugs which are not related to our JNI analysis. They

include array index out of range, null dereference, and use of an
uninitialized variable. Rows 3 to 6 correspond to mistakes
described in Section 2.1 through 2.4. We manually verified all the
reported errors and found in Gnu Classpath only one false
positive of a VM resource leak caused by the code like Figure 9.
However, if we use the more complex configuration shown in
Figure 10, the false positive disappeared. We do not report its
experimental results because they did not differ from the run with
the simpler configuration except for the false positive, and the
analysis time was almost the same.

Table 3: Experimental results (numbers in parentheses were
found by interprocedural analysis)

 Harm
ony

Java
Gnome

Gnu
Classpath

Mozilla
Firefox Total

Non JNI 84 3 12 15 114

Error
Checking 22 2 22(10) 9(3) 55

Virtual
Machine
Resource

18 0 7 0 25

Using
Invalid
Local

References

4 0 0 0 4

JNI
Function
Call In a
Critical
Region

2 (1) N/A N/A N/A 2

86

Time
(mm:ss) 31:59 0:12 1:59 2:02

At a first glance, the table shows that our JNI analysis totally
generates 43% of all the bug reports. In other words, by adding
our JNI-domain-specific analysis to a general bug-finding tool the
number of reported bugs increased by 76% for JNI-domain-
specific programs.

Looking at the breakdown, the kind of errors most frequently
reported is error checking shown in Row 3. This coincides with
what Section 10.1 of [10] points out. These benchmarks have
many Java method invocation sites, most of which are followed
by the error checking code. However, the programmers still forgot
to insert such error checking code in some places which our tool
attempts to detect.

The second most frequently reported errors are virtual machine
resource problems. As mentioned before, most of GNU
Classpath’s memory leaks were caused by programmers’
misunderstanding of the allocator functions.

We found four assignments of local references into a global
variable in Harmony. We verified that the global variable is used
like a local variable and these local references are correctly used
in terms of results. In this regard, these four reports are false
positives. However, for better coding we think that these variables
should be declared local.

void CallFooWrapper2(JNIEnv *env, jobject obj)

{

jclass cls = env->GetObjectClass(obj);

jmethodID mid =
env->GetMethodID(cls, "foo", "()V");

env->CallVoidMethod(obj, mid);

if (env->ExceptionCheck()) {

 …

 env->ExceptionClear();

}

env->CallVoidMethod(obj, mid);

}

115

We found two JNI function calls in critical regions in Harmony.
As mentioned before, critical regions can be overlapped.
Harmony includes 15 critical regions which overlap with each
other. We tried the typestate analysis with the infinite state
configuration for Harmony. However, BEAM reported the same
set of JNI errors and almost the same set of non-JNI ones, while it
took 41 minutes and 7 seconds. We think that this increased
analysis time is because we had to give to each native method
function a precondition that requires the function to start with the
NotCritical state. This precondition could become extra
information and make BEAM take more time.

Finally, we show the effectiveness of IPA. Our IPA relies on
BEAM’s IPA, which is flow-insensitive. First we were not sure
how effective the IPA was because we predicted there were many
wrapper procedures like Figure 15. However, the flow-insensitive
IPA is working somewhat effectively for Gnu Classpath and
Mozilla. The reason is in those applications callee functions are
very simple from a viewpoint of JNI. Most of them call a JNI
method invocation function just once. Otherwise, their control
flows related to JNI are simple. We still need to investigate why
IPA was not so effective for Harmony and Java Gnome; they
might have few simple wrapper functions or require flow-
sensitive IPA. However, looking at the running time, we believe
that our flow-insensitive IPA yields us good balanced results.

6. RELATED WORK
Prior work dealing with JNI can be categorized into runtime
checks, static analysis for safety, and new programming models
for integrating two programming language.

6.1 Runtime Checking by Java VM
While this paper is focused on static analysis, runtime checking
by the –Xcheck:jni option of Java VMs is also helpful for
programmers. We ran a few test programs with two commercial
VMs, Sun HotSpot(TM) Client VM [14] version 1.5.0 and IBM J9
VM [2] version 1.5.0.
The test programs are as follows:

• In the “Error Checking” tests, we ran the native code shown
in Figure 2 with two cases. In the “Throw” case, we made
the first Java method invocation (call foo()) actually
throw an exception. In the “Not Throw” case, we did not.

• In the “VM Resource – Leak” test, we called only the
GetStringChars function with the isCopy parameter
NULL and never called the ReleaseStringChars
function.

• In the “VM Resource – Release Twice” test, we called
GetStringChars and called ReleaseStringChars twice.

• In the “VM Resource – Access Released Resource” test, we
called GetStringChars followed by
ReleaseStringChars, and read the contents of the array
already released.

• In the “Using Invalid Local Reference” test, we ran the
native code shown in Figure 5.

• In the “Call in Critical Region” test, we ran the native code
shown in Figure 6.

Table 4 shows the results of these tests on the two VMs. The
finding here is that the –Xchceck:jni option, especially of J9, is
useful for the mistakes we try to detect. However, in order to find
bugs by using VM’s runtime checks, failure-exposing test inputs
must be provided whereas our techniques require only source
code.

Table 4: Runtime checking by Java VM

HotSpot VM IBM J9 VM

opt noopt with opt noopt

Throw error crash error crash

Error
C

hecking Not
Throw warning

Leak warning

Release
Twice crash crash error crash

V
M

 R
esource

Access
Released
Resource

read0 read0 crash crash

Using Invalid
Local Reference error crash error crash

Call in Critical
Region warning error

opt: run with the –Xcheck:jni option. noopt: run withouth the
option. error: exit with an error message. warning: continue
running with a warning message. crash: aborted with an fatal
error such as segmentation fault. blank cell: continue running
silently. read0: the released resource is filled with zero and
further access can read it.

6.2 Static Analysis Tools for JNI
Furr and Foster [6] have presented a polymorphic type inference
system for JNI, which statically analyzes native code and checks
the correctness of literal names given to JNI function calls. We
implemented their type system, which we found very useful at
build time. It can detect misspelling before testing. In our
experiments, however, it did not find any serious error but a
minor one which misspells "java/net/ServerSocket" as
"Ljava/net/ServerSocket;" in a call to the FindClass
function. That might be because the code checked in a repository
is well-tested. Tan et al.[15] proposed a framework called Safe
Java Native Interface that ensures validity of Java references. For
example, it makes sure the Java references are not destroyed by
pointer operations. Both of the analyses are beneficial to ensure
correctness of JNI function invocations. On the other hand, our
analysis deals with a broader set of mistakes including exception
handling mistakes, memory leaks, using invalid local references
and JNI function calls in a critical region.
Livshits et al.[11] proposed a technique to resolve invocation
targets from Java reflection calls. They resolve targets using
points-to information and available type declarations in Java.
Although they do not claim, we believe their work can be applied
to static analysis for JNI.

116

6.3 New Programming Models and Runtime
There are efforts [4][8] introducing new programming languages
as mixture of Java and C to bring programmers productivity and
safety. In their languages both Java code and C code can be
nested in each other and programmers do not need to write native
code with JNI function calls. The correctness of exception
handling as well as syntax is checked by the compilers. As long as
the compiler generates correct code, there is no memory leak or
invalid use of local references or JNI function calls in a critical
region. However, since they are quite new programming
environments, it requires programmers’ migration efforts.
On the other hand, Jace [16] helps simplify JNI programming by
providing C++ proxy classes for Java classes. As long as native
code accesses Java objects through the proxy classes, all the type
errors can be checked by a C++ compiler as naming errors. In
addition, because the proxy classes convert a Java exception into
a C++ proxy class and throw it, exception correspondence can
also be checked by a C++ compiler. However, Jace also requires
migration efforts. Besides, new proxy classes must be provided
for safe accesses to new Java classes.
Whereas Jace handles Java exceptions at the class library level,
CEE-J [12] supports mixing C++ and Java exceptions at the
virtual machine level. This means that programmers writing
native methods in C++ can throw Java exceptions with the C++
'throw' statements. Similarly, C++ code can catch Java exceptions
with the C++ 'try'/'catch' mechanism. Furthermore, Java code can
catch an exception thrown from C++. This shared exception
support can enhance the readability of native code. However, this
mechanism works only on the CEE-J virtual machine.

7. CONCLUSION
We presented static analysis techniques for JNI programming
mistakes which are not dealt with by existing tools. We
implemented a JNI bug-finding tool with those techniques, and
showed that our tool could find many errors in real applications
using JNI.

8. ACKNOWLEDGMENTS
We thank members of the BEAM team, Dan Brand, Florian
Krohm, Frank Wallingford and John Darringer for comments on
the paper.

9. REFERENCES
[1] The Apache Software Foundation, Apache Harmony -

Opensource Java SE, http://harmony.apache.org/

[2] Bailey, C. Java technology, IBM style: Introduction to the
IBM developer kit, http://www-
128.ibm.com/developerworks/java/library/j-ibmjava1.html,
May, 2006.

[3] Brand, D. A Software Falsifier, In Proc. the 11th
International Symposium on Software Reliability
Engineering (ISSRE'00), 2000

[4] Bubak, M., Kurzyniec, D., Luszczek, P., Sunderam, V.
Creating Java to Native Code Interfaces with Janet, In
Scientific Programming, Volume 9 , Issue 1, Jan., 2001.

[5] Firefox web browser, http://www.mozilla.org/firefox/
[6] Furr, M., Foster, J. Polymorphic Type Inference for the JNI,

In Proc. 16th European Symposium on Programming
(ESOP'06), Vienna, Austria. Mar., 2006.

[7] Gnu Classpath, http://www.gnu.org/software/classpath/
[8] Hirzel, M., Grimm, R. Jeannie: Granting Java Native

Interface Developers Their Wishes, In Proc. the 22nd annual
ACM SIGPLAN conference on Object Oriented
Programming Systems and Applications (OOPSLA 2007),
Oct., 2007.

[9] Opening GTK and GNOME to Java Programmers,
http://java-gnome.sourceforge.net/

[10] Liang, S. The Java Native Interface: Programmer's Guide
and Specification, Addison-Wesley, Reading, MA, 1997.

[11] Livshits, B., Whaley, J., Lam, M., S. Reflection Analysis for
Java, In Proc. the Third Asian Symposium on Programming
Languages and Systems, Nov., 2005.

[12] Skelmir, LLC. SKELMIR virtual machine technology,
http://www.skelmir.com/products/ceej.html

[13] Strom, R., E., Yemini, S. Typestate: A programming
language concept for enhancing software reliability, IEEE
Transactions on Software Engineering, vol. 12, issue 1, Jan.,
1986.

[14] Sun Microsystems, Inc. Java SE HotSpot at a glance,
http://java.sun.com/javase/technologies/hotspot/

[15] Tan, G., Appel, A. W., Chakradhar, S., Raghunathan, A.,
Ravi, S., Wang, D. Safe Java native interface. In Proc. 2006
IEEE International Symposium on Secure Software
Engineering, Mar., 2006.

[16] Tzabari, G. Jace - JNI Made Easy,
http://reyelts.dyndns.org:8080/jace/release/docs/index.html

117

