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ABSTRACT
This paper presents the current progress, main algorithm, and the
open problems of a tool set called “SAFELI," for detecting SQL
Injection vulnerabilities resident in Web applications. SAFELI in-
struments the bytecode of Java Web applications and utilizes sym-
bolic execution to statically inspect security vulnerabilities. At
each location that submits SQL query, an equation is constructed to
find out the initial values of Web controls that lead to the breach of
database security. The equation is solved by a hybrid string solver
where the solution obtained is used to construct test cases. SQL in-
jection attacks are replayed by SAFELI to designers, step by step.
We also raise open problems on more powerful string solver tech-
niques that work at the semantics level.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
Execution; H.2.7 [Database Management]: Database Adminis-
tration— Security, Integrity, and Protection; H.3.5 [Information
Storage and Retrieval]: Online Information Services—Web-based
Services

General Terms
Security, Verification

Keywords
SQL Injection Attack, Symbolic Execution, Constraint Solver, Au-
tomated Testing

1. INTRODUCTION
SQL Injection Attack (SIA) [2, 3] has been one of the major

threats to the security of Web applications. SIA results from the
fact that many Web applications construct SQL queries on the fly
but do not apply a thorough user input validation. Attackers can
trick server into executing malicious SQL code which is able to
manipulate back-end database for the attackers’ interests. Recently,
many researchers have proposed solutions to capture and defend
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String massage(String strInput)
{

//1. SQL keyword search
if(strInput.IndexOf("- -")!=-1

|| strInput.IndexOf("OR")!=-1
|| strInput.IndexOf("drop")!=-1)

throw new Exception(
"Possible SQL Injection Attack: " + strInput

);

//2. massage the data for single quote
String sOut = strInput.Replace("’","’’");
sOut = sOut.Substring(0,16);
return sOut;

}

Figure 1: Vulnerable User Input Validation

SIA, e.g., tainted data tracking [17], intrusion detection based on
static analysis [7], black-box testing [12, 8], and SQL randomiza-
tion [13, 4].

This paper presents a different approach for handling SQL in-
jection attack. We propose the use of symbolic execution to tackle
the problem. The bytecode of Java Web applications is first instru-
mented for symbolic execution engine (SE). Then the program is
run by SE. Whenever a hotspot which submits SQL query is en-
countered, a hybrid string equation is constructed to explore the
initial values of Web controls which might be used to apply SQL
injection attack. Once the equation is successfully solved, the so-
lution of the equation is used to construct a test case which is re-
played by an automated GUI testing tool. The attack scenario can
be demoed to designers step by step.

The aforementioned techniques are partly implemented in a tool
set called SAFELI. The design blue-print of SAFELI was presented
in [10]. This paper concentrates on the presentation of the most
recent progress of the tool and the open problems we faced.

The motivation of SAFELI is based on the observation that del-
icate user input validation bugs can lead to very tricky SQL Injec-
tion. In practice, one typical approach against SIA is to filter out
special characters such as single quote and “- - ”. However, it
does not always work [2]. To make the story complete, we demon-
strate the point using a non-trivial SIA vulnerability that can not
be easily detected by black-box testing tools. The example is origi-
nally presented in [10]. It is motivated by the vulnerability example
of string size restriction in [2].

Fig. 1 presents amassage() function that does the safety screen-
ing of user input strings. The designer decides that every user input
string (e.g., in textbox controls) should go through themassage()
function before being embedded in SQL query.

Themassage() function has two parts. The first part does the
check on suspicious SQL keywords. It searches for the suspicious
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SQL keywords such as “- - ”, “ OR”, and “drop ”. If any of them
is found, the function throws exception. The second part deals with
the notorious single quote characters. Notice that in SQL language,
a single quote character can be treated as a data character byes-
caping. The escaping form of single quote is “” ”. massage()
substitutes each single quote character with “” ”, i.e., the escap-
ing character. Then the single quote will not be treated as control
characters any more. Finally,massage() tries to provide fur-
ther protection by restricting the output within the lengthof sixteen
characters. Notice that here "sixteen" is simply a constantmagic
number, its motivation is to limit the possibility that users can play
tricks. A sample use of themassage() function is displayed as
below:

"SELECT uname, pass FROM users WHERE \n uname=’"
+massage(sUname)+ "’ AND pass=’" +massage(sPwd)+ "’"

At the first sight, the above code does a good job at defending
SIA. Single quote characters will be replaced by “” ” and hence
causing no harm. Themassage() function in Fig. 1, however,
has a very delicate bug. Consider the following input for user name
and password, respectively:

123456789012345’
OR uname<>’

Notice both strings are sixteen characters long. After going through
the massage operations, the following SQL statement is generated.

SELECT uname,pass FROM users WHERE
uname=’123456789012345’’ AND pass=’ OR uname<>’’

Notice that itsWHEREclause is always a tautology. It consists
of two conditions: (1) whetheruname is equal to constant string
“123456789012345” AND pass= ” (note the escaping char-
acter “” ” inside), or (2)uname is not an empty string. Obviously
“uname<>” ” always evaluates to true. The trick is that the length
of malicious strings are both sixteen. Although theReplace func-
tion generates escaping characters “” ”, half of the “” ” is then cut
off by theSubstring method at the end ofmassage() . Such
delicate bugs cannot be easily discovered by black-box testing tools.

This paper is organized as follows. Section 2 presents the gen-
eral architecture of SAFELI. Section 3 discusses the application
of bytecode instrumentation and symbolic execution. Section 4
introduces the current hybrid string solver technique employed in
SAFELI. Section 5 outlines the test case generation and re-player
module. Section 6 proposes the open problems we faced when en-
hancing the SAFELI tool set. Section 7 concludes the paper.
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Figure 2: SAFELI Framework

2. SAFELI FRAMEWORK
We now present the architecture of SAFELI in Fig. 2. SAFELI

stands for Static Analysis Framework for discovEring sqL Injec-
tion vulnerabilities. SAFELI is a loosely coupled tool set which
consists of the following components. Many of the components are
independent projects.

• Java Symbolic Execution Engine (JavaSye):JavaSye con-
sists of two modules: a Java bytecode instrumentor and a
symbolic execution engine. The bytecode instrumentor in-
jects additional logic into the target Java bytecode so thatit
can be executed by the symbolic execution engine. The sym-
bolic execution engine is built upon the Java reflection pack-
age. It is able to iteratively examine Java servlets. When
hotspots are reached (e.g., the location that submits SQL
query or throws exceptions), a library of pre-set attack pat-
terns is consulted, based on which a hybrid string constraint
is constructed and sent to constraint solver for generating
vulnerability evidence.

• Library of Attack Patterns:The module stores a collection
of pre-set attack patterns. Each attack pattern consists oftwo
components: the syntax trees of SQL query before and af-
ter attack. Patterns can be instantiated/parameterized byreal
table/column names to form an equation expressed using reg-
ular expression.

• Hybrid String Solver: Given a constraint, the solver tests
its satisfiability and generates valuation of variables that sat-
isfy the constraint. Different than other popular platforms
of symbolic execution, the Constraint Solver of SAFELI can
solve string constraints.

• Test Case Replayer (APOGEE):When initial valuations are
generated, they are passed to the Test Case Generator. The
module then injects the values into HTML fields and posts
the web page back to server. It then uses a heuristic algorithm
to analyze the response from server. When vulnerability is
verified, a step by step error trace is generated. Currently,
the module (APOGEE - Automated Project Grading and In-
stant Feedback System for Web Engineering Education) is
also used for automated grading in teaching.

3. JAVA SYMBOLIC EXECUTION ENGINE
This section presents the JavaSye project, which is a part ofthe

SAFELI framework. JavaSye has two major components: the sym-
bolic execution engine and the bytecode instrumentor.

3.1 Symbolic Execution
The history of symbolic execution can be dated back to 1970’s

[15]. The idea of symbolic execution is to symbolically interprets
and verifies correctness of sequential programs. At the beginning
of symbolic execution, initial values of input variables are repre-
sented using symbolic literals. The execution is traced by aglobal
variable called “path condition.” When an exception is encoun-
tered or some system safety property is violated, the path condition
is sent to a constraint solver for generating the corresponding ini-
tial values of input variables. Symbolic execution has beenwidely
applied. Typical examples include automated test case generation
[19], exploration of Operating System vulnerabilities [21], and an-
alyzing heap configurations and data structures [14].

35



1. public class intro{
2.
3. public int add(int a, int b) throws Exception{
4. int c = a + b;
5. if(c<0){
6. throw new Exception("The sum is negative!");
7. }
8. return c;
9. }
10. }

Figure 3: Java Program Sample

3.2 Instrumentation
The instrumentor module of JavaSye generally follows the idea

of the work by S. Khurshidet al. [14]. It relies on a Java bytecode
engineering library called Javassist [6]. Javassist is able to manip-
ulate Java bytecode and provides basic functions such as replac-
ing types, references, variables, and methods. Based on Javassist,
JavaSye is able to inspect the bytecode of Java Servlets, replacing
the basic data types such as integer and strings with internal wrap-
per classes in the symbolic execution framework. Each interesting
operation, such as integer addition and string operations are inter-
cepted, and replaced with calls to corresponding wrapper functions
in the symbolic execution framework. Similar efforts of symbolic
execution include S. Anand’s symbolic execution extension[1] us-
ing Java Path Finder (JPF) [5]. We decide to directly instrument
Java programs at the machine code level due to the greater flexibil-
ity provided by the bytecode engineering library.

public int add(int, int)

0 iload_1
1 iload_2
2 iadd
3 istore_3
4 iload_3
5 ifge 18
8 new Exception
11 dup
12 ldc "result is negative!"
14 invokespecial Exception.<init>

(Ljava/lang/String;)V(String):void
17 athrow
18 iload_3
19 ireturn

Figure 4: Bytecode Before Instrumentation

We illustrate the idea of JavaSye bytecode instrumentor viaan
example in Fig. 3. The code snippet computes and returns the sum
of two integer variables. If the sum is negative, the function throws
an exception. Its bytecode is displayed in Fig. 4. The disassem-
bled bytecode is generated by another bytecode engineeringlibrary
called BCEL [9]. As shown in Fig. 4, the bytecode of theadd()
function involves several JVM integer instructions. The control
flow is straight forward.

Using JavaSye, we can instrument the bytecode directly. The
instrumented code for Fig. 4 is presented in Fig. 5. There aresev-
eral interesting observations. First, all integer variables are con-
verted to instances ofIntExpr , an internal data type of the sym-
bolic execution engine. For example, pay attention to the first
two instructions (bytecode offset0 and 1) in Fig. 5. They are
converted toaload from iload . The first lettera in the in-
struction opcode indicates that the parameters of theadd func-
tion are treated as object references instead of integer. Second,

public int add(int, int)

0 aload_1
1 aload_2
2 invokestatic javasye.constraint.IntExpr.add

(Ljavasye/constraint/IntExpr;
Ljavasye/constraint/IntExpr;)

Ljavasye/constraint/IntExpr;
5 astore_3
6 aload_3
7 new javasye.constraint.IntConst
10 dup
11 iconst_0
12 invokespecial javasye.constraint.IntConst.<init>

(I)V(int):void
15 sipush 9001
18 invokestatic

javasye.SERunTime.makeRandomChoiceOnIntComparison
...
(javasye.constraint.IntExpr,
javasye.constraint.IntExpr, int):boolean

21 ifeq 49
24 new Exception
27 dup
28 ldc "result is negative!"
30 invokespecial Exception.<init> ...
33 aload_0
34 ldc "intro"
36 ldc "add"
38 ldc "(II)I"
40 bipush 33
42 sipush 3002
45 invokestatic

javasye.SERunTime.SaveCurrentPathCondition_Exceptio n
(...):Exception

48 athrow
49 aload_0
50 ldc "intro"
52 ldc "add"
54 ldc "(II)I"
56 bipush 50
58 sipush 3001
61 invokestatic javasye.SERunTime.SaveCurrentPathCond ition

(...):void
64 aload_3
65 areturn

Figure 5: Bytecode After Instrumentation

the condition in theif branch statement is replaced by a ran-
dom choice function which generates a random boolean value (at
offset 18 wheremakeRandomChoiceOnIntComparison is
called). At the beginning of each branch, the current path con-
dition is updated correspondingly (see bytecode offset45 and61
in Fig. 5, whereSERunTime.SaveCurrentPathCondition
are called). By running the instrumented function twice, the sym-
bolic execution engine will be able to discover the condition that
leads to exception.

4. HYBRID STRING SOLVER
This section introduces the hybrid string solver. Once JavaSye

finds a hotspot which submits SQL query (by intercepting JDBC
calls), JavaSye constructs an equation on the initial values of Web
controls (i.e., non-initialized variables in Servlets). Then the equa-
tion is passed on to the hybrid string solver. A collection ofheuris-
tic algorithms are used in the solver. Detailed descriptionof the
heuristic algorithm can be found in [10]. In the following wegive
one example to illustrate the design idea. The example is taken
from [10]. We noticed that D. Shannon has recently developeda
similar string analysis technique [18].
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Figure 6: Solving String Equation

EXAMPLE 4.1. Let Σ represent the ASCII alphabet.Σ− =
Σ − {′} andΣ+ = Σ− ∪ {′′}. Clearly,Σ+ represents the alpha-
bet with single quote replaced by its escaping form. Consider the
following equation, where≡ is used to separate the left and right
hands of the equation. The “+” represents string concatenation.

uname=’ + s + ’ pwd=’ ≡ uname=’ Σ+
∗’

The above equation is actually an attack pattern. The equation
asks: if we concatenate the two constant strings (which are intended
to test two data columnsuname and pwd) with s, is it possible
to generate one single condition that tests on columnuname only
(and bypasses the password check)? Note that, for the simplicity of
the discussion, the attack pattern above is a simplified caseof the
example given in Section 1. The above equation can be converted
to an equivalent set of two equations as below:

s1 + ’ pwd=’ ≡ uname=’ Σ+
∗’ (1)

uname=’ + s ≡ s1 (2)

As the solution process is similar for the two equations, we only
solve the first one. Equation (1) belongs to the category of concate-
nation equations. Its left side is a concatenation of a variable and a
constant string, and the right side is a regular expression.

To solve concatenation equations, we will first compute an over
approximation of the left side. The over approximation is repre-
sented by a regular stringΣ∗’ pwd=’ (let it besa). Clearly, the
Σ∗ represents an over approximation of the variables1. We then
construct the finite state machine forsa, as shown in Fig. 6(a). Then
we construct the finite automaton for the right side of the equation,
as shown in Fig. 6(b). The intersection of both left and rightsides
is presented in Fig. 6(c).

The next step of the heuristic algorithm is to do a search in the
intersection automaton. We search for those states which can reach
the final states via the constant string’ pwd=’ . Clearly, any path
from the initial state to these states represent possible solutions for
s1. We drop the old final states and mark the states found by the
search process as final states. Then the resulting automatonrepre-
sents the solution to Equation 1. The resulting automaton renders
the following regular expression as solution.

uname= | uname=’(”| Σ−) ∗’

Similarly we can solve Equation (2), and the regular expression

solution ofs is displayed below:

(”| Σ−) ∗’

Readers can verify that these are indeed attack strings thatcan
bypass password check.

5. TEST GENERATION AND REPLAY
One interesting problem of SAFELI is how to generate equa-

tions. We now describe the idea of attack pattern library andtest
case replayer (which is currently under development).

When symbolic execution reaches each hotspot, attack patterns
have to be retrieved from library to construct equations. Note that
as JavaSye does not know about the database schema of the Web
application, this information has to be extracted on the fly.One
simple way is to randomly generate some commonly used strings
(not malicious) and instantiates the dynamically constructed SQL
statement. Then from the instantiated string, an abstract SQL syn-
tax tree can be constructed. From the syntax tree, all table and col-
umn names involved are now known to JavaSye. Then depending
on the syntax tree, JavaSye pulls from the attack pattern library a
set of applicable attack patterns. Each attack pattern consists of two
syntax trees. The first syntax tree represents the “normal” syntax
tree of a query before attack, and the second represents the syn-
tax tree for the “malicious” query after SQL injection attack. The
table and column names used in the syntax trees can be parame-
terized (i.e., replaced by the actual table and column namesat run
time). JavaSye matches the structure of the first syntax treeof the
attack pattern against the abstract syntax tree just extracted from
the instantiated “normal” SQL query string. If there is a match, an
equation is established to relate the two syntax trees in theattack
pattern, with the real table and column names embedded into both
syntax trees.

Once an equation is solved by the hybrid string solver, the solu-
tion of the equation constitutes a test case (attack scenario). The
attack scenario can be replayed by SAFELI. The technique is im-
plemented in an independent project called APOGEE (Automated
Project Grading and Instant Feedback System) [11]. APOGEE
is based on an automated GUI testing library called WatiN [20].
WatiN treats web browser as a DOM object, and can simulate hu-
man tester actions on web browser via submitting commands to
DOM object. For example, using WatiN, testers can write scripts
to click buttons on a Web page, enter text into a textbox, select an
item of a drop-down select, etc. Using the technique, given the test
case, APOGEE is able to display an attack scenario step by step to
designers.

Fig. 7 displays a sample report page of a test case. The system
provides two approaches for demonstrating the running result. In
the first approach, APOGEE has already automatically recorded the
snapshots and generated the text description of the test case. In the
second approach, APOGEE is able to generate a Ruby [16] script
on the fly. If user download and run the Ruby script, the attack
scenario can be replayed step by step to user.

APOGEE is currently used for automated Web application grad-
ing in authors’ Web engineering classes. We are currently working
on the interface of APOGEE to interact with JavaSye for replaying
test cases generated by JavaSye.

6. OPEN PROBLEMS
At the present, the weakest part of the SAFELI framework is

its attack pattern library. This is the only part that needs the input
from human testers and security specialist. In the future weplan
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Figure 7: APOGEE Test Case Replay Sample

to remove the attack pattern library from the SAFELI tool setand
make SAFELI a completely automated security inspection tool.

To remove the use of attack patterns raises several interesting
open problems as below. We assume thatG is the context free
grammar of SQL andS is a statement that produces SQL query
on the fly. S consists of string operations such as concatenation,
substring, etc. as well as constant strings and string variables.

• Problem 1: Given SQL grammarG and statementS, is it
possible to find two different valuations of variables ofS

such that after parsing usingG, two structurally different
syntax trees are generated?

• Problem 2: Is there a (heuristic) algorithm for generating
two sets of variable valuations for Problem 1?

• Problem 3: GivenG and statementS, is it possible to find
valuation of variables inS such that the string produced by
S is a tautology (based onG and the associated semantics
rules)?

We do not know the solution to Problem 3 so far. For Problems
1 and 2, we plan to solve them as below.

It is not hard to see that most string operations (e.g., concatena-
tion, substitution, substring, etc.) can be represented asfinite state
machines (FSA) such as Moore machines that produce string out-
puts. Clearly the set of string outputs can be also recognized by a
standard FSA. Hence we have the following proposition:

PROPOSITION 6.1. If a Java statementS involves only constant
strings, string variables, and string operations {concatenation,
substring, substitution}, thenS can be represented by a
Moore machine and all possible outputs ofS can be represented by
a regular expression.

According to Proposition 6.1, letL(S) represent the set of strings
that can be produced byS, and letL(G) represent the SQL lan-
guage. It is well known that the intersection of a regular language
and a context-free language is context free. Clearly,L(S)∩L(G) is
also context free. This fact leads to one simple heuristic algorithm
for solving Problems 1 and 2: (1) derive the context free grammar
for L(S) ∩ L(G), (2) examine each non-terminal in the interested
set1. For each non-terminal, there should be only one production
rule and the production rule should have no logical OR relation.
(3) Problem 2 can be resolved by using different production rules
to produce two different syntax trees.

7. CONCLUSION
This paper presents the most recent progress of the SAFELI[10]

tool set. Based on the symbolic execution technique, SAFELIcan
statically inspect the bytecode of a Web application and automati-
cally generate SQL injection attack scenarios. The noveltyof the
tool lies in its satisfiability decision/approximation procedure for
string constraints. We raised open problems in this paper tosolve
string constraints at a higher semantics level.
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