Almost One Page Informal Description of Manson/Pugh model

Note: the issue of what it means for an action to occur in more than one execution is elided.

There is a happens-before relation \rightarrow_{hb} defined on actions $i \rightarrow_{hb} j$ if i is before j in program order, if i is an unlock or volatile write and j is a matching lock or volatile read that comes after it in the total order over synchronization actions, or if $i \rightarrow_{hb} k \rightarrow_{hb} j$ for some k.

A read r is allowed to see a write w to the same variable v if r does not happen-before w and if there is no other write w' to v such that $w \rightarrow w' \rightarrow r$.

An execution that has only allowed reads and respects intra-thread semantics (see Appendix B) is a happens-before consistent execution, or hb-consistent for short.

For every execution, there is a total order over actions, consistent with the synchronization order, called the causal order.

An action x is prescient if there exists an action y that occurs after x in the causal order such that $y \rightarrow_{hb} x$.

Any read action must see a write that occurs earlier in the causal order. A volatile read always sees the result of the last volatile write in the causal order.

Each prescient action x in an execution E must be justified. Let α be the sequence of actions that precedes x in the causal order of E. Let J be the set of all non-forbidden hb-consistent executions whose causal order consists of α followed by non-prescient actions (see Appendix C for an algorithm to generate J). To prove x is justified, we need to show that for each E' in J:

- an action x', congruent to x, occurs in E' (either x' and x are the same action, or they are both reads of the same variable and it would be hb-consistent for x' to see the write seen by x), and
- if x is a write, then for each read action $y \in E'$ such that y reads the same variable as x' and $y \rightarrow_{hb'} x'$, we need to show $y \in \alpha$.

Justification may involve the use of forbidden executions. Forbidden executions are defined by a set of forbidden causal order prefixes F. Given F, an execution E is forbidden if the causal order for E starts with a prefix in F (typically, F is empty and no executions are forbidden).

A set of forbidden prefixes must be valid. To show that a set of forbidden prefixes is valid, we must show that:

- For each prefix $\alpha x \in F$, there exists some non-forbidden execution E with a causal order $\alpha \beta$ such that β contains no prescient actions.
- Consider any execution E with causal order $\alpha xy\beta$ where:
 - x and y are not both synchronization actions, and
 - x is prescient, y is not.
– x is not a write seen by y.

Given this, the *prescient relaxation* of x in E gives an execution E' that is identical to E, except that the causal order of E' is $\alpha y x \beta$.

If an execution E is not forbidden, then a prescient relaxation of E may not be forbidden.

When we say that αx is a forbidden prefix, we mean that whenever an execution’s causal order starts with the prefix α, the action x cannot be the next action in the causal order.

Given these definitions, an hb-consistent execution E is legal if and only if there exists a set of forbidden prefixes F such that E is not forbidden by F and using F as the forbidden prefixes, all of the prescient actions in E are justified.
Appendix

These appendices include clarifications that have been requested.

A Differences with Old Model

Here is a brief rundown on the differences between the new model and the model in the community review draft.

- Consistency is now called \textit{hb-consistency}.

- Previously, we allowed a prescient read action to see a write that occurs later in the causal order.
 Now all reads must see writes that occur earlier in the causal order.

- A write w cannot occur presciently if in the justifying execution there is a conflicting read r such that $r \xrightarrow{hb} w$.

- Forbidden sets are defined in a slightly different way. In particular, they are global, so that in order to justify an action x in an execution E, you may not forbid E.

B Intra-thread Semantics

Given an execution where each read sees a write that it is \textit{allowed} to see by the happens-before constraint, we verify that the execution respects intra-thread semantics as follows. For each thread t, we go through the actions of that thread in program order. For each non-read action x, we verify that the behavior of that action is what would follow from the previous actions in that thread according to the JLS/JVMS. For a read action, we only verify that the variable read is the one that is determined by the previous actions in the thread according to the JLS; the value seen by the read is determined by the memory model.

C Generating Non-prescient Extensions

Say we have a program P, and a partial causal order α. We can compute the set of all non-prescient extensions to α as follows.

- Let S be a set of partial and complete causal orders, initialized to be the singleton set containing α.

- Let W be a worklist of causal orders to be explored, initialized to S.

- While W is non-empty, choose and remove a causal order β from W
For each thread t in P, select the first statement in program order whose execution is not in β.

* If that statement is not a read, then evaluate that statement in the thread-local context of β, generating action x, and add βx to both S and W.

* If that statement is a read, determine, in the thread-local context of β, which variable v will be read. For each write $w \in \beta$ of v that could be seen by the read, generate the action r corresponding to that read seeing w, and add βr to both S and W.

• When W is empty, the complete causal orders in S corresponding to hb-consistent executions are the non-prescient extensions to α.