Integers, Bits and Bytes oh my!

Topics

- Why bits?
- Representing information as bits
 - Binary/Hexadecimal
 - Byte representations
 - numbers
 - characters and strings
 - Instructions
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
What is the value of:

- Int $i = 0x434d5343$;

 (0100 0011 0100 1101 0101 0011 0100 0011)

 If we read the value from memory byte by byte?

- **Integer: 1,129,141,059**

 Big endian: 43 4d 53 43

- **Integer: 875,942,964**

 Little endian: 43 53 4d 43

- **ASCII: CMSC**

 Big and Little endian: 43 4d 53 43

- It all depends on the context of the evaluation!
Why Don’t Computers Use Base 10?

Base 10 Number Representation

- That’s why fingers are known as “digits”
- Natural representation for financial transactions
- Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically

- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation
- Represent 15213_{10} as 11101101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- Binary 00000000_2 to 11111111_2
- Decimal: 0_{10} to 255_{10}
- Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B_{16} in C as 0xFA1D37B
 » Or 0xFA1D37B

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses

- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications

- High-end systems are 64 bits (8 bytes)
 - Potentially address $\approx 1.8 \times 10^{19}$ bytes

- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- **Address of first byte in word**
- **Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)**

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Addr = 0008</td>
<td>Addr = 0008</td>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td>0003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Compaq Alpha</th>
<th>Intel IA32</th>
<th>Typical 32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 4 4</td>
<td>8</td>
<td>4 4</td>
</tr>
<tr>
<td>int</td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>long int</td>
<td>2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>char</td>
<td>4 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short</td>
<td>8 8 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>long double</td>
<td>8 8 10/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>char *</td>
<td>8 4 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Sun’s, PowerPC Mac’s are “Big Endian” machines
 - Least significant byte has highest address
- Alphas, PC’s, and Intel Mac’s are “Little Endian” machines
 - Least significant byte has lowest address
Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable \(x \) has 4-byte representation \(0x01234567 \)
- Address given by \&x is \(0x100 \)

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>(0x100)</th>
<th>(0x101)</th>
<th>(0x102)</th>
<th>(0x103)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(01)</td>
<td>(23)</td>
<td>(45)</td>
<td>(67)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>(0x100)</th>
<th>(0x101)</th>
<th>(0x102)</th>
<th>(0x103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(01)</td>
<td>(23)</td>
<td>(45)</td>
<td>(67)</td>
<td></td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    for (i = 0; i < len; i++)
        printf("0x%p	0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

int A = 15213;
int B = -15213;
long int C = 15213;

Decimal: 15213
Binary: 0011 1011 0110
1101
Hex: 3 B 6 D

Two’s complement representation (Covered next lecture)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects
Representing Floats

\textbf{Float} \(F = 15213.0; \)

\begin{center}
\begin{tabular}{c|c|c|c}
\hline
\textbf{Hex:} & 4 & 6 & 6 & D & B & 4 & 0 & 0 \\
\textbf{Binary:} & 0100 & 0110 & 0110 & 1101 & 1011 & 0100 & 0000 \\
\hline
\end{tabular}
\end{center}

\textbf{15213:} \quad 1110 1101 1011 01

\textit{Not same as integer representation, but consistent across machines}

\textit{Can see some relation to integer representation, but not obvious}
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character(s)!

```c
char S[6] = "15213";
```
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, PowerPC Mac’s use 4 byte instructions
 » Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 » Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>00</td>
<td>C3</td>
<td>89</td>
</tr>
<tr>
<td>30</td>
<td>E0</td>
<td>E5</td>
</tr>
<tr>
<td>42</td>
<td>08</td>
<td>8B</td>
</tr>
<tr>
<td>01</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>02</td>
<td>0C</td>
</tr>
<tr>
<td>FA</td>
<td>00</td>
<td>03</td>
</tr>
<tr>
<td>6B</td>
<td>09</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
</tr>
</tbody>
</table>
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- \(A \lor B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>(\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- \(A \oplus B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>(\oplus)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \lor \sim A \& B = A \uparrow B \]
Integer Algebra

Integer Arithmetic

- $\langle \mathbb{Z}, +, *, -, 0, 1 \rangle$ forms a "ring"
- Addition is "sum" operation
- Multiplication is "product" operation
- $-$ is additive inverse
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra

Boolean Algebra

- $\langle \{0,1\}, \lor, \land, \neg, 0, 1 \rangle$ forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- \neg is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra \(\approx \) Integer Ring

- **Commutativity**

 \[
 A \lor B = B \lor A \\
 A \land B = B \land A \\
 A + B = B + A \\
 A \ast B = B \ast A
 \]

- **Associativity**

 \[
 (A \lor B) \lor C = A \lor (B \lor C) \\
 (A \land B) \land C = A \land (B \land C) \\
 (A + B) + C = A + (B + C) \\
 (A \ast B) \ast C = A \ast (B \ast C)
 \]

- **Product distributes over sum**

 \[
 A \land (B \lor C) = (A \land B) \lor (A \land C) \\
 A \land (B + C) = A \ast (B + C)
 \]

- **Sum and product identities**

 \[
 A \lor 0 = A \\
 A \lor 1 = A \\
 A + 0 = A \\
 A + 1 = A \\
 A \ast 0 = 0 \\
 A \ast 1 = A
 \]

- **Zero is product annihilator**

 \[
 A \land 0 = 0 \\
 A \land 0 = 0
 \]

- **Cancellation of negation**

 \[
 \sim (\sim A) = A \\
 \sim (\sim A) = A \\
 \sim (\sim A) = A
 \]
Boolean Algebra ≠ Integer Ring

- **Boolean: Sum distributes over product**
 \[A \land (B \land C) = (A \land B) \land (A \land C) \]
 \[A + (B \cdot C) \neq (A + B) \cdot (B + C) \]

- **Boolean: Idempotency**
 \[A \land A = A \quad A + A \neq A \]
 - “A is true” or “A is true” = “A is true”
 \[A \land A = A \quad A \cdot A \neq A \]

- **Boolean: Absorption**
 \[A \land (A \land B) = A \quad A + (A \cdot B) \neq A \]
 - “A is true” or “A is true and B is true” = “A is true”
 \[A \land (A \land B) = A \quad A \cdot (A + B) \neq A \]

- **Boolean: Laws of Complements**
 \[A \land \neg A = 1 \quad A + \neg A \neq 1 \]
 - “A is true” or “A is false”
 \[A \land \neg A \neq 0 \quad A + \neg A = 0 \]

- **Ring: Every element has additive inverse**
 \[A \land \neg A \neq 0 \quad A + \neg A = 0 \]
Boolean Ring

- \(\langle \{0,1\}, \land, \lor, I, 0, 1 \rangle \)
- Identical to integers mod 2
- \(I \) is identity operation: \(I(A) = A \)
 \[A \land A = 0 \]

<table>
<thead>
<tr>
<th>Property</th>
<th>Boolean Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative sum</td>
<td>(A \land B = B \land A)</td>
</tr>
<tr>
<td>Commutative product</td>
<td>(A \lor B = B \lor A)</td>
</tr>
<tr>
<td>Associative sum</td>
<td>((A \land B) \lor C = A \land (B \lor C))</td>
</tr>
<tr>
<td>Associative product</td>
<td>((A \lor B) \land C = A \lor (B \land C))</td>
</tr>
<tr>
<td>Prod. over sum</td>
<td>(A \lor (B \land C) = (A \lor B) \land (B \lor C))</td>
</tr>
<tr>
<td>0 is sum identity</td>
<td>(A \land 0 = A)</td>
</tr>
<tr>
<td>1 is prod. identity</td>
<td>(A \lor 1 = A)</td>
</tr>
<tr>
<td>0 is product annihilator</td>
<td>(A \land 0 = 0)</td>
</tr>
<tr>
<td>Additive inverse</td>
<td>(A \land A = 0)</td>
</tr>
</tbody>
</table>
Relations Between Operations

DeMorgan’s Laws

- Express & in terms of I, and vice-versa
 - \(A \& B = \sim(\sim A \mid \sim B) \)
 - A and B are true if and only if neither A nor B is false
 - \(A \mid B = \sim(\sim A \& \sim B) \)
 - A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- \(A \wedge B = (\sim A \& B) \mid (A \& \sim B) \)
 - Exactly one of A and B is true
- \(A \wedge B = (A \mid B) \& \sim(A \& B) \)
 - Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

01101001 & 01010101 = 01000001
01101001 | 01010101 = 01111101
01101001 ^ 01010101 = 00111100
~ 01010101 = 10101010

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation

- **Width** \(w \) bit vector represents subsets of \{0, ..., \(w-1 \}\)
- \(a_j = 1 \) if \(j \in A \)

\[
\begin{align*}
01101001 & \quad \{0, 3, 5, 6\} \\
76543210 & \\
01010101 & \quad \{0, 2, 4, 6\} \\
76543210 &
\end{align*}
\]

Operations

- \& **Intersection** \[
01000001 \quad \{0, 6\}
\]
- \| **Union** \[
01111101 \quad \{0, 2, 3, 4, 5, 6\}
\]
- ^ **Symmetric difference** \[
00111100 \quad \{2, 3, 4, 5\}
\]
- ~ **Complement** \[
10101010 \quad \{1, 3, 5, 7\}
\]
Bit-Level Operations in C

Operations & , | , ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \(~0x41 --> 0xBE\)
 \(~01000012 --> 101111102\)
- \(~0x00 --> 0xFF\)
 \(~000000002 --> 111111112\)
- \(0x69 \& 0x55 --> 0x41\)
 \(011010012 \& 010101012 --> 010000012\)
- \(0x69 \mid 0x55 --> 0x7D\)
 \(011010012 \mid 010101012 --> 011111012\)
Contrast: Logic Operations in C

Contrast to Logical Operators

- &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01
- 0x69 && 0x55 --> 0x01
- 0x69 || 0x55 --> 0x01
- p && *p (avoids null pointer access)
Shift Operations

Left Shift: \(x \ll y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x \gg y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(01100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>(\gg 2)</td>
<td>(00011000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(10100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>(\gg 2)</td>
<td>(00101000)</td>
</tr>
<tr>
<td>(\gg 2)</td>
<td>(11101000)</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \[A \oplus A = 0 \]

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A(\oplus B)</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A(\oplus B)</td>
<td>(A(\oplus B))(\oplus B = A)</td>
</tr>
<tr>
<td>3</td>
<td>(A(\oplus B))(\oplus A = B)</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Main Points

It’s All About Bits & Bytes
- Numbers
- Programs
- Text

Different Machines Follow Different Conventions
- Word size
- Byte ordering
- Representations

Boolean Algebra has a Mathematical Basis
- Basic form encodes “false” as 0, “true” as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets