Integers
Sep 9, 2009

Topics

- Numeric Encodings
 - Unsigned & Two’s complement

- Programming Implications
 - C promotion rules

- Basic operations
 - Addition, negation, multiplication

- Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide
C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

- \(x < 0 \Rightarrow ((x*2) < 0) \)
- \(\text{ux} >= 0 \)
- \(x & 7 == 7 \Rightarrow (\text{x}<<30) < 0 \)
- \(\text{ux} > -1 \)
- \(x > y \Rightarrow -x < -y \)
- \(x * x >= 0 \)
- \(x > 0 \&\& y > 0 \Rightarrow x + y > 0 \)
- \(x >= 0 \Rightarrow -x <= 0 \)
- \(x <= 0 \Rightarrow -x >= 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two’s Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int x = 15213;
short int y = -15213;

- C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

- **x = 15213:** 00111011 01101101
- **y = -15213:** 11000100 10010011

<table>
<thead>
<tr>
<th>Weight</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>2048</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>4096</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>8192</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum

- **x = 15213**
- **y = -15213**
Numeric Ranges

Unsigned Values
- \(U_{Min} = 0 \)
 \(000...0 \)
- \(U_{Max} = 2^w - 1 \)
 \(111...1 \)

Two’s Complement Values
- \(T_{Min} = -2^{w-1} \)
 \(100...0 \)
- \(T_{Max} = 2^{w-1} - 1 \)
 \(011...1 \)

Other Values
- Minus 1
 \(111...1 \)

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>TMin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

C Programming

- `#include <limits.h>`
 - K&R App. B11
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform-specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\text{B2U}(X))</th>
<th>(\text{B2T}(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Can Invert Mappings
- \(\text{U2B}(x) = \text{B2U}^{-1}(x)\)
 - Bit pattern for unsigned integer
- \(\text{T2B}(x) = \text{B2T}^{-1}(x)\)
 - Bit pattern for two’s comp integer
Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;
```

Resulting Value

- No change in bit representation
- Nonnegative values unchanged
 - \(ux = 15213\)
- Negative values change into (large) positive values
 - \(uy = 50323\)
Relation between Signed & Unsigned

Two’s Complement → T2U → T2B → B2U → Unsigned

Maintain Same Bit Pattern

\[u_x = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \]

\[+2^{w-1} - (-2^{w-1}) = 2 \cdot 2^{w-1} = 2^w \]
Relation Between Signed & Unsigned

<table>
<thead>
<tr>
<th>Weight</th>
<th>-15213</th>
<th>50323</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>1</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>1</td>
<td>-32768</td>
</tr>
</tbody>
</table>

Sum | -15213 | 50323 |

\[u_y = y + 2 \times 32768 = y + 65536 \]
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix

 0u, 4294967259u

Casting
- Explicit casting between signed & unsigned same as U2T and T2U

 int tx, ty;
 unsigned ux, uy;
 tx = (int) ux;
 uy = (unsigned) ty;

- Implicit casting also occurs via assignments and procedure calls

 tx = ux;
 uy = ty;
Casting Surprises

Expression Evaluation
- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for $W = 32$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>−1</td>
<td>0U</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>−1</td>
<td>0</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>−2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>−2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>−1</td>
<td>−2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) −1</td>
<td>−2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int)2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

Diagram:
- TMax
- UMax
- TMin
- UMax – 1
- Tmax + 1
- Unsigned Range

Explanation:

- Ordering Inversion: In two's complement representation, the highest value becomes the lowest when converted to unsigned format.
- Negative → Big Positive: Negative numbers in two's complement become very large positive numbers when cast to unsigned format.
Sign Extension

Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

Rule:
- Make k copies of sign bit:
- $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

k copies of MSB
Sign Extension Example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Justification For Sign Extension

Prove Correctness by Induction on k

- Induction Step: extending by single bit maintains value

Key observation: $-2^{w-1} = -2^w + 2^{w-1}$
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonzero

- C compilers on some machines generate less efficient code

  ```
  unsigned i;
  for (i = 1; i < cnt; i++)
      a[i] += a[i-1];
  ```

- Easy to make mistakes

  ```
  for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
  ```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range

- Working right up to limit of word size
Negating with Complement & Increment

Claim: Following Holds for 2’s Complement

$$\sim x + 1 = -x$$

Complement

- **Observation:**
 $$\sim x + x = 1111...11_2 = -1$$

<table>
<thead>
<tr>
<th>x</th>
<th>1 0 0 1 1 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>(\sim x) 0 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>-1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Increment

- $$\sim x + x + (-x + 1) = -1 + (-x + 1)$$
- $$\sim x + 1 = -x$$

Warning: Be cautious treating int’s as Integers
Comp. & Incr. Examples

\(x = 15213 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\overline{x})</th>
<th>(\overline{x+1})</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>Binary</td>
<td>Decimal</td>
</tr>
<tr>
<td>15213</td>
<td>3B 6D</td>
<td>001111011 01101101</td>
<td>0</td>
</tr>
<tr>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
<td>-15213</td>
</tr>
<tr>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0)</th>
<th>(\overline{0})</th>
<th>(\overline{0+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>Hex</td>
<td>Binary</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: \(w \) bits

\[
\begin{array}{c}
u \\
+ \\
v \\
u + v
\end{array}
\]

True Sum: \(w + 1 \) bits

\[
\begin{array}{c}
w + 1 \text{ bits}
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
w \text{ bits}
\end{array}
\]

\(\text{UAdd}_w(u, v) \)

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic

\[
s = \text{UAdd}_w(u, v) \\
= u + v \mod 2^w
\]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

Wraps Around
- If true sum ≥ 2^w
- At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

$UAdd_4(u, v)$
Mathematical Properties

Modular Addition Forms an Abelian Group

- Closed under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]

- Commutative
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]

- Associative
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]

- 0 is additive identity
 \[\text{UAdd}_w(u, 0) = u \]

- Every element has additive inverse
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[u \]

\[+ \]

\[v \]

\[u + v \]

True Sum: \(w+1 \) bits

\[w \text{ bits} \]

Discard Carry: \(w \) bits

\[\text{TAdd}_w(u, v) \]

TAdd and UAdd have Identical Bit-Level Behavior

- **Signed vs. unsigned addition in C:**

  ```c
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```

 Will give \(s \equiv t \)
Characterizing TAdd

Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd(u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < Tmin_w \quad \text{(NegOver)} \\
 u + v & Tmin_w \leq u + v \leq Tmax_w \\
 u + v - 2^{w-1} & Tmax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Detecting 2’s Comp. Overflow

Task

- **Given** \(s = TAdd_w(u, v) \)
- **Determine if** \(s = Add_w(u, v) \)
- **Example**

  ```c
  int s, u, v;
  s = u + v;
  ```

Claim

- **Overflow iff either:**

 \[
 u, v < 0, s \geq 0 \quad (\text{NegOver})
 \]

 \[
 u, v \geq 0, s < 0 \quad (\text{PosOver})
 \]

 \[\text{ovf} = (u<0 == v<0) && (u<0 != s<0);\]
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse
 - Let \(T\text{Comp}_w(u) = U2T(U\text{Comp}_w(T2U(u))) \)
 - \(TAdd_w(u, T\text{Comp}_w(u)) = 0 \)

\[
T\text{Comp}_w(u) = \begin{cases}
-u & u \neq TM\text{in}_w \\
TM\text{in}_w & u = TM\text{in}_w
\end{cases}
\]
Multiplication

Computing Exact Product of \(w \)-bit numbers \(x, y \)

- Either signed or unsigned

Ranges

- **Unsigned**: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2^w \) bits
- **Two’s complement min**: \(x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^w \)
 - Up to \(2^{w-1} \) bits
- **Two’s complement max**: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2^w \) bits, but only for \((\text{TMin}_w)^2 \)

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\text{True Product: } 2^w \text{ bits} \\
\begin{array}{c}
 \\
\hline
u \\
\hline
v \\
\hline
u \cdot v \\
\hline
\end{array}
\end{array}
\]

Discard \(w \) bits: \(w \) bits

\[
\text{UMult}_w(u, v)
\]

Standard Multiplication Function

- Ignores high order \(w \) bits

Implements Modular Arithmetic

\[
\text{UMult}_w(u, v) = u \cdot v \mod 2^w
\]
Unsigned vs. Signed Multiplication

Unsigned Multiplication

```c
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```
- Truncates product to w-bit number $up = \text{UMult}_w(ux, uy)$
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two’s Complement Multiplication

```c
int x, y;
int p = x * y;
```
- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number $p = \text{TMult}_w(x, y)$
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

Two’s Complement Multiplication

int x, y;
int p = x * y;

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p
Power-of-2 Multiply with Shift

Operation

- \(u \ll k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: w bits

\[
\begin{array}{c}
\text{u} \\
\end{array}
\begin{array}{c}
\times \ 2^k \\
\end{array}
\begin{array}{c}
\text{w bits} \\
\end{array}
\]

True Product: \(w+k \) bits

\[
\begin{array}{c}
\text{u} \times 2^k \\
\end{array}
\begin{array}{c}
\text{w+k bits} \\
\end{array}
\]

Discard \(k \) bits: \(w \) bits

\[
\begin{array}{c}
\text{UMult}_w(u \ , \ 2^k) \\
\text{TMult}_w(u \ , \ 2^k) \\
\end{array}
\]

Examples

- \(u \ll 3 \) \(\implies \) \(u \times 8 \)
- \(u \ll 5 \ - \ u \ll 3 \) \(\implies \) \(u \times 24 \)
- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \(u >> k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

\[k \]

<table>
<thead>
<tr>
<th>x</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $x >> k$ gives $\lfloor x \div 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th></th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras
- Unsigned multiplication and addition
 - Truncating to \(w \) bits
- Two’s complement multiplication and addition
 - Truncating to \(w \) bits

Both Form Rings
- Isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic
- Both are rings
- Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
- These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{Max} + 1 \quad == \quad T_{Min} \\
 -37 \quad 15213 \times 30426 \quad == \quad -10030 \quad (16\text{-bit words})
 \]
C Puzzle Answers

- Assume machine with 32 bit word size, two’s comp. integers
- $TMin$ makes a good counterexample in many cases

- $x < 0 \Rightarrow ((x*2) < 0)$ False: $TMin$
- $ux >= 0$ True: $0 = UMin$
- $x & 7 == 7 \Rightarrow (x<<30) < 0$ True: $x_1 = 1$
- $ux > -1$ False: 0
- $x > y \Rightarrow -x < -y$ False: $-1, TMin$
- $x * x >= 0$ False: 30426
- $x > 0 && y > 0 \Rightarrow x + y > 0$ False: $TMax, TMax$
- $x >= 0 \Rightarrow -x <= 0$ True: $-TMax < 0$
- $x <= 0 \Rightarrow -x >= 0$ False: $TMin$