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Prof. Andrew Childs, University of Waterloo

LECTURE 5: Period finding from Z to R

In the last lecture, we defined a periodic function over R whose period is an irrational number (the
regulator) encoding the solutions of Pell’s equation. In this lecture we will review Shor’s approach
to period finding, and show how it can be adapted to find an irrational period.

Period finding over the integers Shor’s algorithm for factoring the number L works by finding
the period of the function f : Z → ZL defined by f(x) = ax mod L (where a is chosen at random). In
other words, we are trying to find the smallest positive integer r such that ax mod L = ax+r mod L
for all x ∈ Z. Note that since the period does not, in general, divide a known number N , we cannot
simply reduce this task to period finding over ZN ; rather, we should really think of it as period
finding over Z (or, equivalently, the hidden subgroup problem over Z).

Of course, we cannot hope to represent arbitrary integers on a computer with finitely many bits
of memory. Instead, we will consider the function only on the inputs {0, 1, . . . , N − 1} for some
chosen N , and we will perform Fourier sampling over ZN . We will see that this procedure can work
even when the function is not precisely periodic over ZN . Of course, this can only have a chance
of working if the period is sufficiently small, since otherwise we could miss the period entirely.
Later, we will see how to choose N if we are given an a priori upper bound of M on the period. If
we don’t initially have such a bound, we can simply start with M = 2 and repeatedly double M
until it’s large enough for period finding to work. The overhead incurred by this procedure is only
poly(log r).

Given a value of N , we prepare a uniform superposition over {0, 1, . . . , N −1} and compute the
function in another register, giving

1√
N

∑
x∈{0,...,N−1}

|x〉 7→ 1√
N

∑
x∈{0,...,N−1}

|x, f(x)〉. (1)

Next we measure the second register, leaving the first register in a uniform superposition over those
values consistent with the measurement outcome. When f is periodic with minimum period r,
we obtain a superposition over points separated by the period r. The number of such points, n,
depends on where the first point, x0 ∈ {0, 1, . . . , r−1}, appears. When restricted to {0, 1, . . . , N−1},
the function has bN/rc full periods and N − rbN/rc remaining points, as depicted below. Thus
n = bN/rc+ 1 if x0 < N − rbN/rc and n = bN/rc otherwise.

N︷ ︸︸ ︷
•x0︸ ︷︷ ︸

r
︸ ︷︷ ︸

r
︸ ︷︷ ︸

r
︸ ︷︷ ︸

r
︸ ︷︷ ︸
N−rbN/rc

Discarding the measurement outcome, we are left with the quantum state

7→ 1√
n

n−1∑
j=0

|x0 + jr〉 (2)
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where x0 occurs nearly uniformly random (it appears with probability n/N) and is unknown. To
obtain information about the period, we apply the Fourier transform over ZN , giving

7→ 1√
nN

n−1∑
j=0

∑
k∈ZN

ω
k(x0+jr)
N |k〉 (3)

=
1√
nN

∑
k∈ZN

ωkx0
N

n−1∑
j=0

ωjkr
N |k〉. (4)

Now if we were lucky enough to choose a value of N for which r|N , then in fact n = N/r regardless
of the value of x0, and the sum over j above is if r|N then n = N/r for all x0, i.e.

n−1∑
j=0

ωjkr
N =

n−1∑
j=0

ωjk
n (5)

= nδk mod n,0. (6)

In this especially simple case, the quantum state is

n√
nN

∑
k∈ZN

ωkx0
N δk mod n,0 =

1√
r

∑
k∈nZr

ωkx0
N |k〉, (7)

and measurement of k is guaranteed to give an integer multiple of n = N/r, with each of the r
multiples occurring with probability 1/r. But more generally, the sum over j in (4) is the geometric
series

n−1∑
j=0

ωjkr
N =

ωkrn
N − 1

ωkr
N − 1

(8)

= ω
(n−1)kr/2
N

sin πkrn
N

sin πkr
N

. (9)

The probability of seeing a particular value k is given by the normalization factor 1/nN times the
magnitude squared of this sum, namely

Pr(k) =
sin2 πkrn

N

nN sin2 πkr
N

. (10)

From the case where n = N/r, we expect this distribution to be strongly peaked around values of
k that are close to integer multiples of N/r. The probability of seeing k = bjN/re = jN/r + ε for
some j ∈ Z, where bxe denotes the nearest integer to x, is

Pr(k = bjN/re) =
sin2(πjn + πεrn

N )
nN sin2(πj + πεr

N )
(11)

=
sin2 πεrn

N

nN sin2 πεr
N

. (12)

2



Now using the inequalities x2 − 1
3x4 ≤ sin2 x ≤ x2 (which can easily be proved by looking at the

Taylor expansion of sin2 x), we have

Pr(k = bjN/re) ≥
(πεrn

N )2 − 1
3(πεrn

N )4

nN(πεr
N )2

(13)

=
n2 − 1

3(πεr
N )2n4

nN
(14)

≥ 1
r

(
1− π2

12

)
+ o(1/r) (15)

where the second inequality follows because we can assume −1/2 ≤ ε ≤ 1/2 (and the o(1/r) term
appears simply because n could be either slightly larger or slightly smaller than N/r). This bound
shows that Fourier sampling produces a value of k that is the closest integer to one of the r integer
multiples of N/r with probability lower bounded by a constant.

To discover r given one of the values bjN/re, we can divide by N to obtain a rational approxi-
mation to j/r that deviates by at most 1/2N . Now we compute the continued fraction expansion

bjN/re
N

=
1

a1 +
1

a2 +
1

a3 + · · ·

, (16)

which gives a sequence of successively better approximations to bjN/re/N by fractions (called the
convergents of the expansion). We carry out this expansion until we obtain the closest convergent
to bjN/re/N whose denominator is smaller than M , our a priori upper bound on the period. (This
can be done in polynomial time using standard techniques; see for example the second volume
of Knuth’s The Art of Computer Programming.) Since two distinct rational numbers, each with
denominator less than M , can be no closer than 1/M2 (Proof: a

b −
c
d = ad−bc

bd ≥ 1
bd), the resulting

denominator is guaranteed to be r provided we choose N > M2.

Period finding over the reals Now suppose we are given a function f : R → S satisfying
f(x + r) = f(x) for some r ∈ R, and as usual, assume that f is injective within each (minimal)
period. Now we’ll see how to adapt Shor’s procedure to find an approximation to r, even if it
happens to be irrational.

To perform period finding on a digital computer, we must of course discretize the function. We
have to be careful about how we perform this discretization. For example, suppose that S = R.
If we simply evaluate f at equally spaced points and round the resulting values (perhaps rescaled)
to get integers, there is no reason for the function values corresponding to inputs separated by an
amount close to the period to be related in any way whatsoever. It could be that the discretized
function is injective, carrying absolutely no information about the period.

Instead we will discretize in such a way that the resulting function is pseudoperiodic. We say that
f : Z → S is pseudoperiodic at k ∈ Z with period r ∈ R if for each ` ∈ Z, either f(k) = f(k+b`rc) or
f(k) = f(k−d`re). We say that f is ε-pseudoperiodic if it is pseudoperiodic for at least an ε fraction
of the values k = 0, 1, . . . , brc. We will require that the discretized function is ε-pseudoperiodic for
some constant ε, and that it is injective on the subset of inputs where it is pseudoperiodic. Note
that the periodic function encoding the regulator of Pell’s equation can be constructed so that it
satisfies these conditions.
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Now let’s consider what happens when we apply Fourier sampling to a pseudoperiodic function.
As before, we will Fourier sample over ZN , with N to be determined later (again, depending on
some a priori upper bound M on the period r). We start by computing the pseudoperiodic function
on a uniform superposition: ∑

x∈{0,...,N−1}

|x〉 7→
∑

x∈{0,...,N−1}

|x, f(x)〉. (17)

Now measuring the second register gives, with constant probability, a value for which f is pseudo-
periodic. Say that this value is f(x0) where 0 ≤ x0 ≤ r. As before, we see n = bN/rc + 1 points
if x0 < N − rbN/rc or n = bN/rc points otherwise (possibly offset by 1 depending on how the
rounding occurs for the largest value of x, but let’s not be concerned with this detail). We will
write [`] to denote an integer that could be either b`c or d`e. With this notation, we obtain

7→ 1√
n

n−1∑
j=0

|x0 + [jr]〉. (18)

Next, performing the Fourier transform over ZN gives

7→ 1√
nN

n−1∑
j=0

∑
k∈ZN

ω
k(x0+[jr])
N |k〉 (19)

=
1√
nN

∑
k∈ZN

ωkx0
N

n−1∑
j=0

ω
k[jr]
N |k〉. (20)

Now we have [jr] = jr + δj , where −1 < δj < 1, so the sum over j is

n−1∑
j=0

ω
k[jr]
N =

n−1∑
j=0

ωkjr
N ω

kδj

N . (21)

We would like this to be close to the corresponding sum in the case where the offsets δj are zero
(which, when normalized, is Ω(1/

√
r) by the same calculation as in the case of period finding over

Z). Consider the deviation in amplitude,∣∣∣∣ n−1∑
j=0

ωkjr
N ω

kδj

N −
n−1∑
j=0

ωkjr
N

∣∣∣∣ ≤ n−1∑
j=0

|ωkδj

N − 1| (22)

=
1
2

n−1∑
j=0

∣∣∣ sin
πkδj

N

∣∣∣ (23)

≤ 1
2

n−1∑
j=0

∣∣∣πkδj

N

∣∣∣ (24)

≤ πkn

2N
. (25)

At least insofar as this bound is concerned, the amplitudes may not be close for all values of k.
However, suppose we only consider values of k less than N/ log r. (We will obtain such a k with
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probability about 1/ log r, so we can condition on this event with only polynomial overhead.) For
such a k, we have ∣∣∣∣ 1√

nN

n−1∑
j=0

ω
k[jr]
N

∣∣∣∣ = Ω(1/
√

r)−O( 1√
nN

· n
log r ) (26)

= Ω(1/
√

r)−O( 1√
r log r

) (27)

= Ω(1/
√

r). (28)

Thus, as in the case of period finding over Z, Fourier sampling allows us to sample from a distri-
bution for which some value k = bjN/re (with j ∈ Z) appears with reasonably large probability
(now Ω(1/ poly(log r)) instead of Ω(1)).

Finally, we must obtain an approximation to r using these samples. Since r is not an integer, the
procedure used in Shor’s period-finding algorithm does not suffice. However, we can perform Fourier
sampling sufficiently many times that we obtain two values bjN/re, bj′N/re such that j and j′ are
relatively prime, again with only polynomial overhead. We prove below that if N ≥ 3r2, then j/j′

is guaranteed to be one of the convergents in the continued fraction expansion for bjN/re/bj′N/re.
Thus we can learn j, and hence compute jN/bjN/re, which gives a good approximation to r: in
particular, |r − bjN/bjN/ree| ≤ 1.

Lemma. If N ≥ 3r2, then j/j′ appears a convergent in the continued fraction expansion of
bjN/re/bj′N/re. Furthermore, |r − bjN/bjN/ree| ≤ 1.

Proof. A standard result on the theory of approximation by continued fractions says that if a, b ∈ Z
with |x− a

b | ≤
1

2b2
, then a/b appears as a convergent in the continued fraction expansion of x (see

for example Hardy and Wright, An Introduction to the Theory of Numbers, Theorem 184.) Thus
it is sufficient to show that ∣∣∣∣ bjN/re

bj′N/re
− j

j′

∣∣∣∣ <
1

2j′2
. (29)

Letting bjN/re = jN/r + µ and bj′N/re = jN/r + ν with |µ|, |ν| ≤ 1/2, we have∣∣∣∣ bjN/re
bj′N/re

− j

j′

∣∣∣∣ =
∣∣∣∣ jN/r + µ

j′N/r + ν
− j

j′

∣∣∣∣ (30)

=
∣∣∣∣ jN + µr

j′N + νr
− j

j′

∣∣∣∣ (31)

=
∣∣∣∣ r(µj′ − νj)
j′(j′N + νr)

∣∣∣∣ (32)

≤
∣∣∣∣ r(j + j′)
2j′2N + j′r

∣∣∣∣ (33)

≤ r

j′N − r/2
(34)

where in the last step we have assumed j < j′ wlog. This is upper bounded by 1/2j′2 provided
j′N ≥ r/2 + 2j′2r, which certainly holds if N ≥ 3r2 (using the fact that j′ < r).
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Finally

r − jN⌊
jN
r

⌉ = r − jN
jN
r + µ

(35)

= r − jNr

jN + µr
(36)

=
µr2

jN + µr
(37)

which is at most 1 in absolute value since N ≥ 3r2, |µ| ≤ 1/2, and j ≥ 1.

Related algorithms When combined with the periodic function described in the last lecture,
this period-finding procedure gives an efficient quantum algorithm for solving Pell’s equation (in
the sense of approximating the regulator). To conclude, we mention some further applications of
quantum computing to computational algebraic number theory.

Hallgren’s original paper on Pell’s equation also solves another problem, the principal ideal
problem, which is the problem of deciding whether an ideal is principal, and if so, finding a generator
of the ideal. Factoring reduces to the problem of solving Pell’s equation, and Pell’s equation reduces
to the principal ideal problem; but no reductions in the other direction are known. Motivated by
the possibility that the principal ideal problem is indeed harder than factoring, Buchmann and
Williams designed a key exchange protocol based on it. Hallgren’s algorithm shows that quantum
computers can break this cryptosystem.

Subsequently, further related algorithms for problems in algebraic number theory have been
found by Hallgren and, independently, by Schmidt and Vollmer. Specifically, they found polynomial-
time algorithms for computing the unit group and the class group of a number field of constant
degree. These algorithms require generalizing period finding over R to a similar problem over Rd.
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