
Quantum algorithms (CO 781, Winter 2008)

Prof. Andrew Childs, University of Waterloo

LECTURE 19: Adiabatic optimization

Having established the quantum adiabatic theorem, we will now see how it can be applied to solve
optimization problems. After describing the general framework, we will see how this approach gives
an alternative O(

√
N)-time algorithm for unstructured search.

An adiabatic optimization algorithm Many computational problems can be cast as the min-
imization of some cost function. For concreteness, suppose we are given a function

h : {0, 1}n → R (1)

from strings of n bits to real numbers. A natural question is, does there exist a string z ∈ {0, 1}n
such that h(z) = 0? Or alternatively, can you find a string z that globally minimizes h(z)? In
general, such questions can be very difficult to answer—the first problem is NP-complete, and
the second is NP-hard. (For example, h(z) could be the number of clauses violated by some CNF
formula.) But of course, specific instances of such a problem can be more tractable than the general
case.

The quantum adiabatic theorem suggests a natural approach to minimizing functions such as
(1). The basic idea is to encode the solutions of the minimization problem in the ground state of a
Hamiltonian and to adiabatically evolve into this ground state, starting from a known ground state.
According to the adiabatic theorem, the probability of finding a solution will be high provided the
evolution is sufficiently slow.

To cast the problem of minimizing (1) in quantum mechanical terms, consider a Hamiltonian
that is diagonal in the computational basis, with eigenvalues h(z):

HP :=
∑

z∈{0,1}n
h(z) |z〉〈z| (2)

We refer to HP as the problem Hamiltonian, since it corresponds to the problem of minimizing h.
Clearly, its ground state consists of strings z such that h(z) is minimized. Therefore, if we could
prepare the ground state of HP , we could solve the minimization problem.

To prepare the ground state of HP , we will adiabatically evolve from the ground state of a
simpler Hamiltonian. Let the the beginning Hamiltonian HB be some Hamiltonian whose ground
state is easy to prepare. Then let HT (t) be a smoothly varying time-dependent Hamiltonian with
HT (0) = HB and HT (T) = HP , where T is the total run time of the evolution. Assuming the
evolution is sufficiently close to adiabatic, the initial ground state will evolve into a state close to
the final ground state, thereby solving the problem.

For any given HB and HP , there are many possible choices for the interpolation HT (t). One
simple choice is a time-dependent Hamiltonian of the form

HT (t) = H(t/T) :=
(
1− f(t/T)

)
HB + f(t/T)HP (3)

where f(s) is a smooth, monotonic function of s ∈ [0, 1] satisfying f(0) = 0 and f(1) = 1, so
that H(0) = HB and H(1) = HP . In other words, the interpolating function f(t/T) should vary
smoothly from 0 to 1 as the time t varies from 0 to T . If f(s) is twice differentiable, and if the

1

ground state of H(s) is nondegenerate for all s ∈ [0, 1], then the adiabatic theorem guarantees that
the evolution will become arbitrarily close to adiabatic in the limit T → ∞. An especially simple
choice for this interpolation schedule is the linear interpolation f(s) = s, but many other choices
are possible.

Finally, how should we choose the beginning Hamiltonian? If we choose an interpolation of
the form (3), then HB clearly should not commute with HP , or else no evolution will occur. One
natural choice for HB is

HB = −
n∑

j=1

σ(j)
x (4)

where σ(j)
x is the Pauli x operator on the jth qubit. This beginning Hamiltonian has the ground

state
|S〉 :=

1√
2n

∑
z∈{0,1}n

|z〉, (5)

a uniform superposition of all possible solutions S = {0, 1}n. But as for the method of interpolation,
many other choices for HB are possible.

To summarize, a quantum adiabatic optimization algorithm works as follows:

1. Prepare the quantum computer in the ground state of the beginning Hamiltonian HB.

2. Evolve the state with the Hamiltonian H(t) for a total time T , ending with the problem
Hamiltonian HP .

3. Measure in the computational basis.

Step 1 can be performed efficiently if HB has a sufficiently simple ground state—for example, if
it is the state (5). Step 2 can be simulated efficiently on a universal quantum computer, assuming
the Hamiltonian is of a suitable form (say, if it is sparse) and the run time T is not too large.
Step 3 is straightforward to implement, and will yield a state close to the ground state assuming
the simulation of the evolution is sufficiently good and the evolution being simulated meets the
conditions of the adiabatic theorem.

The running time and the gap The quantum adiabatic optimization algorithm described
above is guaranteed to produce the correct answer with high probability provided the run time
is sufficiently large. But how long is long enough? Unfortunately, this question is difficult to
answer for almost all interesting problems. However, using the adiabatic theorem, it can at least
be rephrased as a statement about spectral properties of the Hamiltonian.

From the adiabatic theorem, we see that the run time depends crucially on the gap ∆(s) between
the ground and first excited states of H(s). Suppose for simplicity that we use linear interpolation
between HB and HP , i.e., (3) with f(s) = s. Clearly

Ḣ = HP −HB (6)

Ḧ = 0. (7)

Now let
∆min := min

s∈[0,1]
∆(s) (8)

be the minimum gap between the ground and first excited states. Then we have

2

Theorem. Suppose the evolution time satisfies

T ≥ 2
ε

[
2c1
‖HP −HB‖

∆2
min

+ (3c21 + c1 + c3)
‖HP −HB‖2

∆3
min

]
. (9)

Then ‖|ψ(1)〉 − |φ(1)〉‖ ≤ ε.

Recall that to be efficiently simulable, HB and HP should not have very large norm. Thus
we see that if the minimum gap ∆min is not too small, the run time need not be too large. In
particular, to show that the adiabatic algorithm runs in polynomial time, it sufficies to show that
the minimum gap is only polynomially small, i.e., that 1/∆min is upper bounded by a polynomial
in n.

Of course, this does not answer the question of whether the adiabatic algorithm runs in polyno-
mial time unless the minimum gap can be estimated. In general, calculating the gap for a particular
Hamiltonian is a difficult problem, which makes the adiabatic algorithm difficult to analyze. Nev-
ertheless, there are a few examples of interest for which the gap can indeed be estimated.

Adabatic optimization algorithm for unstructured search Recall that the unstructured
search problem for N items can be solved in time O(

√
N) (by Grover’s algorithm, or by a quantum

walk search algorithm), but has classical query complexity Ω(N). Let’s show that adiabatic opti-
mization can also solve this problem in O(

√
N), demonstrating that it can indeed provide quantum

speedup.

Unstructured search is equivalent to minimizing the black box function h : {0, 1, . . . , N − 1} →
{0, 1} defined as

h(z) :=

{
0 z is marked
1 z is unmarked.

(10)

For simplicity, let’s focus on the case of a single marked item m. Then the problem Hamiltonian
(2) corresponding to (10) is

HP = 1− |m〉〈m|. (11)

A natural starting point for adiabatic evolution is the uniform superposition state |S〉, where
now S = {0, 1, . . . , N − 1}. Then a particularly simple choice of the beginning Hamiltonian is the
projector onto states orthogonal to |S〉,

HB = 1− |S〉〈S|. (12)

(Note that such a beginning Hamiltonian is not a good choice in general, since one can show
that it allows at most a quadratic speedup over brute force search. We could instead use the
initial Hamiltonian (4) for unstructured search, corresponding to adiabiatic optimization over the
hypercube, but the analysis would be more complicated.) For this beginning Hamiltonian, |S〉 is
the ground state, with energy 0, and all orthogonal states have energy 1. Finally, suppose we use
the interpolation Hamiltonian (3), so that

H(s) = 1−
[(

1− f(s)
)
|S〉〈S|+ f(s)|m〉〈m|

]
(13)

for some as yet undetermined function f : [0, 1]→ [0, 1].

Just as in Grover’s algorithm, HT (t) acts nontrivially only on the subspace spanned by |m〉
and |S〉, making its spectrum straightforward to calculate. Working in the {|m〉, |m⊥〉} basis we

3

defined when analyzing the continuous-time quantum walk algorithm for unstructured search on
the complete graph (with |m⊥〉 = (|S〉 − a|m〉)/

√
1− a2, where a := 〈S|m〉 = 1/

√
N),

H =
(

(1− f)(1− a2) −(1− f)a
√

1− a2

−(1− f)a
√

1− a2 1− (1− f)(1− a2)

)
(14)

=
1
2
− (1− f)a

√
1− a2 σx +

[
(1− f)(1− a2)− 1

2

]
σz. (15)

Then it is straightforward to compute the eigenvalues

E0 =
1
2

(
1−

√
1− 4f(1− f)(1− a2)

)
(16)

E1 =
1
2

(
1 +

√
1− 4f(1− f)(1− a2)

)
. (17)

In other words, the gap between the ground and first excited states is

∆ =
√

1− 4f(1− f)(1− a2). (18)

For example, with N = 1000, we have the following:

f(t/T)

Δ
(f

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

In general, the minimum value occurs at f = 1/2, where we have ∆min = a = 1/
√
N .

To finish specifying the algorithm, we must choose a particular interpolation function (or sched-
ule) f(s). The simplest choice is to use the linear interpolation f(s) = s, but it turns out that this
simple choice does not work. Applying (9), which pessimistically depends solely on the minimum
value of the gap, only shows it is sufficient to take T = O(1/∆3) = O(N3/2). But even if we use the
full adiabatic theorem, we only find that it is sufficient to take the run time to be large compared
to ∫ 1

0

df
∆3

=
∫ 1

0

df
[1− 4f(1− f)(1− a2)]3/2

=
1
a2

= N. (19)

While the adiabatic theorem only gives an upper bound on the running time, it turns out that the
bound is essentially tight in this case: with linear interpolation, the run time must be Ω(N) for the
evolution to remain approximately adiabatic.

However, we can do better by choosing a different interpolation schedule f(s). Intuitively, since
the gap is smallest when s is close to 1/2, we should evolve more slowly for such values. The fact

4

that the gap is only of order 1/
√
N for values of |f − 1/2| of order 1/

√
N ultimately means that

it is possible to choose a schedule for which a total run time of O(
√
N) suffices. Since we should

evolve most slowly when the gap is smallest, it is reasonable to let ḟ ∝ ∆p for some power p. For
concreteness, we will use p = 3/2, although any p ∈ (1, 2) would work.

If we let
ḟ = α∆3/2, (20)

then the coefficient α is fixed by the equation
∫ 1
0 ds =

∫ 1
0 df/ḟ = 1, i.e.,

α =
∫ 1

0

df
∆3/2

(21)

=
∫ 1

0

df
[1− 4f(1− f)(1− a2)]3/4

(22)

= ImB(1+i
√

N−1)/2(1/4, 1/4)
N3/4√

2(N − 1)
(23)

= 2
√
π

Γ(5/4)
Γ(3/4)

N1/4 +O(1) (24)

where Bz(a, b) denotes the incomplete beta function, and Γ(z) denotes the gamma function. Then
for example, with N = 1000, the schedule obtained by integrating (20) looks as follows:

s

f
(s

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Now we want to evaluate the terms appearing in the adiabatic theorem. For the first three
terms, we need to calculate

‖Ḣ(s)‖ = ‖ḟ(s)(HP −HB)‖ (25)

= |ḟ(s)|
√

1− a2 (26)

= α
√

1− a2∆3/2. (27)

The first and second terms are

‖Ḣ(0)‖
∆(0)2

=
‖Ḣ(1)‖
∆(1)2

= α
√

1− a2 (28)

= O(N1/4), (29)

5

so they will turn out to be negligible. The third term is∫ 1

0

‖Ḣ‖2

∆3
ds = (1− a2)

∫ 1

0

ḟ2

∆3

df
ḟ

(30)

= α(1− a2)
∫ 1

0

df
∆3/2

(31)

= α2(1− a2) (32)

= O(
√
N). (33)

To calculate the final term, we need to compute

‖Ḧ‖ = ‖f̈(s)(HP −HB)‖ (34)

= |f̈(s)|
√

1− a2 (35)

=
3
2
α∆1/2|∆̇|

√
1− a2 (36)

=
3
2
α
√

1− a2∆1/2ḟ
∣∣∣d∆

df

∣∣∣, (37)

and

d∆
df

=
2(2f − 1)(1− a2)

∆
. (38)

Then we have ∫ 1

0

‖Ḧ‖
∆2

ds =
∫ 1

0

‖Ḧ‖
∆2

df
ḟ

(39)

=
3
2
α
√

1− a2

∫ 1

0

1
∆3/2

∣∣∣d∆
df

∣∣∣ df (40)

= 3α(1− a2)3/2

∫ 1

0
df

|2f − 1|
[1− 4f(1− f)(1− a2)]5/4

(41)

=
6α(1− a2)3/2

√
a(1 +

√
a)(1 + a)

(42)

= O(
√
N). (43)

Overall, we find a total run time of T = O(
√
N) suffices to make the evolution arbitrarily close to

adiabatic.

In the above analysis, it was essential to understand the behavior of the gap as a function of
f . In particular, since the spectrum of the Hamiltonian (13) does not depend on which item m is
marked, we can choose a schedule that is simultaneously good for all possible marked items. For
general instances of adiabatic optimization, this may not be the case.

To implement this adiabatic optimization algorithm for unstructured search in the conventional
quantum query model, we must simulate evolution according to this Hamiltonian. Using the fact
that [HB, HP] = O(1/

√
N), it is possible to perform this simulation using O(

√
N) queries to a

black box for h(z).

6

