
Applying Classification Techniques to
Remotely-Collected Program Execution Data

Murali Haran,† Alan Karr,] Alessandro Orso,‡ Adam Porter,[and Ashish Sanil]

† Dept. of Statistics
Penn State University
University Park, PA

] National Institute
of Statistical Sciences

Triangle Park, NC

‡ College of Computing
Georgia Inst. of Technology

Atlanta, GA

[Dept. of Computer Science
University of Maryland

College Park, MD

ABSTRACT
There is an increasing interest in techniques that support
measurement and analysis of fielded software systems. One
of the main goals of these techniques is to better understand
how software actually behaves in the field. In particular,
many of these techniques require a way to distinguish, in
the field, failing from passing executions. So far, researchers
and practitioners have only partially addressed this prob-
lem: they have simply assumed that program failure sta-
tus is either obvious (i.e., the program crashes) or provided
by an external source (e.g., the users). In this paper, we
propose a technique for automatically classifying execution
data, collected in the field, as coming from either passing or
failing program runs. (Failing program runs are executions
that terminate with a failure, such as a wrong outcome.)
We use statistical learning algorithms to build the classifi-
cation models. Our approach builds the models by analyz-
ing executions performed in a controlled environment (e.g.,
test cases run in-house) and then uses the models to predict
whether execution data produced by a fielded instance were
generated by a passing or failing program execution. We
also present results from an initial feasibility study, based
on multiple versions of a software subject, in which we in-
vestigate several issues vital to the applicability of the tech-
nique. Finally, we present some lessons learned regarding
the interplay between the reliability of classification models
and the amount and type of data collected.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Monitors; G.3 [Math-
ematics of Computing]: Probability and Statistics;

General Terms: Reliability, Experimentation

Keywords: Machine learning, classification, software be-
havior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05,September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

1. INTRODUCTION

Several research efforts are focusing on tools and tech-
niques to support the remote analysis and measurement of
software systems (RAMSS) [1, 2, 9, 11, 13, 14, 15, 16, 18,
19, 20, 22]. In general, these approaches instrument numer-
ous instances of a software system, each in possibly different
ways, and distribute the instrumented instances to a large
number of remote users. As the instances run, they col-
lect execution data and send them to one or more collection
sites. The data are then analyzed to better understand the
system’s in-the-field behavior.

Recently, several RAMSS techniques have been developed.
Each of these techniques collects different kinds of data and
uses different analysis techniques to better understand spe-
cific system properties. One common characteristic of many
of these techniques is a need to distinguish failing executions
from passing executions in the field. For example, remote
analyses that use information from the field to direct debug-
ging effort need to know whether that information comes
from a successful or failing execution [13, 14, 17]. For an-
other example, applications that leverage users’ platforms
to validate deployed software in varied environments need
an oracle that can tag the execution data that are coming
from failing executions [9, 11, 18, 19, 22].

More generally, modern software systems are routinely re-
leased with known problems (e.g., for time-to-market consid-
erations). Developers of such systems use early user experi-
ences to help evaluate, prioritize, and isolate failures so they
can later be removed. Being able to automatically identify
failing executions in deployed software would allow for se-
lectively collecting execution data only for such executions.
Developers would then be able to perform tasks such as mea-
suring how often specific failures occur, determining how
severe they are, and gathering detailed information about
likely causes of failure. Automatic identification of failures
could also be used in-house, in place of expensive test ora-
cles, for newly generated test cases once enough test cases
have been (manually) classified.

In most cases, existing techniques address the problem of
classifying executions by either focusing on program crashes
or simply assuming that information about program failures
is provided by some external source. In practice, however,
many failures do not result in a system crash, but rather in a
wrong outcome. This issue is especially problematic in the
case of languages such as Java, in which fatal errors tend
to result in exceptions that may be caught and discarded
by the program or may simply be indistinguishable from

exceptions caused by erroneous user behaviors (e.g., a user
trying to open a non-existent file).

This paper proposes and begins to study one new tech-
nique for automatically classifying execution data, collected
from applications in the field, as coming from either pass-
ing or failing program runs. The technique uses a statistical
learning algorithm, called random forests, to model and pre-
dict the outcome of an execution based on the correspond-
ing execution data. More specifically, the technique builds a
model by analyzing execution data collected in a controlled
environment (e.g., by executing a large set of test cases in-
house). It then uses this information to “lightly” instrument
numerous instances of the software (i.e., captures only the
small subset of predictors referenced by the model). These
lightly instrumented instances are then distributed to users
who run them in the field. As the instances run, the exe-
cution data is fed to the previously built model to predict
whether the run is likely to be a passing or failing execution.

To help us achieve this high-level vision, we have defined
and developed a preliminary version of the technique and
performed a three-part feasibility study. In the study, pre-
sented in this paper, we apply the initial version of the tech-
nique to multiple versions of a medium-size software subject
and study the technique’s performance. Our goal is to better
understand several issues crucial to the technique’s success
and, thereby, improve the technique’s ultimate implementa-
tion.

The first study aims to determine whether it is possible
to reliably classify program executions based on readily-
available execution data. The following study explores the
interplay between the type of execution data collected and
the accuracy of the resulting classification models. The third
study examines whether it is possible to further reduce the
end users’ data collection overhead, without overly compro-
mising the accuracy of the classification.

We also examine some methodological and statistical is-
sues that have not been well covered in the existing liter-
ature. In particular, we describe some useful heuristics for
separating genuine relationships between predictors and the
binary response (pass/fail) from spurious predictor-response
relationships. This is particularly important in software
engineering situations, in which it is easy to define vast
numbers of predictors, but costly to actually collect a large
enough number of data points.

The main contributions of this paper are:

• A vision for and a preliminary definition of a new tech-
nique for classifying program executions that (1) dis-
tinguishes passing and failing executions with low mis-
classification rates and (2) requires execution data that
can be collected using lightweight instrumentation.

• An empirical evaluation of several key issues underly-
ing this (and similar) techniques.

• A discussion of the issues related to the use of machine-
learning approaches for the classification of program
executions.

In the rest of the paper, we first provide background in-
formation on classification techniques (Section 2). We then
introduce our approach and illustrate how we evaluated and
refined it (Sections 3 and 4). Finally, we discuss in detail the
results of our empirical evaluation (Section 5), provide some
conclusions, and sketch out some future-work directions 6.

2. CLASSIFYING PROGRAM EXECUTIONS:
BACKGROUND

Classifying program executions means using readily-avail-
able execution data to model and predict (more difficult to
determine) program behaviors. Software engineers have pro-
posed classification to address different software engineering
goals, and based on different learning techniques.

2.1 Machine Learning
In very general terms, machine learning is concerned with

the discovery of patterns, information and knowledge from
data. In practice, this often means taking a set of data ob-
jects, each described by a set of measurable features, and
relating the features’ values to (known or inferred) higher-
level characterizations. In this paper, we focus on a type of
learning called supervised learning. In supervised learning,
the learning algorithm builds models by analyzing feature
data in which each data object has a label giving its correct
high-level characterization (e.g., {x | 1 ≤ x ≤ 100}). Super-
vised learning tries to concisely model how the feature val-
ues relate to these labels. In particular, when the behavior
is a non-numeric categorical value, such as “pass” or “fail,”
the supervised learning problem is known as classification.
Because in this paper we are concerned with distinguishing
passing from failing executions, we will be using classifica-
tion techniques.

There is a vast array of established classification tech-
niques, ranging from classical statistical methods, such as
linear and logistic regression, to neural network and tree-
based techniques (e.g., [8, 10]), to the more recent Support
Vector Machines [21]. In our approach, we use a recently
developed technique called random forests [3]. Section 3
explains the reasons that led us to chose this specific classi-
fication technique.

2.2 Classification in Software Engineering
Several software engineering researchers have used ma-

chine learning techniques to model and predict program ex-
ecution behaviors. We discuss some recent work in this area.

Podgursky and colleagues [6, 7, 9, 12, 20] present a set
of techniques for clustering program executions. The goal
of their work is to support automated fault detection and
failure classification. This work, like ours, considers differ-
ent execution data and selects the ones with most predic-
tive power. Unlike our approach, however, their work as-
sumes that a program’s failure status is either obvious (e.g.,
a crash) or is provided by an external source (e.g., the user).

Bowring and colleagues [2] classify program executions
using a technique based on Markov models. Their model
considers only one specific feature of program executions:
program branches. Our work considers a large set of fea-
tures and assesses their usefulness in predicting program be-
haviors. Also, the models used by Bowring and colleagues
require complete branch-profiling information, whereas we
found that our approach can perform well with only mini-
mal information (see Section 5).

Brun and Ernst [5] use two machine learning approaches
to identify types of invariants that are likely to be good fault
indicators. Their approach is very specific to the problem
that they are addressing and is not immediately applica-
ble to the classification of program executions. Moreover,

InstrumenterP
P

inst

Runtime

Test
Cases

Execution
Traces

Training

Learning
Algorithm

Behavioral
Model

Pass|Fail
Information

Training set

P
inst

Users
Runtime

Execution
Traces

Classifier
Algorithm

Pass|Fail
Information

Behavioral
Model

Classification

Figure 1: Overview of the technique.

their approach is also strictly dependent on the language
considered—their results do not generalize from one set of
subjects in C to a set of subjects in Java, or vice versa.

Liblit and colleagues [13, 14] use statistical techniques to
sample execution data collected from real users and use the
collected data to perform fault localization. Although re-
lated to our work, their approach is targeted to supporting
debugging. Like Podgurski and colleagues’ work, their ap-
proach requires failure status to be provided by an external
source and may thus benefit from the technique presented
in this paper.

3. OUR APPROACH

When classifying executions, developers must consider three
aspects of the problem: (1) what specific behavior they want
to classify, (2) on what execution data the classification will
be based, and (3) what learning technique will be used to
create the classification model. Our goal, in this work, is
to distinguish passing from failing executions. Therefore,
the behavior that we are interested in classifying is func-
tional correctness. In terms of execution data, instead of
selecting a specific kind of data a priori, we considered dif-
ferent control- and value-related types of execution infor-
mation and assessed their predictive power (see Section 5).
Finally, the machine learning technique that we use is ran-
dom forests, explained below.

Our technique, like most techniques based on machine
learning, has two phases, training and classification, as il-
lustrated in Figure 1. In the training phase, we instrument
the program to collect execution data at runtime. Then, we
run the program in-house against a set of test cases. Based
on its outcome, we label each test case as pass or fail. (With-
out loss of generality, we assume that we have an oracle for
the in-house test cases.) The set of labeled execution data
is then fed to the learning algorithm, which analyzes it and
produces a classification model of program executions.

In the classification phase, we lightly instrument the code
(capturing only the data needed by the models), which will
later be run in the field by actual users. As the code runs,
appropriate execution data are collected. At this point, ex-
ecution data can be fed to the previously built classification
model to predict whether the executions pass or fail.

The rest of this section presents tree-based classifiers in
general and then discusses the specific kind of tree classifier
that we use in our technique: random forests.

3.1 Tree-Based Classifiers
One popular classification method is called tree-based clas-

sification. There are several widely-used implementations
of this approach, such as CART [4] and ID4 (see http://

www.rulequest.com). Tree-based classifiers are essentially
algorithms that partition the predictor-space into (hyper)
rectangular regions, each of which is assigned a predicted
outcome value. To classify new observations (i.e., to a take
a vector of predictor variables and predict the outcome),
tree classifiers (1) identify the rectangular region to which
the considered observation belongs and (2) predict the out-
come as the outcome value associated with that particular
region.

For example, Figure 2 shows a hypothetical tree classi-
fier model that predicts the pass/fail outcome based on the
value of the (suitably scaled) program running time and in-
put size. The decision rules prescribed by the tree can be
inferred from the figure. For instance, an execution with
Size ≥ 8.5 is predicted as pass, while if (8.5 < Size ≥
14.5) AND (Time < 55), the execution is predicted as fail.
One important advantage of using fitted classification trees
over other classification approaches is that they provide a
prediction model that is easy to interpret. However, be-
cause they are constructed using a greedy procedure, the
fitted model can be quite unstable, that is, fitted classifi-
cation trees can be very sensitive to minor changes in the
training data [3].

|Size>=8.5

Size>=14.5

Time< 55

Time>=111

FAIL

FAIL

FAIL PASS

PASS

Classification Tree Model for Predicting Failure

Figure 2: Example of tree classifier.

3.2 Random Forests Classifiers

As mentioned earlier, software systems have numerous
features that one can envision measuring. Finding enough
program runs from which to collect these measures and col-
lecting the actual data, however, can be expensive. This
problem leads to situations in which there may be a large
number of predictors per program run, but relatively few
runs. This scarcity of data, together with the use of greedy
model-construction algorithms, often leads to spurious and
unreliable classification models.

To address these problems, we chose to use a generaliza-
tion of tree-based classification, called random forests, as
our classification technique. Random forests is an ensemble
learning method which builds a robust tree-based classifier
by integrating hundreds of different tree classifiers via a vot-
ing scheme. Intuitively, this approach maintains the power,
flexibility and interpretability of tree-based classifiers, while
greatly improving the robustness of the resulting model.

Consider the case in which we have M features and a
training set with N elements. Each tree classifier is grown
(i.e., incrementally created) as follows:

1. Sample N cases at random with replacement (boot-
strap sample), from the original data. This sample
will be the training set for growing the tree.

2. A number m << M is specified such that, at each tree
node, m variables are selected at random out of the
M and the best split on these m is used to split the
node.1

1A split is simply a division of the samples at the node into
subsamples. The division is done using simple rules based
on the m selected variables.

The forest consists of a large set of trees (500 in our fea-
sibility studies), each grown as described above. For pre-
diction, new input is fed to each tree in the forest, each of
which returns a predicted classification label. The most fre-
quently selected label is returned as the predicted label for
the new input. In the case of a tie (i.e., the same number of
trees classify the outcome as pass and fail), one of the two
outcomes is arbitrarily chosen.

Random forests have many advantages [3]. One is that
they efficiently handle large numbers of variables. Another
is that the ensemble models are quite robust to outliers and
noise. Finally, the random forests algorithms produce er-
ror and variable-importance estimates as a byproduct. We
use the error estimates to study the accuracy of our classi-
fiers and use the variable importance estimates to determine
which predictors must be captured (or can be safely ignored)
in the field in order to classify executions.

4. EVALUATING AND REFINING THE AP-
PROACH

One of the goals of this work is to evaluate the initial
definition of our technique and, at the same time, improve
our understanding of the issues underlying the proposed
approach to further refine it. As discussed above, there
are many ways in which our technique could be instanti-
ated (e.g., by considering different types of execution data).
Instead of simply picking a possible instance of the tech-
nique and studying its performance, we used an empirical
approach to evaluate the different aspects of the technique.
To this end, we designed and conducted a multi-part empir-
ical study that explored three main research questions:

1. RQ1: Can we reliably classify program outcomes using
execution data?

2. RQ2: If so, what kinds of execution data should we
collect?

3. RQ3: How can we reduce the runtime data collection
overhead while still producing accurate and reliable
classifications?

To address these questions, we performed an exploratory
study in which we used our technique, based on random
forests, to classify program executions for several versions
of a medium-sized real program. Based on this study, we
addressed RQ1 by measuring classification error rates; then,
we addressed RQ2 by examining the relationship between
classification error rates and the type of execution data used
in building classification models; finally, we addressed RQ3
by examining the effect of predictor screening (i.e., collecting
only a subset of the predictors) on classification error rates.

In the following sections, we describe the design and method-
ology of our exploratory study in detail.

4.1 Subject
As a subject program for our studies, we used Jaba (Java

Architecture for Bytecode Analysis),2 a framework for ana-
lyzing Java programs. Jaba consists of about 60,000 lines
of code, 400 classes, and 3,000 methods. Jaba takes Java
bytecodes as input and performs complex control-flow and
data-flow analyses on them. For instance, Jaba performs

2
http://www.cc.gatech.edu/aristotle/Tools/jaba.html

stack simulation (Java is stack based) to track the types of
expressions manipulated by the program, computes defini-
tions and uses of variables and their relations, and analyzes
the interprocedural flow of exceptions.

We selected Jaba as a subject because it is a good repre-
sentative of real, complex software that can contain subtle
faults. In particular, for the study, we considered 19 real
faults taken from Jaba’s CVS repository. We selected the
latest version of Jaba as our golden copy of the software and
generated 19 different versions by inserting one error into
the golden copy. In this way, we can use the golden copy as
an oracle. (Actually, we also created 10 versions that con-
tained more than one fault. However, because we did not
use these additional versions in our first three studies, we
do not discuss them here and present them in Section 5.3.2
instead.)

4.2 Pass/Fail and Execution Data
To build a training set for the versions of Jaba consid-

ered, we used a set of executions consisting of all the test
cases in Jaba’s regression test suite. These test cases were
created and used over the last several years of the system’s
evolution. Because Jaba is an analysis library, each test
case consists of a driver that uses Jaba to perform one or
more analyses on an input program. There are 7 such drivers
and 101 input programs—divided into real programs (pro-
vided by users) and ad-hoc programs (developed to exercise
a specific feature). Thus, overall, there are 707 test cases
(101 times 7). The entire test suite achieves about 65%
statement coverage.

For each of the versions, we ran this complete regression
test suite and collected (1) information about passing and
failing test cases, and (2) various types of execution data.
Because performance was not an issue in this case, we were
able to collect all types of execution data at once. In partic-
ular, we collected statement counts, branch counts, call-edge
counts, throw and catch counts, method counts, and various
kinds of value spectra (see Section 5).

Considering all versions, we ran over 13,000 test cases.
The outcome of each version v and test case t was stored
in binary form: “1” if the execution of t on v terminated
and produced the correct output; “0” otherwise. As men-
tioned above, we used the golden version of Jaba as an
oracle for the faulty versions. Because the test drivers out-
put, at the end of each test-case execution, an XML version
of the graphs they build, we were able to identify failures of
t for v by simply comparing the golden output and the out-
put produced by t when run on v. In addition, we labeled
each failing execution, as either a fatal failure, for executions
that terminated because of an uncaught exception (analo-
gous to a system crash for a C program), or a non-fatal fail-
ure, for executions that terminated normally but produced
the wrong output.

Table 1 summarizes the distribution of failures and fail-
ure types across the different versions. Each row in the ta-
ble shows the version number, the total number of failures
(both in absolute terms and in percentage, in parentheses),
the number of non-fatal failures, and the number of fatal
failures. (An asterisk in the first column indicates a failure
rate greater than 8%.) For example, version 16 fails for 30
of the 707 test cases (i.e., 4.2% of the executions). Of these
failures, 22 are non-fatal, whereas 8 are fatal.

Table 1: Errors associated with each version (*=fail-
ure rate greater than 8%)

Ver Total Non-fatal Fatal
failures failures failures

1 0 (0%) 0 0
2 12 (1.7%) 12 0
3 0 (0%) 0 0

*4 372 (52.6%) 372 0
*5 138 (19.5%) 138 0
6 0 (0%) 0 0

* 7 144 (20.4%) 144 0
8 0 (0%) 0 0

*9 86 (12.2%) 86 0
10 0 (0%) 0 0

* 11 69 (9.8%) 57 12
12 4 (0.6%) 4 0
13 38 (5.4%) 38 0
14 14 (2%) 4 10
15 0 (0%) 0 0
16 30 (4.2%) 22 8

*17 105 (14.9%) 105 0
18 0 (0%) 0 0
19 21 (3%) 14 7

4.3 Applying the Technique
For each program version and type of execution data col-

lected, we fit a random forest of 500 classification trees using
only predictors of that type. We then obtain the most im-
portant predictors by using the variable importance mea-
sures provided automatically by the random forest algo-
rithm, and find the smallest subset of the predictors that
achieves the minimal error rate.

For the study, we excluded versions with error rates below
an arbitrarily chosen cutoff of 8%, since guessing ‘Pass’ all
the time would produce reasonable (8% or better) error rates
for such versions, and it is difficult to assess the prediction
accuracy when there are very few failures. (Although there
are ways to handle low error rates, such as boosting, we de-
cided to eliminate those cases from our initial investigation
to have more control on the study.) Six versions made the
8% cutoff. Of these, versions v4, v5, v7, and v9 produced
no fatal failures, while v11 produced 12 fatal failures.

4.4 Evaluating Classifier Performance
For each resulting classification model we computed an

error estimate, called the Out Of Bag (OOB) errors esti-
mate. This quantity is computed as follows. The random
forest algorithm constructs each tree using a different boot-
strap sample from the original data. When selecting the
bootstrap sample for the kth tree, only two-thirds of the
elements in the training set are considered (i.e., these el-
ements are in the bag). After building the kth tree, the
one-third of the training set that was not used to build the
tree (i.e., the OOB elements) is fed to the tree and classified.
Given the classification for an element n obtained as just de-
scribed, let j be the class that got most of the votes every
time n was OOB. The OOB error is simply the proportion
of times that j is not equal to the actual class of n (i.e., the
proportion of times n is misclassified) averaged over all ele-
ments. This evaluation method has proven to be unbiased

in many studies. More detailed information and an exten-
sive discussion of this issue is provided in Breiman’s original
paper [3] and web site (http://stat-www.berkeley.edu/
users/breiman/RandomForests).

5. EMPIRICAL STUDIES

In this section, we describe the studies in which we ap-
plied our technique to the 19 single-fault program versions
to investigate the three research questions listed above.

5.1 Study 1: Research Question 1
The goal of this first study is to assess whether execution

data can be used at all to predict the outcome of program
runs. To do this, we selected one obvious type of execution
data, statement counts (i.e., the number of times each ba-
sic block is executed for a given program run), and used it
within our technique. We chose statement counts because
they are a simple measure and capture diverse information
that is likely to be related to various program failures. For
each Jaba version there are approximately 20,000 statement
counts (one for each basic block in the program).

Following the methodology described in Section 4.3, we
built a classification model of program behavior for each
version of the subject program. We then evaluated those
models by computing OOB error estimates. We found that
statement counts were nearly perfect predictors for this data
set. In fact, almost every model had OOB error rates near
zero. This result suggests that at least this one kind of exe-
cution data might be useful in predicting program execution
outcomes.

Although statement counts were good predictors, captur-
ing this data at user sites is expensive. For our subjects,
instrumentation overhead accounted for an increase around
15% in the total execution time. While this might be accept-
able in some cases, it is still a considerable slowdown that
may not be practical for some applications. Moreover, the
amount of information collected, one integer per basic block,
can add considerable memory and bandwidth overhead for
large programs and large numbers of executions.

5.2 Study 2: Research Question 2
In Study 2, we investigate whether other kinds of (more

compact and easy to collect) execution data can also be used
to reliably estimate execution outcomes.

Using statement counts as a starting point, we investi-
gated whether other data might yield similar prediction ac-
curacy, but at a lower runtime cost. Note that because state-
ment counts contained almost perfect predictors, we did not
consider richer execution data, such as data values or paths.
Instead, we considered three additional kinds of data that
require the collection of a smaller amount of information:
throw counts, catch counts, and method counts.

5.2.1 Throw Counts and Catch Counts

Throw counts measure the number of times each throw
statement is executed in a given run. Analogously, catch
counts measure the number of times each catch block is ex-
ecuted. Each version of Jaba has approximately 850 throw
counts and 290 catch counts, but most of them are always
zero (i.e., the corresponding throw and catch statements are

never exercised). This is a typical situation for exception
handling code, which is supposed to be invoked only in ex-
ceptional and often rare situations.

As with statement counts, we built and evaluated classi-
fication models using throw counts as predictors. We found
that throw counts are excellent predictors for only one ver-
sion (v17), with error rates well below 2%, but are very poor
predictors for all other versions. Further examination of the
fault in v17 provided a straightforward explanation of this
result. Fault #17 causes a spurious exception to be thrown
almost every time that the fault is executed and causes a
failure. Therefore, that specific exception is an almost per-
fect predictor for this specific kind of failure. All the other
throw counts refer to exceptions that are used as shortcuts
to rollback some operations when Jaba analyzes certain spe-
cific program constructs. In other words, those exceptions
are (improperly) used to control the flow of execution and
are suitably handled by catch blocks in the code, so they
are typically not an indicator of a failure. Note that throw
counts did not perform well for v11, although that version
terminates with an uncaught exception in 12 cases, because
the uncaught exception is a runtime exception (i.e., an ex-
ception that is not explicitly thrown in the code). Therefore,
there is not a throw statement (and count) related to that
exception.

The results that we obtained using catch count predic-
tors were practically identical to those obtained using throw
counts. Overall it appears that, for the data considered,
throw and catch counts do not, by themselves, provide wide
predictive ability for different failures. Although this may be
an artifact of the specific subject considered, we believe that
the results will generalize to other subjects. Intuitively, we
expect throw (and catch) counts to be very good predictors
for some specific failures (e.g., in the trivial case of execu-
tions that terminate with fatal failures related to explicitly-
thrown exceptions). However, we do not expect them to
predict reliably other kinds of (more subtle) failures and to
work well in general, which is confirmed by what we have
found in our study.

5.2.2 Method Counts

Method counts measure the number of times each method
has been executed in a given run. For each version of Jaba

considered, there are approximately 3,000 method counts
(one for each method in the program).

The models built using method counts performed extremely
well for all program versions. Like with statement counts,
method counts led to models with OOB error rates near
zero. Interestingly, these results are obtained from models
that use only between two and seven method count predic-
tors (for each program version). Therefore, method counts
demonstrated to be as good predictors as statement counts,
but with the advantage of being less expensive to collect.

More generally, as these results suggest, there are several
kinds of execution data that may be useful for classifying
execution outcomes. In fact, in our preliminary investiga-
tions, we also considered several other kinds of data. For
example, we considered branch counts and call-edge counts.
(Branch counts are the number of times each branch (i.e.,
method entries and outcomes of decision statements) is ex-
ecuted. Call-edge counts are the number of times each call
edge in the program is executed, where a call edge is an
edge between a call statement and the entry to the called

method.) Both branch counts and call-edge counts were as
good predictors as statement or method counts.

Note that the execution data that we considered are not
mutually independent. For example, method counts can be
computed from call-edge counts and throw counts are a sub-
set of statement counts. It is also worth noting that we ini-
tially considered value-based execution data and captured
data about the values of specific program variables at vari-
ous program points. However, we later discarded these data
from our analysis because the compact and easy to gather
count data defined above yielded almost perfect predictors.
In particular, because method counts are excellent and fairly
inexpensive to collect, we decided to consider only method
counts for the rest of our investigation. (There is an ad-
ditional reason to use method counts, which is related to
the statistical validity of the results, as explained in Sec-
tion 5.3.1.)

5.3 Study 3: Research Question 3
The results of Study 2 show that our approach was able

to build good predictors consisting of only a small number
of method counts (between two and seven). This suggests
that, at worst, we need to instrument around 130 of the
3,000 methods (assuming 7 different methods over 19 faulty
versions). We use this result as the starting point for inves-
tigating our third research question.

One possible explanation for this result is that only these
few counts contain the relevant “failure signal.” If this is the
case, then choosing exactly the right predictors is crucially
important. Another possibility is that the signal for program
failures is spread throughout the program, and that multi-
ple counts carry essentially the same information (i.e., they
form, in effect, an equivalence class). In this case, many
different predictors may work equally well, making it less
important to find exactly the right predictors. Moreover, if
many different predictor subsets are essentially interchange-
able, then lightweight instrumentation techniques are more
likely to be widely applicable to other remote measurement
and analysis applications.

To investigate this issue, we first performed a principal
components analysis (PCA) of several sets of randomly cho-
sen method counts. PCA is a statistical technique that iden-
tifies sets of correlated variables that together explain sig-
nificant variance in the outcome variable. These variables
are called the principal components. PCA then transforms
the components into new composite variables that are un-
correlated with each other. The technique is often used to
reduce the dimensionality of a data set and to test for the
presence of important, but hidden, variables.

Figure 3 presents the results for Jaba Version 4 (the re-
sults for the other versions are analogous). In the diagram,
the horizontal axis represents the 10 most substantial princi-
pal components and the vertical axis represents the variance
they explain. The figure shows that there are only three to
(at most) five significant principal components in the data,
which suggests that many of the method counts are essen-
tially measuring the same thing.

To further investigate this issue, we randomly sampled a
small percentage of the method counts and then investigated
the predictive power of this small subset. More precisely,
we (1) randomly selected 1% (about 30) and 10% (about
300) of the method counts, (2) built a model based only on
these counts, and (3) validated the model as described in

Section 4.4. We repeated this experiment 100 times, select-
ing different 1% and 10% subsets of method counts every
time. This approach is an effective way to discover if there
are many sets of common predictors that are equally sig-
nificant. Without random sampling, it is easy to be misled
into identifying just a few important predictors, when in
fact there are other predictors which have comparable pre-
dictive capabilities. Also, random sampling provides a way
of assessing how easy (or difficult) it may be to find good
predictors. For instance, if 1% subsamples return a good
subset of predictors 90% of the time, the number of equally
good predictors is very high. On the other hand, if 10% sub-
sets contain good predictors only 5% of the time, we would
conclude that good predictors are not as easily obtained.

We found that the randomly selected 1% and 10% of
method counts invariably contained a set of excellent predic-
tors over 80% and 90% of the time, respectively. This result
suggests that many different predictor subsets are equally
capable of predicting passing and failing executions. This
result is interesting because most previous research has as-
sumed that one should capture as much data as possible
at the user site, possibly winnowing it during later post-
processing. Although ours is still a preliminary result, it
suggests that large amounts of execution data can be safely
ignored, without hurting prediction accuracy and greatly
reducing runtime overhead on user resources. (We actually
measured the overhead imposed by the collection of these
data, and verified that it is negligible in most cases.) More-
over, we could further lower the overhead by combining our
approach with other sampling techniques, such as counter
sampling [13].

5.3.1 Multiplicity Issues

When the number of predictors is much larger than the
number of data points (test cases, in our case), it is pos-
sible to find good predictors purely by chance. When this
phenomenon happens, predictors that work well on training
data do not have a real relationship to the response, and
therefore perform poorly on new data. If the predictors are
heavily correlated, it becomes even more difficult to decide
which predictors are the best and most useful for lightweight
instrumentation. Inclusion of too many predictors may also
have the effect of obscuring genuinely important relation-
ships between predictors and response. This issue is quite
important because multiplicity issues can essentially mislead
statistical analysis and classification. Unfortunately, this is-
sue has been overlooked by many authors in this area.

Our first step to deal with multiplicity issues was to reduce
the number of potential predictors by considering method
counts, the execution data with the lowest number of en-
tities. Further, we conducted a simulation study to un-
derstand how having too many predictors may result in
some predictors that have strong predictive powers purely
by chance. The simulation was conducted as follows: we
selected a version of the subject and treated the method
counts for that version as a matrix (i.e., we arranged the
counts column by column, with each row representing the
counts for a particular test case). To create a randomly
sampled data set, we then fixed the row totals (counts as-
sociated with each test case), and randomly permuted the
values within each row. In other words, we shuffled the
counts among methods, so as to obtain a set of counts that
does not relate to any actual execution.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

V
ar

ia
nc

es

0e
+

00
1e

+
13

2e
+

13
3e

+
13

4e
+

13

Figure 3: Principal Components Analysis.

We repeated this process for each row in the data set
to produce a new randomly sampled data set. With the
data set so created, we then randomly sampled 10% or 1%
subsets of the column predictors. Our simulations of 100
iterations each showed that a random 10% draw never (for
all practical purposes) produced a set of predictors able to
classify executions as pass/fail in a satisfactory manner. We
therefore concluded that the probability of obtaining, purely
by chance, good predictors from a 1% random subset of the
predictors 80% of the time (which is what we observed in our
study on the real data) is very slim. We can thus conclude
that the results we obtained are due to an actual relation
between the occurrence of a failure and the value of the
method counts.

5.3.2 Generality Issues

All the results presented so far are related to the predic-
tion of the outcomes within single versions. That is, each
model was trained and evaluated on the same version of
the subject program. Although a classification approach
that works on single versions is useful, an approach that can
build models that work across versions is much more pow-
erful and useful. Intuitively, we can think of a model that
works across versions (i.e., a model that can identify failures
due to different faults) as a model that, to some extent, en-
codes the concept of “correct behavior” of the application.
Conversely, a model that works on a single version and pro-

vides poor results on other versions, is more likely to encode
only the “wrong behavior” related to that specific fault.

Since one of our interests is in using the same models
across versions, we also studied whether there were predic-
tors that worked consistently well across all versions. We
were able to find a common set of 11 excellent predictors
for all 12 versions that we have studied. Classification using
these predictors resulted in error rates below 7% for all ver-
sions of the data. Moreover, the models that achieved these
results never included more than 5 of those 11 predictors.

Another threat to our results, in terms of generality, is
the fact that we only considered versions with a single fault
(like most of the existing literature). Therefore, we per-
formed a preliminary study in which we used our technique
on 10 additional versions of Jaba, each one containing two
or more errors. Also for this second set of versions, we gath-
ered pass/fail information and execution data using Jaba’s
regression test suite. Table 2 shows these additional ver-
sions in a format analogous to the one used in Table 1 (this
versions are numbered starting from 20 to have unique IDs).
In this case, we also show the list of faults inserted in each
version (column “Faults included”). For example, version
29 contains 6 faults: 5, 9, 11, 12, 13, and 19. In this case,
six of the 10 versions made the 8% cutoff, and two of them
(v21 and v22) produced no fatal failures.

In the study, we selected predictors that worked well for
single-error versions and used them for predicting versions

Table 2: Versions of Jaba with multiple errors
(*=failure rate greater than 8%)

Ver Faults Total Non-fatal Fatal
included failures failures failures

20 1 3 0 (0%) 0 0
* 21 2 17 113 (16%) 113 0
* 22 9 12 86 (12.2%) 86 0

23 4 7 13 0 (0%) 0 0
24 13 12 19 7 (1%) 0 7

* 25 7 16 13 17 113 (16%) 105 8
26 7 19 5 11 19 (2.7%) 0 19

* 27 2 5 19 9 12 102 (14.4%) 95 7
* 28 13 17 9 16 12 180 (25.5%) 172 8
* 29 13 19 9 12 5 11 101 (14.3%) 83 18

with multiple errors. We found that, although there are in-
stances in which these predictors did not perform well and
produced error rates around 18%, the predictors worked well
most of the time, with error rates below 2%. In future work,
we will further investigate the use of our technique in the
presence of multiple errors to better understand its perfor-
mance in those cases and possibly adapt it.

5.4 Discussion
In our studies, we used a real program and a set of real

faults and carefully considered various statistical issues. Nev-
ertheless, as with all empirical studies, these results may not
generalize because they are based on one type of program
and on one set of test cases and failures. We must per-
form further experiments with more subjects and faults to
increase the external validity of our findings.

Keeping these caveats in mind, we draw the following ini-
tial main conclusions. These studies suggest that, for the
subject and executions considered, we can (1) reliably clas-
sify program outcomes using execution data, (2) do it using
different kinds of execution data, and (3) do it both reliably
and at a low cost. These results represent a first important
step towards our overall goal of defining a technique that
can be reliably used as an oracle for field executions.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented and studied a technique
for remote analysis and monitoring of software systems whose
goal is to automatically classify program execution data as
coming from passing or failing program executions. Such a
technique can support various kinds of analysis of deployed
software that would be otherwise impractical or impossible.
For instance, the technique would allow developers to mea-
sure how often specific failures occur and to gather detailed
information about likely causes of failure.

We studied three fundamental questions about the tech-
nique. The results of our studies show that, for the cases
considered, we can reliably and efficiently classify program
outcomes using execution data. Moreover, our technique
was able to generate models that can classify execution out-
comes across versions. We consider this work a first, im-
portant step towards our overall goal: the development of a
classification technique that can be reliably used on deployed
software to provide an automated oracle for field executions.

We will continue our investigations in several directions.
The first direction will be to further study our technique

in the presence of multiple faults. Although studying single
faults is important for an initial assessment of the approach,
realistic situations are likely to involve multiple faults in
most of the cases. The results of the preliminary study
described in the paper will drive our future work in this
direction.

The second direction for future work is the investigation
of the relation between predictors and faults. We will in-
vestigate whether the entities with the strongest predictive
power can be used to localize the source of the problem
(i.e., the fault or faults) that caused the failure. Also in this
case, we have performed an initial investigation and assessed
that, for most of the cases considered, a direct relation be-
tween predictors and faults does not seem to exist. In fact,
most faults seem to cause failures whose effects are spread
throughout the code, which justifies the high number of ex-
cellent, alternative predictors identified by our technique.
We will further investigate this issue by looking at various
kinds of relations, such as data dependences, between the
faulty statement(s) and the entities that are good predic-
tors (e.g., the methods or statements whose counts result in
a perfect classification).

Finally, we will perform an experiment involving real users
to validate our technique in real settings. We will release the
versions of Jaba that we have studied to a set of students
in a program analysis class. We will modify such versions
by adding assertions that will be triggered when a known
failure manifests itself. (Otherwise, failures that result in
an incorrect outcome but no fatal exception may go unde-
tected.) Additionally, we will ask the students to tag the
executions to account for possibly unknown faults and be
able to perform a more controlled experiment. This study
will let us assess whether our models maintain the same pre-
dictive power that we assessed in our evaluation when they
are applied to real users’ executions.

Acknowledgments

This work was supported in part by National Science Foun-
dation awards CCF-0205118 to the National Institute of Sta-
tistical Sciences (NISS), CCR-0098158 and CCR-0205265 to
University of Maryland, and CCR-0205422, CCR-0306372,
and CCR-0209322 to Georgia Tech. We used the R statistical
computing software and the randomForest library, available
at http://cran.r-project.org/ to perform all statistical
analyses. Jim Jones prepared and provided the 19 faulty
program versions. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

7. REFERENCES
[1] J. Bowring, A. Orso, and M. J. Harrold. Monitoring

deployed software using software tomography. In
Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2002), pages 2–8, Charleston,
SC, USA, november 2002.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active
learning for automatic classification of software
behavior. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA
2004), pages 195–205, July 2004.

[3] L. Breiman. Random Forests. Machine Learning,
45(1):5–32, Oct. 2001.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, 1984.

[5] Y. Brun and M. D. Ernst. Finding latent code errors
via machine learning over program executions. In
Proceedings of the 26th International Conference on
Software Engineering (ICSE 2004), pages 480–490,
May 2004.

[6] W. Dickinson, D. Leon, and A. Podgurski. Pursuing
failure: the distribution of program failures in a profile
space. In Proceedings of the 8th European Software
Engineering Conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of
Software Engineering, pages 246–255, September 2001.

[7] W. Dickinson, D. Leon, and A. Podgursky. Finding
failures by cluster analysis of execution profiles. In
Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), pages 339–348,
May 2001.

[8] R. Duda, P. Hart, and D. Stork. Pattern
Classification. Wiley, second edition, 2000.

[9] P. Francis, D. Leon, M. Minch, and A. Podgurski.
Tree-based methods for classifying software failures. In
Proceedings of the 15th International Symposium on
Software Reliability Engineering (ISSRE’04), pages
451–462, November 2004.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, 2001.

[11] D. M. Hilbert and D. F. Redmiles. Extracting
usability information from user interface events. ACM
Computing Surveys, 32(4):384–421, Dec 2000.

[12] D. Leon, A. Podgurski, and L. J. White. Multivariate
visualization in observation-based testing. In
Proceedings of the 22nd international conference on
Software engineering (ICSE 2000), pages 116–125,
May 2000.

[13] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan.
Bug isolation via remote program sampling. In
Proceedings of the Conference on Programming
Language Design and Implementation (PLDI 2003),
pages 141–154, June 2003.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In
Proceedings of the Conference on Programming
Language Design and Implementation (PLDI 2005),
June 2005.

[15] Microsoft online crash analysis, 2004.
http://oca.microsoft.com.

[16] A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging field data for impact analysis and
regression testing. In Proceedings of the 9th European
Software Engineering Conference and 10th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003), pages 128–137,
Helsinki, Finland, september 2003.

[17] A. Orso, J. A. Jones, and M. J. Harrold. Visualization
of program-execution data for deployed software. In
Proceedings of the ACM symposium on Software
Visualization (SOFTVIS 2003), pages 67–76, San
Diego, CA, USA, june 2003.

[18] A. Orso and B. Kennedy. Selective Capture and
Replay of Program Executions, may 2005. http:
//www.csd.uwo.ca/woda2005/proceedings.html.

[19] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proceedings of the 21st International
Conference on Softw. Eng., 1999, pages 277–284, May
1999.

[20] A. Podgurski, D. Leon, P. Francis, W. Masri, M. M.
Sun, and B. Wang. Automated support for classifying
software failure reports. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE 2003), pages 465–474, May 2003.

[21] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

[22] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. In ISSTA ’04: Proceedings of the
2004 ACM SIGSOFT international symposium on
Software testing and analysis, pages 45–54, 2004.

