
Backbone Construction in Selfish Wireless Networks

Seungjoon Lee Dave Levin Vijay Gopalakrishnan Bobby Bhattacharjee
AT&T Labs - Research University of Maryland AT&T Labs - Research University of Maryland
slee@research.att.com dml@cs.umd.edu gvijay@research.att.com bobby@cs.umd.edu

ABSTRACT
We present a protocol to construct routing backbones in
wireless networks composed of selfish participants. Back-
bones are inherently cooperative, so constructing them in
selfish environments is particularly difficult; participants want
a backbone to exist (so others relay their packets) but do
not want to join the backbone (so they do not have to relay
packets for others).

We model the wireless backbone as a public good and use
impatience as an incentive for cooperation. To determine
if and when to donate to this public good, each participant
calculates how patient it should be in obtaining the public
good. We quantify patience using the Volunteer’s Timing
Dilemma (VTD), which we extend to general multihop net-
work settings. Using our generalized VTD analysis, each
node individually computes as its dominant strategy the
amount of time to wait before joining the backbone. We
evaluate our protocol using both simulations and an imple-
mentation. Our results show that, even though participants
in our system deliberately wait before volunteering, a back-
bone is formed quickly. Further, the quality of the backbone
(such as the size and resulting network lifetime) is compa-
rable to that of existing backbone protocols that assume
altruistic behavior.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols; C.4 [Perfor-
mance of Systems]

General Terms: Algorithms, Experimentation

Keywords: Wireless backbone, incentives, selfish network,
public good, volunteer’s dilemma

1. INTRODUCTION
In a multihop wireless network, participants relay pack-

ets for others in order to achieve end-to-end connectivity.
The benefits of a backbone in these networks are well doc-
umented [2, 10, 11, 16, 24]. For example, nodes not in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

backbone can go into sleep mode and save energy while back-
bone nodes stay awake and ensure end-to-end connectivity.
Prior work on backbone construction, however, has assumed
that nodes in the network are inherently cooperative. Other
schemes for forwarding and routing mechanisms [3, 26, 27]
consider selfish wireless nodes, but rely on external mecha-
nisms such as secure hardware or a central bank to enforce
cooperation.

The main contribution of this paper is to show that it
is feasible to construct an efficient, power-saving, routing
backbone without assuming altruism or resorting to external
mechanisms. We consider a network in which participants
have data to send (or receive) but are selfish, i.e., they are
not inclined to relay packets for others. Thus, nodes in our
system want to achieve two conflicting objectives—they do
not want to join the backbone (since they do not want to
relay packets for others), but do want a backbone to exist
(since they want their own packets to be forwarded). Using
tools from game theory, we develop a protocol to construct
an efficient routing backbone in selfish environments.

We model the problem of building a backbone as that of
creating a public good: a commodity from which all nodes
benefit. We apply a well-known game-theoretic model called
the Volunteer’s Dilemma [6, 13, 25]. Each participant in
the network needs some of the nodes to volunteer to pro-
vide the public good, but no one wants to be one of the
volunteers. The base Volunteer’s Dilemma model, however,
assumes that all nodes in the network can talk to each other
(i.e., a complete graph). We extend this base model to work
in any general multihop network. We derive a formula that
nodes use to compute the amount of time to wait before
they volunteer to join the backbone. Our formula takes into
account the node’s capacity (e.g., remaining battery) and its
local neighborhood to compute this waiting time. We show
that volunteering at this computed time is the dominant

strategy for each node; a strategy is dominant if it yields
greater utility than any alternative strategy, regardless of
what the other players do.

We evaluate the protocol through an implementation (we
believe this is the first implementation of a wireless backbone
protocol) and extensive simulations over ns-2, and show that
the resulting protocol retains the goodness of cooperative
backbone construction algorithms. Our results indicate that
the protocol builds a small backbone quickly, and nodes with
higher battery life are preferentially added to the backbone,
thereby saving energy of low battery nodes.

The rest of the paper is organized as follows. We describe
our model and assumptions in Section 2. We review the

Volunteer’s Timing Dilemma and present our generalization
in Section 3. Section 4 presents our backbone construction
protocol. We present results from simulations in Section 5
and from the implementation in Section 6. We discuss node
misbehavior in Section 7, review related work in Section 8
and conclude in Section 9.

2. MODEL AND ASSUMPTIONS
We model the network as a graph G = (V, E), where V is

the set of nodes in the network and (u, v) ∈ E implies that
v is within u’s transmission range. We make the standard
assumption (e.g., as required by the 802.11 MAC) that G

is undirected, i.e., each link in the wireless network is bi-
directional. We also assume that whenever a node u sends a
packet, it is received by each node in its 1-hop neighborhood
N 1(u) as well as the packet’s intended recipient. (We denote
by N k(u) the set of nodes within k hops from u as deter-
mined by G, not in the backbone.) We use this assumption
to detect whether neighbors are faithfully following protocol
mechanisms as in [20, 21]. In our protocol, each node uses
information about its two-hop neighborhood. We construct
a view of two-hop neighborhood for each node by using tech-
niques described in Catch [20]. Like Catch, we assume that
each node has a unique ID and that MAC-level authentica-
tion is used to prevent Sybil [14] attacks, but we note that
we only use these assumptions to obtain each node’s two-hop
neighborhood information.

Node Utility. We assume the primary concern of each node
in our model is to ensure that its connections have high
goodput. Since we do not consider any external incentives
(e.g., cash), if a node knows that it will not be sending or
receiving packets for a significant amount of time, we cannot
motivate the node to route and forward packets on behalf
of other nodes. In this paper, we assume that connections
are made between arbitrary source-destination pairs unpre-
dictably.1 This is common knowledge among the partici-
pants (i.e., all nodes in the system know this, and they know
others know this, ad infinitum), but nodes do not have any
further knowledge about traffic patterns a priori.

In this paper, instead of defining a specific utility function,
we use the following preference relation. For each node v,
v first attempts to maximize its goodput. If there are mul-
tiple ways v can achieve equal goodput, then v chooses the
strategy that minimizes the energy consumption. Since we
assume that nodes do not know when and from which node
they will receive messages, ensuring constant global end-to-
end connectivity is of nodes’ primary concern to achieve
maximum utility.

Our protocol is intended for deployment when nodes are
selfish and can set local policy. This will occur only when
no single administrative entity mandates policy on the en-
tire network, for example, in an ad hoc network or a large
community rooftop network [1]. However, a malicious node
could jam the channel and disconnect nodes in a local neigh-
borhood, without regard to its own communication [7]. This
attack is inherent in all wireless networks, and is beyond the

1Alternately, we only consider nodes that are interested in
sending and receiving messages, while other nodes in the
network do not participate in the game. As explained in Sec-
tion 4, these non-participating nodes cannot use the back-
bone until they play the game in the future.

scope of this paper. When nodes are selfish, it is possible
that some of them collude to increase their utility. In this
paper, we focus on a simple scenario where nodes are selfish,
but do not collude.

3. BACKBONE FORMATION: THEORY
In this section, we develop the theory for our backbone

formation protocol. We begin with an overview of the well-
known Volunteer’s Timing Dilemma (VTD) [6] and then de-
scribe how we extend VTD to a generalized wireless setting.
We describe how to apply the generalized VTD to form a
connected backbone in Section 4.

3.1 Background: The Volunteer’s Dilemma
Consider the following social dilemma: a group of rational

individuals want a single person from the group to volun-
teer to offer some service. This service expends some of the
volunteer’s resources, but all the individuals, including the
volunteer, benefit from the service if it is provided. In other
words, this service is a public good. Without loss of general-
ity, let us assume that each node, i = 1, .., N , derives 1 unit
of benefit from the existence of this public good and that
it costs node i ci ∈ [0, 1] to provide the service. Further,
the distribution F of these costs is public knowledge, but
the cost to any individual node is private (i.e., node i knows
how all costs are distributed, but only i knows the precise
value of ci). Although the derivations in this paper general-
ize to arbitrary distributions, we assume for simplicity that
F is uniformly distributed in the rest of this paper. (In our
simulations in Section 5, we experiment with cases when
the actual cost distribution is different from the assumed
distribution.)

Diekmann [13] presents this formally as a one-shot game
called the Volunteer’s Dilemma (VOD). Each node has two
possible strategies it may play: volunteer or free-ride. Player
v’s utility is:

Uv

def
=

�� � 1− cv if v volunteers
1 if someone, but not v, volunteers
0 if no one volunteers

That is, if at least one node volunteers, everyone obtains
the public good and receives utility 1, but each node i that
volunteers must pay ci. If no one volunteers, the public good
is not available and no one gains any benefit.

Bliss and Nalebuff [6] consider a slightly different scenario,
often called the Volunteer’s Timing Dilemma (VTD) [25]. In
their model, each player’s strategy is no longer to “volunteer
or not,” but rather a time T ≥ 0 that denotes “when to
volunteer.” If no one volunteers until time t, then the public
good is not available until then. To capture the loss in utility
from waiting, each player’s utility decreases by the standard
exponential discount factor (e−t over time t), giving player v

utility e−tUv. As in the VOD, cost is private information but
the distribution F is common knowledge. Bliss and Nalebuff
derive T (n, ci), the optimal time for node i to volunteer
by maximizing i’s expected utility given its cost, ci, the
distribution of costs, and the total number of players, n:

T (n, ci) = (n− 1) · � ci

1 − ci

+ ln(1− ci) � (1)

This derivation has several nice properties. First, since
T (n, ci) is increasing on ci, when all players are rational,

(a) (b) (c) (d)

Volunteered Opted outStill playing

0.2

0.6

0.4

0.7

Figure 1: An example GVTD game run on (a) a
sample graph. (b) The top-most node volunteers
and notifies its neighbors who (c) opt out and in-
form their neighbor, who then (d) volunteers imme-
diately.

the node with lowest ci (or highest capacity) is the one to
volunteer. Second, as n increases, the optimal volunteering
time for each node increases, while the system-wide utility
also increases. Last, since T is found by maximizing e−tUv

for each v, T defines a dominant strategy for all players.

3.2 Generalized VTD
Both Diekmann’s and Bliss and Nalebuff’s models assume

that all players can observe and benefit from any volunteer.
In multihop networks, however, this assumption does not
hold; each node needs a volunteer within its one-hop neigh-
borhood, and therefore does not directly benefit from a vol-
unteer two or more hops away. In this section, we introduce
our generalization that we call the Generalized Volunteer’s
Timing Dilemma (GVTD), where an input to the game is an
arbitrary, undirected graph G. Note that the original VTD
game is a special case where G is a complete graph. We
now present a derivation of the optimal time that each node
should wait before volunteering in a general graph G, and
show that the final set of volunteers constitutes a maximal
independent set of G.

3.2.1 Optimal Waiting Time in GVTD
In GVTD, nodes can continue playing the game even after

others announce their action and leave the game (Figure 1).
A node v can volunteer if it has waited long enough and none
of its neighbors have yet volunteered. After v volunteers, its
neighbors can receive the public good from v and therefore
stop playing (opt out) of the game. However, nodes more
than one hop away from v keep playing the game until they
or one of their neighbors volunteer.

Similar to VTD, each node v playing GVTD first calcu-
lates its optimal waiting time. To do so in VTD requires
only v’s volunteering cost, but the waiting time in GVTD
depends on both the cost and the network topology. An ac-
curate prediction of the cost incurred by volunteering would
require v to have an estimate on how much traffic its neigh-
bors wish to send, which is often difficult to obtain. In our
implementation and simulation, we let cv be (1− rv) where
rv is v’s remaining battery; were the lifetime of the back-
bone not the main concern, one could envision using, say,
bandwidth or latency in determining the cost, instead.

Although a node needs to know the global topology to cal-
culate the optimal time, obtaining such information is typi-
cally costly. In this paper, when a node calculates its waiting
time before volunteering, it uses its two-hop neighborhood in-
formation, which is obtained using techniques suggested in

v

(b)

u

(a)

Figure 2: Dashed ovals represent likely volunteers.
(a) A large one-hop neighborhood reduces u’s prob-
ability of volunteering, whereas (b) a large two-hop
neighborhood has the opposite effect.

Catch [20]. However, GVTD generalizes to the global opti-
mal if a consistent view of the entire topology is available.
Let R1(v) be the one-hop neighbors of v who have not opted
out (i.e., v’s neighbors remaining in the game). For a neigh-
bor u of v, let nu\v denote the number of one-hop neighbors
of u who are not one-hop neighbors of v. Then, we prove
that v can determine how long it should wait before volun-
teering using:

Tv(c) ≈ � c

x=0 �
u∈R1(v)

(nu\v + 1) x(1− x)n
u\v

−1

nu\v + (1 − x)n
u\v

+1
dx (2)

We present the derivation in the appendix. Note that in the
complete graph case, nu\v = 0,R1(v) is eitherN 1(v) = V \ v

or ∅, and |N 1(v)| = (|V | − 1), ∀u, v ∈ V . Then, denoting
|V | = n, we have Tv(c) ≈ � c

0
(n− 1) x

(1−x)2
dx, which re-

duces to Eq. 1 for the original VTD analysis.
Observe that Tv reflects the amount of time to wait to

volunteer since the beginning of the game. In GVTD, since
R1(v) changes over time, Tv also changes. Hence, it is pos-
sible that Tv becomes less than the current time elapsed
in the game, in which case v volunteers immediately. In
Figure 1(d), the bottom-most node recalculates T with no
remaining neighbors (R1 = ∅) and therefore volunteers im-
mediately. Note also that Tv does not take into account
system-wide connectivity; this fact allows for a purely dis-
tributed protocol which we present in the following section.

3.2.2 GVTD Solution Properties
Our derivation in Equation 2 yields many of the same

properties of the original VTD. First, as in the model pro-
posed by Bliss and Nalebuff, Tv in the GVTD is increasing
in cv; this ensures that when all other factors are equal,
nodes with lower cost (or high capacity) volunteer earlier.
Next, Tv is increasing in ��N 1(v) �� ; this implies that each ad-
ditional one-hop neighbor is another candidate to allow v to
opt out rather than volunteer itself. For example, in Fig-
ure 2(a), node u is unlikely to volunteer, as it has many
one-hop neighbors who may do so earlier.

New to the GVTD is the notion of a non-trivial N 2(v); as
this grows, Tv decreases. To see this, note that each addi-
tional two-hop neighbor is another candidate for (at least)
one of v’s one-hop neighbors to opt out. In Figure 2(b), node
v is likely to volunteer, since each of its one-hop neighbors
is likely to opt out.

GVTD does not always result in the nodes with the lowest
cost volunteering. Suppose in Figure 2(a) that node u has
cost 0.1 and every other node has cost 0.99. Though node u

has the lowest cost, all of its neighbors have degree 1, hence
they will all have significantly larger probability of volun-

teering and therefore smaller values of T . In this example,
Tu(cu) = 0.1 and, for each neighbor v of u, Tv(cv) = 0.003.
Such an effect is a necessary outcome of this game. This
is due to both private information and the graph’s topo-
logical constraints. Since each node u does not know any
other nodes’ cost to volunteer, it can at best estimate the
probability that its neighbors will volunteer before it does.

GVTD Yields a Maximal Independent Set. Recall that
an independent set S of G = (V, E) is a subset of V such
that no two vertices in S correspond to an edge in E. S is
a maximal independent set if no proper superset of S is an
independent set. Recall also that for a dominating set D,
each node in V either is in D or has a neighbor in D.

Theorem 1. Given an input graph G = (V, E), when the

GVTD game ends, the set of volunteers constitutes a maxi-

mal independent set of V .

Proof. Let U ⊆ V denote the set of nodes that volun-
teered at the completion of the VTD game. For each node
v ∈ V , we have, exactly one of the following: v ∈ U or
∃α ∈ N 1(v) ∩ U . By definition, U is an independent domi-

nating set, and is therefore a maximal independent set.

In the unit-disk graph model [16], which is a simple yet
popular model for wireless networks, a maximal indepen-
dent set is a constant-factor approximation of a minimum
dominating set. Finding a minimum-sized dominating set is
a well-known NP-hard problem [17], and Theorem 1 proves
that in the unit-disk graph model, the resulting dominating
set after a GVTD game is essentially as small as possible.
In fact, our protocol ensures our resulting connected back-
bone is also a constant-factor approximation to a minimum
connected dominating set (see Section 4). In Figure 2(a)
and (b), the dashed ovals show a maximal independent set
for each of two graphs.

These GVTD properties are now sufficient background to
construct a protocol for backbone formation in selfish net-
works, which we describe next.

4. BACKBONE FORMATION: PROTOCOL
Like many existing backbone construction schemes [2, 16,

24], our backbone construction protocol consists of two logi-
cal steps: leader selection and the connection of the leaders.
In the first phase, nodes play the GVTD game. Based on the
information about the cost distribution (Section 3) and its
two-hop neighborhood, each node independently computes
its optimal waiting time before volunteering. When there is
no volunteer neighbor for a long (enough) time, it volunteers
as a leader to speed up the backbone construction, and thus
minimizes loss of its own messages. In the second phase,
we choose bridge nodes to connect the leaders and obtain
a connected backbone (specifically, a connected dominating
set). In this section, we describe the backbone formation
protocol using the IEEE 802.11 terminology; however, the
protocol is not particularly tied to 802.11.

4.1 Leader Selection Protocol
Initially, we assume each node is in sleep mode. Nodes

wake up periodically (e.g., as in IEEE 802.11) and exchange
their neighbor information. This information includes IDs
of the transmitting node and all its neighbors. Each node
also checks if any neighbor has volunteered. If node v does

not observe any volunteers for a period longer than its op-
timal waiting time, Tv(cv), it volunteers as a leader for a
pre-defined service duration, and broadcasts a LeaderDecl

message to its one-hop neighbors. Upon receipt of this mes-
sage, all of v’s neighbors know that they have a volunteer;
they opt out of the game and include the leader information
in subsequent periodic messages. Our leader selection pro-
tocol is repeated when the service duration expires, which
we further elaborate on in Section 4.3.

Incentives for Truthfulness. Recall from Section 3 that v

will volunteer sooner if its one-hop neighborhood is sparser.
Thus, it may appear that v’s neighbor u would choose not
to broadcast its identity, so that v would not count u as a
neighbor and would therefore volunteer earlier. However, if
v becomes a leader, v will not regard u as a neighbor and
will not provide the backbone service to u. Hence, “hiding”
is of no use to u.

Another way for u to shorten v’s waiting time is to pre-
tend u has many neighbors by including fake neighbors in
periodic messages. This is, in effect, a Sybil attack [14]. We
consider this an orthogonal problem, and direct the reader
to Newsome et al. [22] who detect and defend against Sybil
attacks in a wireless setting.

Estimating Cost Distribution. As discussed in Section 3,
we assume that each node knows its own cost and also the
distribution of costs of other nodes. In practice, various fac-
tors determine the cost, including remaining battery power,
the degree of desire for communication and altruistic ten-
dency. A network composed of many nodes with cost close
to 1 corresponds to the scenario where many selfish nodes
are reluctant to volunteer. In contrast, if there are many
low-cost nodes, then the network is more altruistic and the
backbone construction is faster. One way is to learn relative
willingness of neighbors over time and use them as sample
points to infer the distribution. In our results, we quan-
tify the convergence time and quality of the backbone when
the estimated cost distribution is different from the actual.
However, there exists little study on altruistic behavior in
real multihop wireless networks, and inferring the overall
cost distribution is an open question.

4.2 Connecting the Leaders
Observe that, after leader selection, no two leaders will be

adjacent. The second phase of our backbone construction
consists of choosing nodes between leaders to act as bridge

nodes to form a connected backbone.
Since the final leader set is a dominating set (Theorem 1),

each leader will be no more than three hops away from at
least one other leader [17]. It therefore suffices for each
leader node to learn about other leaders that are reachable
within three hops (i.e., via a path through at most two non-
leaders). To accomplish this, leader node u broadcasts to
its neighbors a message indicating that it has volunteered.
u’s neighbors then forward this message to their one-hop
neighbors. Each neighbor v of u then requires its neighbors,
N 1(v) \ N 1(u), to forward this message to their one-hop
neighbors. We discuss v’s incentive to forward this message
in more detail later in this section.

After these messages are propagated, each node v knows of
all leaders (denoted by Lv) in its 3-hop neighborhood; v also
knows of all paths (of length at most 3) from v to each node

Leader Bridge Node Playing Bridge Game Client

f

a

c

b

d

e

c
d

e

(b) Volunteer (e) Volunteer(d) Init Bridge Game(a) Init Bridge Game (c) End Bridge Game (f) End Bridge Game

c
d

c

a

c

f

d
c

e

`1 `2 `1 `2`1 `1

Figure 3: Bridge node selection between two leaders, `1 and `2, consists of playing a bridge game at each of
the (at most two) hops on a path from `1 to `2. The winners of the respective games are (c) node c and (f)
node d, resulting in the path (`1, c, d, `2).

in Lv. This information can be used to connect the leaders
in many different ways, such that different metrics (e.g.,
backbone size [16, 17], or minimum cost [24]) are optimized.
In our protocol, we consider the simplest case where each
leader connects to all other leaders that are in its 3-hop
neighborhood. Such a backbone has some nice properties:
the increase in hop count for any path is within a constant
factor compared to the base case without a backbone, and
the backbone size is a constant-factor approximation of a
minimum backbone [2]. Still, the backbone is in general
larger than strictly necessary, and the overall energy saving
is accordingly smaller. However, as we discuss further in
the following section, we may need to detour around some
misbehaving nodes, in which case we benefit from redundant
paths due to larger backbones. Obtaining backbones that
are small yet allow for resilience against misbehaving nodes
is an interesting subject of future work.

Bridge Node Selection. For a leader to connect to other
leaders, it must select a set of bridge nodes to forward pack-
ets between leaders. When leader `1 wants to connect to
leader `2 ∈ N

3(`1), it uses the following bridge node se-
lection process. (To break symmetry, only the leader with
the smaller ID initiates the bridge node selection process.)
First, using its knowledge of its 3-hop neighborhood, `1 de-
termines all of the available paths of length at most 3 from
itself to `2. Let B(`1 → `2) denote the set of one-hop neigh-
bors of `1 who are on at least one of these paths. In Figure 3,
B(`1 → `2) = {a, c, f}. Then, `1 sends a PlayBridgeGame

message to B(`1 → `2).

Algorithm 1 Play Bridge Game(`1, `2,B)

Called by u when it receives a PlayBridgeGame mes-
sage from prev hop to connect `1 to `2. B is the list of
potential volunteers.

1: if u 6∈ B
2: return
3: t← Calculate-Complete-VTD-Time(cu, |B|)
4: Wait for time t
5: if after waiting, prev hop has not announced a volun-

teer
6: Send BridgeVolunteer message to prev hop
7: if prev hop replies with a BridgeAck

8: if `2 6∈ N
1(u)

9: B′ ← 	 v : v ∈ N 1(u) ∧ `2 ∈ N
1(v)

10: Broadcast PlayBridgeGame(`1, `2,B
′)

We provide pseudocode for our bridge selection protocol
in Algorithm 1. To summarize, each hop on the path from
`1 to `2 is obtained by applying VTD. Since each node that
receives a PlayBridgeGame message has the complete in-
formation about B, nodes in B play the standard, complete
graph VTD game using Eq. 1. The first game is played by
the nodes in B(`1 → `2). Each node playing the game stops
either when it volunteers and informs the previous hop on
the path, or when the previous hop broadcasts an acknowl-
edgment to the first volunteer. In Figure 3, `1 initiates the
first game (a); node c wins and becomes a bridge node when
it receives an acknowledgment from `1 (b)-(c). Note that
nodes a and f stop playing the game once they hear the
acknowledgment from `1.

After the winner of the first game joins the backbone, it
either informs `2 of the path (if it is connected to `2), or else
initiates another VTD game to obtain the next hop. This
second game is played by the nodes who are both one-hop
neighbors of the new bridge node and `2. In Figure 3, c

is not connected to `2 and initiates a new game (d), which
node d wins (e)-(f), resulting in the path (`1, c, d, `2). Note
that, since `1 tries to connect to leaders within three hop
distance, this process will require at most two such games.

Bridge Selection without VTD Game. The bridge selec-
tion algorithm described above incurs some overhead due
to the waiting times and control message exchanges. An
alternate scheme is to forgo the bridge nodes’ VTD games
and to just have `1 designate bridge nodes. If a designated
node refuses the request, then `1 in turn can refuse to pro-
vide the backbone service to the node. With this alternate
scheme, the bridge selection is immediate, but the backbone
may include high-cost nodes. In our simulations, we experi-
ment with the full VTD-based bridge selection algorithm;
in our implementation, leaders are chosen using GVTD,
but bridges are assigned by leaders without undertaking the
VTD game.

Workloads of Leaders and Bridge Nodes. Although both
leaders and bridges stay awake and relay messages for other
nodes, the key difference in terms of workload is that lead-
ers accept clients and buffer their packets (while the clients
sleep). There are also several backbone construction schemes
that do not strictly differentiate these two types [10, 11]. De-
signing such a backbone scheme based on the GVTD anal-
ysis is an interesting future research topic.

4.3 Repeated Game
Since battery levels decrease over time, the backbone must

be reconstructed over time to ensure that it consists of high-
capacity nodes. We next describe the specific policies neces-
sary to repeatedly play the backbone games. Node failures
can be treated the same as node departures, and are handled
by this repeated game construct.

When a node becomes a leader, it implicitly enters a con-
tract with its neighbors to perform the role of a leader for a
system-defined service duration. A leader ` could attempt to
misbehave by ceasing to forward packets or by not connect-
ing to the other leaders within its 3-hop neighborhood. We
discuss how to address this and other forms of misbehavior
in Section 7.

When a leader `’s service duration has passed, it may
leave the backbone, or “unvolunteer.” To do so, the exiting
leader broadcasts an Unvolunteer packet and immediately
begins playing GVTD. Each of `’s neighbors, i ∈ N 1(`),
begins playing the GVTD game or, if there is some other
leader in N 1(i), becomes a client of that node instead. The
rest of the protocol follows as in Sections 4.1; someone in
`’s 1-hop neighborhood will volunteer, and the rest become
clients or bridge nodes.

To ensure that bridge nodes do not leave their associ-
ated leaders when a neighbor volunteers, we use a similar
implicit-contract-based policy. When a node volunteers to
be a bridge node to connect its leader ` to a set of leaders
{`1, `2, . . .}, it is required to continue being a bridge node
until either its leader unvolunteers or until each `i unvolun-
teers.

The Need for Incentives. Consider what incentive a node
has to maintain its role in the backbone, or to forward cor-
rect neighbor information. Our protocol does not necessar-
ily provide incentive to perform tasks such as these, and
hence a further incentive mechanism is required. Such a
mechanism is orthogonal to our protocol, and could even be
out-of-band, like cash. In Section 7, we demonstrate that
the same punishment mechanism can be used to keep lead-
ers and bridge nodes in the backbone, as well as to ensure
that nodes transmit correct information to their neighbors.

5. SIMULATION RESULTS
In this section, we present results from ns-2 simulations of

our backbone construction protocol. First, we study the per-
formance when all nodes in the system are rational, that is,
no participants deviate from the protocol. Then, we inves-
tigate the system’s performance when nodes’ prior assump-
tions are false. We also analyze the price of irrationality
by allowing some of the nodes in the system to deviate by
refusing to be either a leader or a bridge node. Finally, we
compare the performance of our backbone algorithm with
SPAN, a cooperative backbone construction scheme. We
conducted our studies on three different topologies, each
generated from an urban setting in Portland, OR, model-
ing transceivers placed along the roadways, for 130, 227,
and 306 nodes [4].

All Peers Rational and Well-Informed. In this set of ex-
periments, all peers follow the bridge construction protocol
as detailed in Sections 3 and 4 (i.e., they are rational), and
each node knows that the distribution of costs is uniform

 0

 0.25

 0.5

 0.75

 1

 0.01 0.1 1 10 100 1000

P
r.

 o
f

C
o

n
n

e
c
ti
o

n

Time (sec)

 0.25

 0.5

 0.75

 1

F
ra

c
.

o
f

N
o

d
e

s
 P

e
r

R
o

le

Representative Simulation Run

Clients
Bridge Nodes

Leaders

 0.25

 0.5

 0.75

 1 A
v
g

. R
e

m
a

in
in

g
 B

a
tte

ry

Clients
Bridge Nodes

Leaders

Backbone fully

 connected

All links

 added

Figure 4: Representative backbone properties over
time, N = 227.

(i.e., they are well-informed). We present a sample run of
this scenario on the 227 node topology in Figure 4, and av-
erages of 10 runs for different topologies in Figure 5.

As shown in the top plot of Figure 4, the majority of nodes
are clients, and hence more than half of the network can
enter sleep mode. In fact, the greater the amount of overhead

required to perform a role, the fewer number of nodes that

must perform that role; there are fewer leaders than bridge
nodes, and fewer bridge nodes than clients. This yields a
longer network lifetime, as the fewest number of nodes are
assigned to the most costly roles. This trend is clear in other
cases as shown in Figure 5 as well.

One effective way of maximizing network lifetime is to
have high-battery nodes in the backbone, while putting low-
battery nodes to sleep. As shown in the middle plot of
Fig. 4, our system chooses the nodes in precisely this fash-
ion. As time progresses, higher-capacity nodes are chosen
first. Only as the need permits are lower-capacity nodes
eventually added to the backbone. When there are no bet-
ter choices for bridge nodes between a pair of leaders, spikes
in bridge node costs occur, such as around time 0.5.

Although our protocol requires nodes to wait for their
GVTD timer to expire before volunteering, it forms con-
nected backbones quickly. This is captured in the bot-
tom plot of Fig. 4, in which we show the probability of a
random source-destination pair being able to communicate
over the backbone. A connected backbone is formed very

Backbone Completion Time (s)
N Connected All Links
130 14.7 (13.0) 231 (230)
227 23.9 (14.4) 231 (202)
306 34.7 (22.1) 379 (234)

Table 1: Average backbone construction
time when all peers know the correct dis-
tribution of costs (uniform). The values in
parentheses denote standard deviations.

Avg. Rem. Batt. Completion Time (s) Cvg. of Max
N Ldr Brg Cli Connected All Links Conn. Comp

130 .397 .215 .064 873 (414) 1849 (454) .986 (.0108)
227 .357 .226 .073 1560 (236) 1970 (390) .908 (.109)
306 .376 .223 .065 1860 (656) 2170 (495) .985 (.0170)

Table 2: Results when all peers believe that the cost distri-
bution is uniform when it actually is long-tail (majority of
nodes have low battery). Due to many low-battery nodes,
only 25% of the runs resulted in a fully connected compo-
nent. The completion times shown are from those runs only.
The values in parentheses denote standard deviations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

130 227 306

P
er

ce
nt

ag
e

of
 N

od
es

Network Size

Percentage (Average Battery) of Leaders, Bridges, and Clients

Leader
Bridge
Client

.746

.545

.388

.690

.578

.395

.736

.592

.389

Figure 5: Percentage of leaders, bridges, and clients
in different topologies. The value on top of each bar
denotes the average remaining battery for each case.

quickly (10 sec in this plot). Since nodes only have informa-
tion about their local neighborhoods, they continue playing
bridge games until every leader is connected to each other
leader that is within 3 hops. It can take a considerable
amount of time to add all of these redundant links (more
than 3 minutes in this case). We show further evidence of
this in Table 1. For example, with 306-node networks, it
takes around 34 seconds to form a connected backbone, but
379 seconds to add all the links. Though many redundant
links are added, the backbone is not adversely affected; as
shown in the top of Fig. 4, few nodes are promoted into the
backbone once it is connected.

The Effect of Incomplete Information. In the GVTD anal-
ysis, we assume that the distribution F of nodes’ costs-to-
volunteer is public knowledge. Since this assumption may
not hold in practice, we performed experiments to under-
stand the effect of incomplete information on our protocol.
In this experiment, each node in the system assumes that
the cost distribution F is uniform, as we did in our analysis,
when in reality costs actually follow a different distribution.
Since it is unclear what a reasonable distribution of battery
values is in practice, we experimented with various distri-
butions. In this section, we present our results using the
Pareto distribution; we chose this because it is substantially
different from the assumed uniform distribution.

We present our results in Table 2. The quality of the
backbone our protocol constructs is very resilient to even
vastly inaccurate prior assumptions. For all system sizes in

Table 2, the distribution of costs for each role remains the
same as when the nodes are well-informed; leaders still have
the highest remaining capacity, and so on. The fundamental
difference is in the completion time; the average completion
times are orders of magnitude longer than the case with uni-
form distributions (see Table 1). This follows directly from
the analysis in Section 3; since most nodes’ battery levels are
very low, their assumptions of a uniform distribution leads
them to believe that their neighbors must have greater ca-
pacity, and would therefore be willing to volunteer first. The
coverage of the maximum connected component, also shown
in Table 2, shows that there is a small percentage of nodes
who have so little remaining battery that they are willing
to wait indefinitely for one of their neighbors to volunteer;
if they joined the backbone, they would immediately lose
their remaining battery. In 75% of our experiments, these
nodes were willing to wait longer than the duration of the
simulation (20 min).

Besides the long-tail distribution, we also ran experiments
when the actual costs follow a normal distribution. Our find-
ings were similar, and lead us to the following conclusion:
The distribution of costs according to roles remain indepen-

dent of the accuracy of the information. However, the time

to form a fully connected backbone can change significantly.

When nodes’ battery levels are lower than what they ex-
pect the average to be, they become increasingly patient,
and the backbone takes more time to converge (Table 2).
Conversely, when nodes have what they perceive to be a
higher-than-average battery level, they become more willing
to volunteer, and the backbone forms significantly faster.

The Price of Free-Riding. We study the effect of free-
riders on the system. By free-riding, we mean that the node
refuses to take any role in the backbone. We show that free-
riding has an adverse effect on each node in the network,
including the free-riders, and conclude that free-riding is
not a rational strategy.

We experimented with a varying number of nodes acting
as free-riders on the 130-node topology. Clearly, if all nodes
deviated in such a manner, the network would be completely
disconnected and yield no social benefit.

As expected, we see in Figure 6 that the connectivity
quickly declines with respect to the number of free-riders
in the system. In other words, rampant free-riding causes

system collapse, so utility-maximizing, rational nodes will
have no incentive to free-ride on such a large scale. When
only a small percentage of nodes refuse to be either leader
or bridge nodes, the backbone can still be connected. In the
inset to Figure 6, we focus on the regime with few free-riders
(between 0% and 10%), and include only the runs that re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

R
at

io
 o

f n
od

es
 c

ov
er

ed

Time (sec)

Coverage of Connected Components Over Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

R
at

io
 o

f n
od

es

Time (sec)

Roles of Nodes Over Time

Clients
Bridge Nodes

Leaders

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

A
vg

. B
at

te
ry

Time (sec)

Average Battery of Nodes Over Time

Clients
Backbone Nodes

Average

Figure 7: Repeated Game: Connectivity (left), fraction of nodes per role (center), and average remaining
battery (right) from a representative run. N = 130.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
r.

of
 C

on
ne

ct
in

g
to

 R
an

d.
 D

es
tin

at
io

n

Fraction of Nodes that Are Free-Riders

Connectedness At Completion

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.100.050.010

Figure 6: Given an increasing number of nodes who
refuse to take part in the backbone, the probabil-
ity of any node (selfish or not) being able to con-
nect to a destination chosen uniformly at random
declines. Even when the network forms a connected
backbone, the free-riders delay the process (inset).
N = 130.

sulted in a connected backbone. On the y-axis, we plot the
factor increase in time it takes for a connected backbone
to form over the time it takes when all nodes are rational.
Even when it does not fragment the network, free-riding neg-

atively affects each node’s utility by delaying the backbone

from becoming connected. Hence, a rational node trying to
maximize its network connectivity would not free-ride.

Repeated Game. We next investigate how repeatedly play-
ing the backbone games affects the quality of the backbone
over time. We ran the repeated version of the game on
the 130-node topology, which each node joined at the same
time. For simplicity, we set the service duration to 200 sec-
onds in this experiment. Events are not synchronized among
nodes; leaders inform their neighbors when they “unvolun-
teer” from the backbone when their service duration is over.

Our protocol requires the backbone to become discon-
nected to provide proper incentive for nodes to volunteer
(Section 4.3). The connectivity plotted in Figure 7 shows
that the backbone recovers extremely quickly, even when all
of the leaders in the system unvolunteer within a short time
of one another. The downward spikes in connectivity occur
when nodes stop being leaders; a new GVTD game begins

immediately thereafter. The connectivity drops to as low as
10% at these points, but almost immediately (fractions of
a second) returns to 80-90% connectivity. The time to con-
nect the final 10-20% of the network varies among iterations,
as different leaders and bridge nodes are chosen. Some, like
the iteration at 200s, experience virtually no loss in connec-
tivity, while others, like at 1400s, take several seconds to
connect the final 5% of the network.

Throughout the iterations of the repeated game, the frac-
tion of nodes corresponding to each role remained consistent
with those in the one-shot game experiments. As shown in
the center plot in Figure 7, even as the individual partici-
pants change over time, the absolute number of participants
in this representative run varied little with each iteration of
the game. This low variance is to be expected, since our
backbone has at most a constant factor more nodes than
optimal (Section 3.2).

To investigate whether the backbone always consists of
high-capacity nodes, we allow nodes’ batteries to decay dur-
ing the simulations. We differentiate the amount of energy
consumption for each operating mode according to the ac-
tual measurement in [10]. In Figure 7 (right), we com-
pare the average remaining battery of backbone and non-
backbone nodes to the system-wide average. During all rep-
etitions of the game, the average capacity of backbone nodes
is consistently greater than the system-wide average. The
converse holds for clients; at any point in time, nodes whose

battery levels are less than the system-wide average are less

likely to have to further drain their batteries by participating

in the backbone.
The overall quality and lifetime of any backbone is main-

tained by not just choosing high-capacity nodes, but by al-
ternating which of the high-capacity nodes volunteers over
time. This phenomenon occurs naturally within our proto-
col. Figure 8 shows the positive correlation between nodes’
remaining battery and the time they spend in the backbone.
These values are averaged over 10 different runs, each with
a different set of initial battery levels. There are some
low-capacity nodes in the backbone. This is due to private
information used in the protocol and topological constraints
in the network (e.g., articulation nodes).

Comparison with a Cooperative Scheme. We use SPAN [10]
as an example scheme for cooperative backbone construction
and compare it with our scheme. We ran the SPAN code
provided by its authors on the 306-node network with uni-
form distribution of battery levels, recording values as soon

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
S

pe
nt

 in
 B

ac
kb

on
e

(s
ec

)

Initial Remaining Battery

Figure 8: Repeated Game: Average time spent in
the backbone versus remaining battery. N = 130.
Note that the y-axis starts at 500.

as SPAN constructed a connected backbone.
On average, SPAN includes 84 of 306 nodes in the back-

bone: 61 fewer than our scheme (Figure 5). However, our
scheme includes more backbone nodes by design so that
messages can detour areas with misbehaving nodes using
redundant paths (Section 4.2). Interestingly, although our
proposed scheme does not assume cooperation, we achieve
higher average battery level of backbone nodes than SPAN
(0.640 vs. 0.543). This comes from the fact that, in addition
to battery levels, SPAN uses randomization when selecting
backbone nodes and thus includes many low-battery back-
bone nodes. As expected, the cooperative nature of SPAN
leads to shorter convergence time of 12.9 sec than that of
our proposed scheme (34.7 sec). In summary, our results in-
dicate that our proposed incentives-compatible scheme can

achieve similar performance to existing backbone construc-

tion schemes that assume cooperation.

6. IMPLEMENTATION
In order to understand the real-world performance of our

backbone protocol, we implemented our scheme and ran ex-
periments over a testbed consisting of laptops equipped with
wireless cards. In this section, we first describe the testbed
and our implementation before presenting results from our
experiments.

Testbed. We performed our experiments using 12 laptops
running GNU/Linux (kernel 2.6.11). All the laptops were
equipped with an 802.11g wireless card with the Atheros
chipset and controlled using the MadWifi driver. These lap-
tops were spread across different rooms on the same floor,
as shown in Figure 9.

We implemented the main protocol component in the user
level by making appropriate additions to the Click Modular
Router from MIT (http://pdos.csail.mit.edu/click/).
We also implemented driver-level changes to the MadWifi
driver in order to support sleep-mode operation. We further
describe these changes later in the section.

In our experiments, we measured the end-to-end through-
put and latency for different source-destination pairs, send-
ing traffic over the backbone resulting from running our pro-
tocol. We measured the end-to-end TCP throughput using

netperf (http://www.netperf.org) and end-to-end latency
using ping. We let the network stabilize by exchanging con-
trol messages (e.g., routing probe messages) between nodes,
before the actual transfer of application-level data. We re-
peated each experiment multiple times and used the average
of five different runs in this paper.

Backbone and Routing. The backbone protocol is imple-
mented entirely in the user space as a Click element and
uses our modified MadWifi driver to exchange packets. To
identify routes and forward packets between source and des-
tination, we use the Click routing element by the Roofnet
project (http://pdos.csail.mit.edu/roofnet/) that im-
plements the routing protocol proposed by Draves et al. [15].
We modified the routing protocol to reflect the rules imposed
by our backbone scheme, so that data packets are routed
along the backbone. All packets generated by or destined
to clients always go through their leader. When clients are
in sleep mode, their leaders buffer their incoming packets
until they wake up and request the packets. (We describe
more detailed mechanisms later in this section.) Note that
bridge nodes can receive packets directly from other back-
bone nodes in their vicinity (both leaders and bridge nodes).

The backbone layer is responsible for exchanging control
messages for backbone construction. Some of the messages
are periodic and used to disseminate the network state such
as neighborhood information. The backbone layer deter-
mines the appropriate waiting time based on the aggregate
neighborhood information and the amount of remaining bat-
tery. We use the mechanisms provided by ACPI (Advanced
Configuration and Power Interface) to retrieve the battery
level. The backbone layer also sends out other control mes-
sages such as LeaderDecl and executes appropriate device
driver commands depending on the node’s role (e.g., putting
the node to sleep).

In our experiments, we observe that there exist a signif-
icant number of high-error and uni-directional links. To
achieve efficient communication along the backbone, we should
not use those unreliable links to connect backbone nodes.
Although the problem of selecting good wireless links for a
path is well studied [12, 15], constructing a backbone com-
posed of both high-capacity nodes and high-quality links is
an open problem. In this paper, we use a simple threshold-
based scheme and ignore a link whose average signal strength
is lower than the threshold.

Driver-level Changes. The stock MadWifi driver for the
Atheros Chipset supports the usual managed, access-point
(AP), and ad-hoc modes. In order for our protocol to work,
we need to be able to put devices to sleep, buffer packets
at the leader for clients in sleep mode, and communicate
directly between neighbors. Unfortunately, no single oper-
ating mode supports all these operations.

We now describe our extension to the MadWifi driver to
implement our protocol. The 802.11 AP mode operation
natively supports buffering for associated nodes that are
asleep. Hence, we force the leader nodes into the AP mode
and force the non-leaders (i.e., bridges and clients) into man-
aged mode, with a leader as their associated base station.
To ensure that non-leader nodes stay connected with their
leader, we disable the default periodic scanning in the driver
(that searches for better APs nearby).

In our protocol, clients conserve energy by switching their

A

H

C

J

K

B

I

G

D

F

M

70.0m

E

28.6m

Figure 9: Experiment layout. In our backbone ex-
periment, 50% of the nodes (B, D, F , G, I, K) are
in sleep mode. Nodes with square (A, E, J) are
leaders, nodes in black dots (C, H, M) are bridges.

radios into the sleep state. However, the stock MadWifi
driver does not support switching radios into the sleep state
in any of the operating modes. Hence we extended the driver
to support sleep-state operation of devices that are in man-
aged mode. Clients enter the sleep state when they have no
packets to send or receive. Then, they periodically wake up
to receive beacon messages (100 ms in our implementation)
and check whether the leader has data packets buffered. The
node stays awake for the remaining beacon period if it has
an incoming message buffered at the leader or an outgoing
message in its own queue2; otherwise, it goes back to sleep.

With the stock MadWifi driver, APs can talk to nodes as-
sociated with it, or with other APs. Nodes in managed mode
can communicate only with their APs. Our protocol, how-
ever, demands that managed-mode nodes exchange packets
with one another. Hence we have extended the driver to
permit unrestricted communication between neighbors, re-
gardless of their operating mode.

Finally, in our testbed, the transmission range of any node
at low rates (e.g., 1 Mbps) was too large, and we could not
obtain interesting topologies. To reduce the effective range,
we pinned the MAC-level transmission rate at 11 Mbps for
all frames generated by the backbone protocol and applica-
tion. We can achieve a similar effect by reducing the trans-
mit power, but the driver did not support the functionality.

6.1 Results
In this section, we investigate the effect of using a back-

bone on overall network performance. We first compare
the end-to-end throughput and latency for various source-
destination pairs. We then quantify the amount of energy
saved by each client.

Effect of the Backbone. In Figure 9, we show the backbone
resulting from our protocol. In our experiments, we consider
the following flows with and without the backbone. For
Flow 1 (E → A), we use the same shortest path (E-C-
A) with and without the backbone, since all the nodes on
the path are in the backbone. In this scenario, we expect
two performance values (with and without the backbone)
to be similar. For Flow 2 (I → M), the path on top of
the backbone (I-J-M) is the same as the case without the

2An alternate option is to allow a node in sleep mode to
wake up and send a message immediately whenever it has
data to send.

Backbone No Backbone
T’put Latency T’put Latency

(Mbps) (ms) (Mbps) (ms)
Flow 1: E → A 2.36 4.07 2.45 3.64
Flow 2: I →M 2.42 56.38 2.38 3.93
Flow 3: E → G 1.28 64.58 2.32 3.62

Table 3: Throughput and latency with and without
backbone. Flow 3 follows a longer path over the
backbone, resulting in a drop in throughput. With
the backbone, Flows 2 and 3 have a sleeping node,
which results in larger latency.

backbone, but the source I is a client and in sleep mode.
From this scenario, we can observe how the performance
changes when we use the same path, but an end node is not
in the backbone. For Flow 3 (E → G), the path on the
backbone (E-M -J-G) is different from the path without the
backbone (E-C-G), and the destination G is a client. In this
scenario, we can observe how much performance degradation
we experience with the backbone.

In Table 3, we compare average throughput and latency
of each flow with and without a backbone. For Flow 1,
as expected, both end-to-end bandwidth and latency are
largely unaffected by the backbone since both the path and
node state (awake or asleep) remain unchanged. Flow 2, on
the other hand, experiences higher latency when using the
backbone. It is because node I is not in the backbone and
is in sleep mode (Figure 9). We still observe similar results
for throughput, since node I stays awake for most of the
time due to multiple outgoing packets and incoming TCP
acknowledgments.

Both the throughput and latency for Flow 3 are affected
when we use the backbone. The throughput reduces by
around 0.80 Mbps because the flow takes one extra hop
and experiences additional contention for the shared wire-
less medium. The latency also increases by ∼60 ms because
G is asleep; when J receives packets destined to G, J buffers
the packet until G wakes up for the next beacon (sent every
100 ms), learns about and requests the buffered packet. This
additional buffering delay, on average, is about half the bea-
con period. Although we do not report details due to space
constraint, we also performed experiments with concurrent
flows that share common links. Our results show that the
throughput using the backbone was comparable to the net-
work without a backbone.

Finally, we report the control overhead and convergence
time of our protocol. For the first five minutes of the pro-
tocol, there were 61 control messages per node, with the
message size being 56 bytes on average. The interval be-
tween periodic heartbeat messages is around five seconds,
and the vast majority (about 59 out of 61) of control mes-
sages are heartbeat messages. In this 12-node network, it
took around 7 seconds to complete the backbone formation,
which agrees with the results in Table 1.

Energy Consumption. Lastly, we investigate energy con-
sumption of nodes in different operation modes. For each
mode, we measured the battery consumed during a 5-minute
interval using ACPI. Since energy consumption can poten-
tially differ depending on the remaining battery capacity, we
recharged the battery to its full capacity after each run. We
also disabled components such as the LCD screen to min-

imize external effects. As a base case, a laptop without a
wireless card on average consumes 595 mWh for five min-
utes. With a wireless card, a client in sleep mode consumes
additional 50 mWh (or 645 mWh total), while leaders and
bridges (who are awake) consume additional 105 mWh (or
700 mWh total). For lower-power devices, the effect on node
lifetime from such energy savings will be significant.

7. HANDLING MISBEHAVIOR
We discuss various ways in which selfish nodes can devi-

ate from the backbone protocol of Section 4 in an attempt
to avoid entering the backbone. We show that such misbe-
havior that could affect our protocol can be detected and
handled via existing punishment mechanisms [3, 19, 21, 26,
27].

Misbehavior. There are several actions nodes could take
that would seemingly decrease the amount of time they have
to spend in the backbone. First, once a leader or bridge
node joins the backbone, it could attempt to simply not
fulfill its role, either by not forwarding packets for others
or by not attempting to connect to nearby leaders. Also,
a node u could send incorrect information to its neighbors
to get them to volunteer sooner than they would otherwise
or to keep them from asking u to be a bridge node. For
instance, u could pretend that all of its neighbors share one
leader, making it less likely that u’s leader would choose u

as a candidate bridge node.
Fortunately, such deviations can be detected. When u

sends incorrect information to its leader, u’s other neigh-
bors overhear this broadcast and can easily verify if it is
correct. They can similarly detect if u never forwards their
information to its leader. Watchdog [21] can be used as a
general-purpose detector of misbehavior.

Incentive (or Disincentive) Mechanisms. Participants need
a way to either punish their neighbors for misbehaving or
to provide enough positive reinforcement to keep them from
misbehaving in the first place. There are various philoso-
phies of whether to use incentives or disincentives; we do not
tread this ground here, but instead note that either can be
used in conjunction with our protocol. The punishment (or
reward) mechanism is orthogonal to our backbone construc-
tion protocol, and need only be used when nodes blatantly
attempt to free-ride. In fact, it can even be a completely
out-of-band mechanism, such as cash.

We envision our backbone protocol being deployed along
with one of the several incentive-compatible forwarding pro-
tocols, such as Sprite [26, 27], AdHoc-VCG [3], pathrater [21],
or channel jamming [19]. When a node detects misbehav-
ior at the backbone, it can simply push this information
up to the higher-layer incentive mechanism, which in turn
can dole out punishment. For example, if a node is running
pathrater, it could reduce its neighbor’s throughput when it
detects that it is sending incorrect neighbor information.

8. RELATED WORK
The work we have presented in this paper merges two

previously disjoint areas: (1) backbone construction in mul-
tihop wireless networks, and (2) protocol design in selfish
environments.

The problem of finding a connected backbone has been

well studied. Finding a small sized backbone has been the
most popular goal [2, 11, 16, 17]. Basagni et al. [5] present
simulation results for some of existing backbone schemes and
compare the performance in terms of completion time, back-
bone size, and message overhead. Some other schemes con-
sider node cost such as remaining battery and try to include
low-cost nodes in the backbone [10, 24]. In all these ap-
proaches, nodes are assumed to be cooperative in the back-
bone construction, whereas our work constructs backbones
in selfish environments.

There exist schemes that consider selfish wireless nodes.
Ad hoc-VCG [3] provides a strategy-proof mechanisms for
finding a minimum-energy path by carefully determining the
reward amount (e.g., using money) for forwarding nodes.
Zhong et al. propose a credit-based system in Sprite [26].
They assume the existence of a centralized Credit Clear-
ance Service (CCS). Each node receives a receipt for each
packet forwarded, and submits these receipts to the CCS
for compensation. Buttyán and Hubaux [8] use a similar ap-
proach using virtual currencies, but rely on tamper resistant
hardware to store information about the remaining currency.
Zhong et al. [27] design protocols that stimulate cooperation
for routing and forwarding using cryptographic techniques.
Note that all of these approaches require a public key infras-
tructure for correctness. In contrast, our proposed scheme
uses internal incentives only and does not require external
money or security infrastructure. As discussed in Section 7,
Catch [20] is similar to our proposed scheme in two aspects:
(1) it uses internal (dis)incentive of isolation and (2) requires
a detection mechanism such as Watchdog [21], which utilizes
the broadcasting property of wireless medium for misbehav-
ior detection.

A few recent papers consider the scenario where selfish
nodes do not follow the IEEE 802.11 MAC protocol, for ex-
ample, by using a small contention window. Cagali et al. [9]
apply the bargaining game theory to derive an optimal con-
tention window size that each of multiple cheater should use
depending on the total number of cheaters. Kyasanur and
Vaidya [18] present modifications to the IEEE 802.11 pro-
tocol to facilitate the detection of such selfish nodes using
RTS and CTS frames. Raya et al. [23] classify different MAC
level misbehavior techniques and present a monitoring sys-
tem that runs on access points to detect and prevent selfish
nodes from achieving higher performance. All these proto-
cols consider the issue of a node deviating from the MAC
protocol to achieve gain (e.g., higher throughput), which are
complementary to our work of building backbones above the
MAC layer.

9. CONCLUSIONS AND FUTURE WORK
We have examined how to enforce cooperation using in-

ternal incentive mechanisms in a multihop wireless network
consisting solely of greedy nodes. We generalize the well-
known Volunteer’s Timing Dilemma game, based on which
we develop an incentive-compatible scheme that constructs
efficient routing backbones. Our simulation and implemen-
tation results demonstrate that the resulting backbone forms
quickly and provides paths and battery savings comparable
to protocols designed for fully altruistic nodes.

This paper describes the first backbone construction pro-
tocol in selfish wireless networks and naturally leads to a
number of open questions: how to deal with node mobility
in selfish settings, how to handle node collusion, and how to

form efficient and resilient backbones against potential pun-
ishment in the system. Another interesting area of future
work will be to design internal incentive based mechanisms
that enforces correct end-to-end forwarding over backbones.

Acknowledgments
We thank Aravind Srinivasan and the anonymous review-
ers for their helpful comments. This work was partially
supported by NSF Awards CNS-626636, CAREER ANI-
0092806, and a fellowship from the Sloan Foundation. Dave
Levin was also supported in part by a UMD CSD Dean’s
fellowship.

10. REFERENCES
[1] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. A

multi-radio unification protocol for IEEE 802.11 wireless
networks. Technical report, Microsoft, MSR-TR-2003-41, June
2003.

[2] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder.
Geometric spanners for wireless ad hoc networks. ACM
Trans. on Parallel and Distributed Systems, 14(5), 2003.

[3] L. Anderegg and S. Eidenbenz. Ad Hoc-VCG: A Truthful and
Cost-Efficient Routing Protocol for Mobile Ad Hoc Networks
with Selfish Agents. In Proc. of MobiCom, 2003.

[4] H. Balakrishnan, C. L. Barrett, V. S. A. Kumar, M. V.
Marathe, and S. Thite. The Distance-2 Matching Problem and
its Relationship to the MAC-Layer Capacity of Ad Hoc
Wireless Networks. IEEE JSAC, 22(6):1069–1079, Aug. 2004.

[5] S. Basagni, M. Mastrogiovanni, and A. P. C. Petrioli. Localized
protocols for ad hoc clustering and backbone formation: A
performance comparison. IEEE Transactions on Parallel and

Distributed Systems, 17(4):292–306, 2006.

[6] C. Bliss and B. Nalebuff. Dragon-Slaying and Ballroom
Dancing: The Private Supply of a Public Good. Journal of
Public Economics, 25, 1984.

[7] T. X. Brown, J. E. James, and A. Sethi. Jamming and sensing
of encrypted wireless ad hoc networks. In Proceedings of ACM

MobiHoc, 2006.

[8] L. Buttyán and J.-P. Hubaux. Enforcing Service Availability in
Mobile Ad-Hoc WANs. In Proceedings of ACM MobiHoc,
pages 87–96. IEEE Press, 2000.

[9] M. Cagalj, S. Ganeriwal, I. Aad, and J. P. Hubaux. On Selfish
Behavior in CSMA/CA Networks. In Infocom, 2005.

[10] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span:
An Energy-Efficient Coordination Algorithm for Topology
Maintenance in Ad Hoc Wireless Networks. Wireless Networks,
8(5), 2002.

[11] F. Dai and J. Wu. An extended localized algorithm for
connected dominating set formation in ad hoc wireless
networks. IEEE Transactions on Parallel and Distributed
Systems, 15(10):908–920, 2004.

[12] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless Routing.
In Proc. of Mobicom, pages 134–146. ACM Press, 2003.

[13] A. Diekmann. Volunteer’s Dilemma. Journal of Conflict
Resolution, 29(4), 1985.

[14] J. Douceur. The Sybil Attack. In Proc. of IPTPS, 2002.

[15] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio,
multi-hop wireless mesh networks. In ACM MobiCom, 2004.

[16] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and
A. Srinivasan. Fast Distributed Algorithms for (Weakly)
Connected Dominating Sets and Linear-Size Skeletons. In Proc.

of ACM-SIAM SODA, 2003.

[17] S. Guha and S. Khuller. Approximation Algorithms for
Connected Dominating Sets. In Fourth Annual European
Symposium on Algorithms. Springer-Verlag, 1996.

[18] P. Kyasanur and N. Vaidya. Selfish MAC Layer Misbehavior in
Wireless Networks. IEEE Trans. on Mobile Computing, 4(5),
2005.

[19] D. Levin. Punishment in selfish wireless networks: A game
theoretic analysis. In NetEcon, 2006.

[20] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Sustaining Cooperation in Multi-hop Wireless Networks. In
Proc. of NSDI, 2005.

[21] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Proc. of Mobicom,
2000.

[22] J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil Attack
in Sensor Networks: Analysis & Defenses. In Proc. of IPSN,
2004.

[23] M. Raya, J.-P. Hubaux, and I. Aad. DOMINO: a System to
Detect Greedy Behavior in IEEE 802.11 Hotspots. In Proc. of
MobiSys, 2004.

[24] Y. Wang, W. Wang, and X.-Y. Li. Distributed low-cost
backbone formation for wireless ad hoc networks. In Proc. of

ACM MobiHoc, 2005.

[25] J. Weesie. Incomplete Information and Timing in the
Volunteer’s Dilemma. Journal of Conflict Resolution, 38(3),
1994.

[26] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A Simple,
Cheat-Proof, Credit-Based System for Mobile Ad-Hoc
Networks. In Proceedings of IEEE Infocom, April 2003.

[27] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing
incentive-compatible routing and forwarding protocols in
wireless ad-hoc networks: an integrated approach using game
theoretical and cryptographic techniques. In Proc. of ACM
Mobicom, 2005.

Appendix: Derivation of Optimal Waiting Time
Here we derive the expression for the optimal waiting time
given in Section 3.2.1. Let Tv(cv) denote the function for
the optimal waiting time for node v, where cv is v’s cost
to volunteer. Assume, as discussed in Section 3.2.1, that
each node knows its two-hop neighborhood, N 2. For the
ease of exposition, let N 1(v) include only the neighbors of
u that have not opted out of the GVTD game. Further,

define the set N 1
v (u)

def
= N 1(u) \ N 1(v), that is, the one-

hop neighbors of u that are not also one-hop neighbors of v.
Letting nu = ��N 1

v (u) �� , we have:

Qv(cv)
def
= Pr[v will have to volunteer]

= Pr[∀u ∈ N 1(v) : u will not volunteer before v]

A precise formulation of this would require knowing the
topology of the entire network, but, as discussed in Sec-
tion 3.2.1, we can only ensure that a node knows its two-
hop neighborhood. Hence we approximate the above event
to the event that each neighbor u of v either has greater cost
to volunteer or has a neighbor other than v that will allow
it to opt out:

Qv(cv) ≈ Pr[∀u ∈ N 1(v) : (cv < cu) ∨

((cv ≥ cu) ∧ ∃w ∈ N 1
v (u) s.t. cw < cu)]

≈ �
u∈N1(v) � (1 − cv) + � cv

0

(1− (1− y)nu) dy
= �

u∈N1(v) � 1 − 1− (1− cv)nu+1

nu + 1
 (3)

Bliss and Nalebluff [6] show that the partial derivative of
the optimal waiting time Tv(c) with respect to node v’s cost
c is:

∂Tv(c)

∂c
= −

c

1− c
·

1

Qv(c)
·
∂Qv(c)

∂c
(4)

Using the above approximation of Qv(c), we obtain the fol-
lowing:

∂Tv(c)

∂c
≈ �

u∈N1(v)

(nu + 1) c(1 − c)nu−1

nu + (1− c)nu+1
(5)

The integral of (5) yields our final expression for Tv(c).

