
Analyzing Ethereum’s Contract Topology
Lucianna Kiffer

Northeastern University
lkiffer@ccs.neu.edu

Dave Levin
University of Maryland

dml@cs.umd.edu

Alan Mislove
Northeastern University
amislove@ccs.neu.edu

ABSTRACT
Ethereum is the second most valuable cryptocurrency today, with
a current market cap of over $68B. What sets Ethereum apart from
other cryptocurrencies is that it uses the blockchain to not only
store a record of transactions, but also smart contracts and a his-
tory of calls made to those contracts. Thus, Ethereum represents a
new form of distributed system: one where users can implement
contracts that can provide functionality such as voting protocols,
crowdfunding projects, betting agreements, and many more. How-
ever, despite the massive investment, little is known about how
contracts in Ethereum are actually created and used.

In this paper, we examine how contracts in Ethereum are created,
and how users and contracts interact with one another. We modify
the geth client to log all such interactions, and find that contracts
today are three times more likely to be created by other contracts
than they are by users, and that over 60% of contracts have never
been interacted with. Additionally, we obtain the bytecode of all
contracts and look for similarity; we find that less than 10% of user-
created contracts are unique, and less than 1% of contract-created
contracts are so. Clustering the contracts based on code similarity
reveals even further similarity. These results indicate that there is
substantial code re-use in Ethereum, suggesting that bugs in such
contracts could have wide-spread impact on the Ethereum user
population.
ACM Reference Format:
Lucianna Kiffer, Dave Levin, and Alan Mislove. 2018. Analyzing Ethereum’s
Contract Topology. In 2018 Internet Measurement Conference (IMC ’18), Oc-
tober 31-November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3278532.3278575

1 INTRODUCTION
Ethereum is a novel cryptocurrency that uses a blockchain not only
to store a record of transactions, but also to store user-generated
programs called smart contracts and a history of calls made to those
contracts. Smart contracts expand the functionality and usability of
blockchain-based cryptocurrencies; users have developed contracts
to implement voting protocols, funding programs, gambling, and
many more. As a result, Ethereum is currently the second most valu-
able cryptocurrency with a market cap of over 68 billion dollars as
of May 2018, and various other cryptocurrencies are incorporating
smart contracts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278575

Smart contracts introduce a new layer of complexity and inter-
activity to the already-diverse ecosystem of cryptocurrencies. At
the bottommost layer, most cryptocurrencies are built on top of
a peer-to-peer communication substrate (e.g., the Kademlia [15]
distributed hash table in Ethereum), which have received significant
study [17]. At the topmost layer, users interact with one another,
perform transactions, and make large protocol decisions such as
when to fork—these dynamics, as well, have been studied exten-
sively [13]. Smart contracts sit somewhere in the middle: users
create them and interact with them (e.g., by contributing to a “go-
fund-me” contract), but they also serve as an intermediate layer, as
contracts can be built to rely on other contracts.

Although smart contracts are in many ways the essence of
Ethereum and other contract-based cryptocurrencies, surprisingly
little is known about them empirically. Many open questions re-
main: How many distinct contracts are there? How long-lived are
they? Towhat extent are users creatingwholly new contracts versus
copying existing code? How many contracts rely on the availability
of a given contract?

To answer these questions andmore, this paper initiates the study
of Ethereum’s smart contract topology. Viewing contracts as nodes
and contract calls as edges, we are able to measure the importance,
connectivity, and central points of failure of Ethereum’s smart
contracts. To do so, we collect the bytecode of all contracts published
to the Ethereum blockchain during its first 5 million blocks (almost
three years), and also collect a trace of an instrumented Ethereum
virtual machine (geth) to log all interactions between users and
contracts. We apply the results of this analysis to answer two broad
questions:

1. How is Ethereum being used? With the rampant speculation in
the cryptocurrency markets (e.g., Bitcoin), one may wonder how
this has impacted Ethereum. We find that while Ethereum’s mar-
ket cap and exchange rate has grown over 1,000-fold during our
measurement period, the fraction of activity on Ethereum that in-
volves contracts has remained relatively constant (roughly 1/3 of all
transactions are destined to contracts, rather than users). However,
we do observe evidence of a number of attacks on the Ethereum
platform, often exploiting mis-priced virtual machine operations
that were later adjusted.

2. How are contracts being used? Given the high level of interaction
with contracts, we examine how these contracts are created and
how they interact. Surprisingly, we find that roughly three times
more contracts today are created by other contracts than are created
by users; many of these contracts are sub-currency contracts, or
cryptocurries built on top of Ethereum. Additionally, we find that
roughly 60% of all contracts that have been created have never
been interacted with, suggesting there exists significant amounts
of dormant code and currency. Finally, we find extremely high
levels of code re-use and code similarity: the 1.2M user-created

494

https://doi.org/10.1145/3278532.3278575
https://doi.org/10.1145/3278532.3278575

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Lucianna Kiffer, Dave Levin, and Alan Mislove

contracts can be reduced to 5,877 contract “clusters” that have
highly-similar bytecode. This high level of code re-use suggests
that bugs or vulnerabilities in these contracts could easily impact
thousands more; such vulnerabilities have been discovered in the
past, and have led to hundreds of millions of dollars in lost value [12,
23].

2 BACKGROUND
We now provide background on Ethereum, how it works, and the
dataset that we collected for this paper.

2.1 Ethereum
Ethereum is a blockchain-based distributed system, much in the
spirit of related systems such as Bitcoin. However, it has a number
of unique features that make it distinct. Most notably, unlike other
blockchain-based systems that primarily serve as a virtual currency,
Ethereum serves both as a virtual currency and a distributed virtual
machine.1 Users can upload code to Ethereum—called contracts—
that are run in a deterministic fashion by all participants; each
contract has its own memory state and currency balance. The cre-
ating user and others can later invoke (or call) these contracts, in
response to which contracts can transfer funds or call and even
create other contracts.

Internally, Ethereum is based on accounts, which can either be
controlled by a public/private key pair (called external accounts;
these are for users) or controlled by code (called contract accounts).
Both types of accounts have storage (essentially a random-access
memory that maps 256-bit addresses to 256-bit values) and a credit
balance of Ether (the unit of currency in Ethereum). Accounts can
interact via messages that can come in multiple forms; one of these
is transactions that appear on the blockchain. Each transaction
contains a payload (which may be empty) as well as an amount of
Ether (which may be 0). The payload and Ether are used differently
in different contexts, as described below.

Ethereum has experienced a number of attacks on different as-
pects of its distributed virtual machine during its short lifetime.
These include attacks on coding errors in popular contracts (such
as the DAO attack that allowed an attacker to steal $50M and re-
sulted in a hard fork [13]), attacks on incorrect settings of the cost
of virtual machine opcodes (such as the “Spurious Dragon” and
“Tangerine Whistle” hard forks that changed the price of certain
operations [2, 3]), and contracts whose popularity inadvertently led
to denial-of-service-like behavior (such as the massive popularity
of “Crypto Kitties” that slowed the entire Ethereum network [4]).
As we will see later in the paper, responding to each of these attacks
has significantly altered the behavior of many contracts.

2.2 Opcodes
The Ethereum VM supports over 100 different instructions called
opcodes [26]. Each opcode has a different cost to execute, based on
the amount of resources that it requires. Many of these provide
typical low-level features like mathematical operations (e.g., ADD),
memory loads and stores (e.g., MLOAD), and other bookkeeping (e.g.,
GETPC). However, there are a few opcodes that we use when trying
to understand the Ethereum contract ecosystem, which we describe
1Technically, Ethereum offers a stack-based virtual machine and does not use registers.

below. First, contracts are created and destroyed using one of three
mechanisms:
Users create new contracts by sending a transaction to a special

0x0 address; the payload of this transaction is the bytecode
of the new contract.

CREATE is an opcode that allows a contract to create another
contract. One of the arguments is the raw bytecode that the
new contract should use.

SELFDESTRUCT is an opcode that allows a contract to self-destruct.
One of the arguments is a destination address to transfer the
remaining balance of the contract to.

Second, there are a few ways in which one account can call another
contract’s code:
Users can call contracts by sending a transaction to the contract’s

address, with the function being called and the inputs to the
function in the payload. This call may result in messages to
other contracts in the form of the opcodes below.

CALL is an opcode that allows a contract A to call contract C , and
C’s code runs in the context ofC . In other words,C’s storage
is used, so C’s code can read/write from C’s storage.

CALLCODE is an opcode that allows a contract A to call contractC ,
and C’s code runs in the context of A. Thus, A’s storage is
used for all reads and writes. Unfortunately, CALLCODE had a
bug in its implementation and has been deprecated in favor
of DELEGATECALL.

DELEGATECALL is a newer version of CALLCODE that fixes
CALLCODE and was released in 2015.

STATICCALL is the same as CALL, except that it does not allow any
state modifications during execution of the callee (or any
sub-calls). It was introduced in 2017 in response to certain
reentrancy attacks.

2.3 Dataset
One feature of Ethereum is that all contract state and code is public;
this is necessary to implement the distributed virtual machine.
This allows us to obtain data on how Ethereum is actually used by
running a modified version of the geth Ethereum client. As part of
its operation, the geth client will download and execute the entire
history of the Ethereum distributed virtual machine; we modify
this client to log all of the operations above (contract creations,
deletions, and calls) that were successfully executed. We ran this
client up through the 5,000,000th block, covering a time period
from inception (in 2015) through January 30, 2018. Additionally,
we query the geth client for all transaction data including the
bytecode of contracts. We collected the ETH exchange rates from
coinmarket.com (and verified it against other exchanges including
Coinbase and CoinDesk).

3 HOW IS ETHEREUM BEING USED?
We begin our analysis by looking at the overall usage of Ethereum
over time. Figure 1 plots the number of Ethereum transactions/day,
the number of transactions/day that are to contract addresses, the
number of transactions/day that fail to execute successfully, and
the price of Ether (ETH) per USD over the course of the first 5M
blocks. We make a number of observations.

495

Analyzing Ethereum’s Contract Topology IMC ’18, October 31-November 2, 2018, Boston, MA, USA

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

10/15 01/16 04/16 07/16 10/16 01/17 04/17 07/17 10/17 01/18
$0

$1

$10

$100

$1000

$10000

C
o

u
n

t

P
r
ic

e
 (

E
T

H
/U

S
D

)

Date

Transactions/Day
Contract Transactions/Day

Failed Transactions/Day
Price of ETH

Figure 1: Number of transactions per day (lefty axis), and the price of ETH in USD (righty axis), over our 3.5-year study period.
Note that both y-axes are in log scale. A dramatic increase in both transactions and price can easily be observed.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

10/15 01/16 04/16 07/16 10/16 01/17 04/17 07/17 10/17 01/18

C
o

u
n

t

Date

User-created contracts
CREATE

SELFDESTRUCT

CALL, CALLCODE, STATICCCALL, DELEGATECALL

Figure 2: The number of contracts created by users, the number created by CREATE, the number of contracts that are destroyed
via SELFDESTRUCT, and the number of contract calls (CALL, CALLCODE, DELEGATECALL, STATICCALL) over time.

First, we can observe that as with other blockchain-based systems
like Bitcoin, Ethereum’s currency has observed a dramatic increase
in value over the past few years. For example, the price of ETH at
the beginning of 2017 was roughly $10; a year later, it was over
$1,400. Since this rapid increase, the price of ETH has returned to
be closer to the $500 range, though the price remains extremely
volatile.

Second, in parallel with this increase in price, we can observe
that Ethereum’s usage—as measured by the number of transactions
in the system—has increased exponentially as well. Over calendar
year 2017, the average number of transactions per day increased
from roughly 40K to over 1M; despite the recent drop in price, the
number of transactions per day has recently remained stable.

Third, recall that transactions can either be to users (typically
simple transfers of funds, akin to Bitcoin) or to contracts (i.e., using
Ethereum’s virtual machine features). If we focus on the number
of transactions that are to contracts, we find that over the past
two years, these have consistently represented roughly 1/3 of all
transactions (e.g., in early 2017, there were roughly 12K transactions
to contracts per day; this grew to roughly 300K at the end of 2017).
Thus, largely independent of the wild volatility of ETH price and
resulting currency speculation, a significant fraction of the activity
in Ethereum is using the advanced contract features.

Fourth, if we focus on the number of failed transactions we ob-
serve per day, we can see that it typically is roughly 3–4 orders
of magnitude smaller than the number of total transactions (i.e.,
roughly 0.01%–0.1% of transactions typically fail). However, we can
observe two periods during which the number of failed transactions
is significantly higher than this: during a short period in October
2016 and during another, longer, period in November 2017. Dig-
ging into these periods, we find that both were caused by external
events: in October 2016, an attacker exploited the mis-pricing of
a number of operations to execute a denial-of-service attack on
the network; this was fixed with a hard fork that raised the price
of these operations. In November 2017, the launch of the “Crypto
Kitties” contracts caused a massive increase in usage of Ethereum;
this resulted in many failed transactions initially. These results in-
dicate that contract-centric activity can serve as a lens into broader
events in the Ethereum ecosystem.

To summarize, we see that a significant fraction of the activity
in Ethereum is using its smart contracts, and that exogenous events
can be reflected in how they are used. In the next section, we dive
into these contracts and explore how the are used and inter-related.

496

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Lucianna Kiffer, Dave Levin, and Alan Mislove

4 HOW ARE CONTRACTS BEING USED?
We now take a closer look at the Ethereum contracts, focusing first
on their lifecycles before examining how they are related to each
other.

4.1 Contract life cycle
We begin by examining how contracts are created, deleted, and
called. Figure 2 plots the number of contracts created by users, the
number created by CREATE, the number of contracts that are de-
stroyed via SELFDESTRUCT, and the number of contract calls (CALL,
CALLCODE, DELEGATECALL, STATICCALL) over time. First, we can
immediately observe that while, historically, the number of user-
created contracts have tended to dominate contract-created con-
tracts, that trend reversed in early 2017. In fact, today, there are
over 1.2M user-created contracts in existence while there are over
3.4M contract-created contracts! In looking into why there are so
many contract-created contracts, especially after April 2017, we
found that many of these are “token contracts”, or custom curren-
cies created on top of Ethereum that use contract-created contracts
to implement certain functionality. We see a similar change at that
time with the usage of SELFDESTRUCT as well, likely by the same
set of contracts.

Second, we can observe the October 2016 denial of service at-
tack more clearly here. During that time, malicious contracts were
repeatedly calling SELFDESTRUCT resulting in a expensive call (in
terms of CPU time) that was underpriced at the time; the usage of
this opcode jumped from under 10 calls per day across all contracts
to over 4M! With the hard fork that followed to address the issue,
the usage quickly dropped back to its normal rate.

Third, we can observe that there are a tremendous number of
contract calls throughout the lifetime of Ethereum. In fact, there
are roughly 1–2 orders of magnitude more contract calls than than
contract creations, suggesting that the average number of calls per
contract is significant. In the next section, we take a closer look at
how these contracts interact via calls.

Finally, we take a look at who is creating the contracts. We define
the set of contracts C0 as those contracts that were created directly
by users; similarly, we define other sets of contracts Ci as those
contracts that were created by a contract in Ci−1. Occasionally
for simplicity we will refer to C>0, which represents all contracts
not in C0 (i.e., all contract-created contracts). Table 1 presents a
breakdown of the number of contracts in each set. Surprisingly,
we find that the “tree” of contract creations is quite shallow: C3 is

Unique number of
Set Size Creators Bytecode Opcodes
C0 1,208,174 43,397 125,177 96,378
C1 3,490,092 3,930 2,368 2,325
C2 11,253 2,544 72 72
C3 1 1 1 1

Table 1: Breakdown of the number of contracts in each set,
along with the number of unique creators (addresses of
users or contracts), unique bytecodes, and unique opcodes
(bytecodes ignoring opcode arguments).

C0 C>0
Number of contracts 1,208,174 3,501,334

Number of
contracts

receiving at
least one

Transactions 407,403 193
CALL 72,335 1,482,835
STATICCALL 2 0
CALLCODE 59 3
DELEGATECALL 4,755 23,855

Table 2: Number of unique contracts that were ever the re-
cipient of a CALL or STATICCALL message, or have their code
called via CALLCODE or DELEGATECALL.

the final level of the tree, and it only contains a single contract.2
Additionally, if we look at the number of creators, we find that a
very small minority of the contracts and users are responsible for
most contract creation. For example, setC1 are contracts created by
contracts inC0; while there are over 3.4M contracts inC1 and 1.2M
contracts in C0, only 3.9K of the contracts in C0 are responsible for
creating all 3.4M contracts in C1.

4.2 Contract interaction graph
Thus far, we have examined how contracts are created. Nowwe turn
to examine how contracts are used by focusing on the call graph.
Recall from Figure 2 that there are a large number of transactions
sent to contracts every day; Table 2 breaks all of those calls down
by (a) the type of contract that is receiving the transaction (the
columns), and (b) the type of transaction that was sent (the rows).
We can immediately observe that most contracts in both C0 and
C>0 are never interacted with, either by being the recipient of a
transaction or via a call! For C0, less than 40% of contracts show
any interaction; for C>0, less than 42% do. While these contracts
could of course be called in the future, the large fraction of them
that have remained dormant is nevertheless surprising.

4.3 Contract equality
We now turn to examine how similar contracts are to one another.
Recall that when a user creates a contract, it is given a unique
contract address, even if some other user had previously created
a contract with exactly the same bytecode. Thus we begin by ex-
amining how often users create exactly the same contract, which
we call bytecode-level equality. From the geth client, we are able
to obtain the bytecode for all contracts that have not executed
SELFDESTRUCT. Table 1 shows the number of unique bytecodes at
each level of the creation graph. We can observe that many users
and contracts appear to be creating the same contracts (across 1.2M
user-created contracts, only 125K distinct bytecodes exist; across
3.4M contract-created contracts, only 2K distinct bytecodes exist).
This high level of code reuse for user-created contracts suggests
users are obtaining their code from a small set of locations, in-
cluding that if bugs exist in these contracts, the effects could be
widespread.

While examining this code, we observed that many contracts
appear to be the same, onlywith a few different arguments to certain
opcodes (typically destination addresses for currency transfers). We
2The only C3 contract is a result of a token factory contract (a contract that creates
token contracts).

497

Analyzing Ethereum’s Contract Topology IMC ’18, October 31-November 2, 2018, Boston, MA, USA

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

C
lu

s
te

r
s
iz

e

Cluster rank

Figure 3: The cluster sizes for user-generated contracts fol-
lows a long-tail distribution. Of the 125,177 bytecode-unique
user-generated contracts, there are only 16,373 clusters, the
largest comprising 26,144 contracts and 11,678 clusters of
size one.

therefore define two contracts to be equivalent under opcode-level
equality if their bytecode is identical when ignoring the opcode
arguments. Table 1 shows the number of unique contracts using
opcode-level equality in the final column. We find that about 25%
of the bytecode-level unique user-created contracts are not opcode-
level unique, indicating even further code reuse.

4.4 Contract similarity
Next, we seek to understand the extent to which users reuse por-
tions of code from one contract in another. Such code reuse can
have ramifications on the reliability of the contract ecosystem: a
bug or vulnerability in one contract could potentially be copied
elsewhere. Moreover, in blockchain systems like Ethereum, smart
contract code can never be changed as it is part of the permanent
blockchain state; instead, entirely new contracts need to be created
and migrated to.

To measure code reuse, we compute the similarity between two
contracts as follows: First, we disassemble all contracts and strip
out all arguments to opcodes (but maintain the order in which
the opcodes appear). Then, we compute the frequency of all n-
grams in both contracts (we use n = 5, but found similar results for
larger values of n). This yields, for each contract, a hypervector in
the high-dimensional space of 5-grams of Ethereum opcodes. To
compare two contracts, we compute the cosine similarity between
their respective hypervectors, resulting in a number between zero
(completely dissimilar) and one (identical).

We spot-checked dozens of contracts and found that, when two
contracts have a score of 0.90 or higher, they exhibit extensive
code reuse. We also verified that this similarity score is highly
transitive: for three contracts a, b, and c , if sim(a,b) ≥ 0.90 and
sim(b, c) ≥ 0.90, then sim(a, c) ≥ 0.90 over 88.8% of the time.

We use this similarity score to cluster contracts together. Specifi-
cally, we cluster together any two contracts with score 0.90 or higher.
We note that a contract belongs to the first cluster it matches to.
We run our clustering algorithm on the set of all user-generated
contracts, and on the set of all contract-generated contracts. Fig-
ure 3 shows the distribution of cluster sizes for user-generated
contracts. Of the 125,177 total contracts, we find that there are

only 16,373 clusters, indicating extensive code reuse throughout
the Ethereum smart contract ecosystem. We find the distribution
to exhibit a long tail; the largest cluster comprises 20.9% (26,144) of
all user-generated contracts; the top five clusters constitute 51.1%.
Conversely, there is a very long tail, with 11,678 clusters of size one.
We spot checked the top three largest clusters against the available
source code3 and found that the largest cluster is made up of to-
ken contracts, the second largest cluster is made up of contracts
involved in the DDoS attack of October 2016, and the third largest
cluster is made up of wallet contracts.

For contract-generated contracts, we also saw high levels of
code reuse. They, too, exhibit a long-tail distribution, with a largest
cluster of 361 contracts. Code reuse among these forms of contracts
is not quite as rampant as with user-generated contracts; of the
2,440 contracts, we found 694 clusters, the largest five of which
comprise 37.5% of all such contracts. We also compared the source
code of the three largest clusters of the contract-generated contracts
and found that all three clusters are made up of token contracts.

4.5 Summary
The results in this section have a consistent message: that
Ethereum’s smart contract ecosystem has a considerable lack of
diversity. Most contracts reuse code extensively, and there are few
creators compared to the number of overall contracts. It remains to
be seen whether this lack of diversity is endemic to smart contracts
(or Ethereum itself), or if it is merely a reflection of the relative
youth of smart contracts as a whole—perhaps as new contracts and
modes of interactions are developed, we will see an increase in
diversity.

In the mean time, the high levels of code reuse represent a po-
tential threat to the security and reliability. Ethereum has been
subject to high-profile bugs that have led to hard forks in the
blockchain [13] or resulted in over $170 million worth of Ether
being frozen [1]; like with DNS’s use of multiple implementations,
having multiple implementations of core contract functionality
would introduce greater defense-in-depth to Ethereum.

5 RELATEDWORK
There has been extensive work towards developing an empirical
understanding of various aspects of the cryptocurrency ecosystem.
Early work in this space inspected the transactions taking place on
Bitcoin’s blockchain including transaction patterns [5, 22], prop-
erties of repeated subgraphs [16] and hypergraphs [21], and the
UTXO set [10]. Work focusing on privacy and anonymity of Bitcoin
transactions have looked at transaction history [6], address cluster-
ing [19] andmixing services [18] to de-anonymize addresses. Others
have focused on transactions related to scams, Ponzi schemes and
Ransomware [8, 24, 25] and the impact of what kind of data is stored
as part of Bitcoin transactions [14].

Other work has studied Bitcoin’s peer-to-peer network—
including how information propagates [9], how networks react
to partitions [13], how to leverage the peer-to-peer topology to in-
fer which nodes are more influential or linked to mining pools [17],

3Contract source code is available at etherscan.io and can be verified against the
bytecode.

498

IMC ’18, October 31-November 2, 2018, Boston, MA, USA Lucianna Kiffer, Dave Levin, and Alan Mislove

and other studies on decentralization in Bitcoin and Ethereum’s
peer-to-peer networks [11].

Conversely, in this paper, we explore a unique and growing as-
pect of the cryptocurrency ecosystem: smart contracts. The most
closely related work to ours involve analysis of the kinds of con-
tracts being written. Norvill et al. clustered 998 Ethereum contracts
whose source code were available on the block explorer etherscan.io
at the time of their study [20]. They looked at the frequency of the
most common words in the code and clusters based on context
triggered piecewise hashes of the bytecode of these contracts. Bar-
toletti and Pompianu studied 811 Ethereum contracts with available
source code [7] and categorized them into 5 categories: financial, no-
tary, game, wallet and library. They look at how many transactions
relate to each category and find that around 66% of transactions to
contracts at the time were to financial categorized contracts. They
did a similar analysis for Bitcoin transactions which use a scripting
language and encode some metadata in transactions and also found
that financial categorized transactions were the most popular. Their
analysis of the Ethereum contracts included manually inspecting
them to identify different design patterns.

Compared to both of these studies, we perform our analysis over
a much larger scale of contracts. We are not limited to contracts
for which there is publicly available code; we measure contract
similarity based on n-grams of the decompiled bytecode for all
unique bytecodes, allowing us to examine similarity at a much
larger scale. As a result, we believe our work to be an important
first step towards developing a more comprehensive understanding
of the smart contract ecosystem.

6 CONCLUSION
Smart contracts are a fundamental addition to cryptocurrencies;
just as it is important to study the peer-to-peer network topology
and user-to-user transaction activity, we argue that it is equally
important to study how users interact with smart contracts. In this
paper, we have initiated the study of Ethereum’s smart contracts
at-scale by investigating its smart contract topology. Our initial
findings indicate high levels of contract activity (largely indepen-
dent of price), but low levels of contract diversity: most contracts
are direct- or near-copies of other contracts. While this is likely a
driving force behind Ethereum’s success (copying another’s con-
tract is an easy way to start using the system), it also represents a
potential risk, if buggy or vulnerable code were to be copied.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.
This research was supported in part by NSF grants CNS-1409191,
CNS-1409249, CNS-1564143, CCF-1422715 and CCF-1535929.

REFERENCES
[1] Another parity wallet hack explained. https://medium.com/@Pr0Ger/

another-parity-wallet-hack-explained-847ca46a2e1c.

[2] Spurious dragon hard fork. https://blog.ethereum.org/2016/11/18/hard-fork-no-
4-spurious-dragon/, November 2016.

[3] Tangerine whistle. https://blog.ethereum.org/2016/10/18/faq-upcoming-
ethereum-hard-fork/, October 2016.

[4] Cryptokitties craze slows down transactions on ethereum.
http://www.bbc.com/news/technology-42237162, December 2017.

[5] L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on the
block: an analysis of modern blockchains. arXiv preprint arXiv:1606.06530, 2016.

[6] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating
user privacy in bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 34–51. Springer, 2013.

[7] M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: plat-
forms, applications, and design patterns. In International Conference on Financial
Cryptography and Data Security, pages 494–509. Springer, 2017.

[8] H. Basil Al Jawaheri, M. Al Sabah, and Y. Boshmaf. Measurement and analysis
of bitcoin transactions of ransomware. In Qatar Foundation Annual Research
Conference Proceedings, volume 2018, page ICTPD1026. HBKU Press Qatar, 2018.

[9] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network.
In International Conference on Peer-to-Peer Computing (P2P), pages 1–10. IEEE,
2013.

[10] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-Joancomartı.
Analysis of the bitcoin utxo set.

[11] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer. Decentralization in
bitcoin and ethereum networks. arXiv preprint arXiv:1801.03998, 2018.

[12] A. Hertig. $160 million stuck: Can parity still shake up ethereum? https://www.
coindesk.com/startup-lost-160-million-still-wants-shake-ethereum/.

[13] L. Kiffer, D. Levin, and A. Mislove. Stick a fork in it: Analyzing the ethereum
network partition. In Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, pages 94–100. ACM, 2017.

[14] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann, O. Hohlfeld, and
K. Wehrle. A quantitative analysis of the impact of arbitrary blockchain content
on bitcoin. In Proceedings of the 22nd International Conference on Financial
Cryptography and Data Security (FC). Springer, 2018.

[15] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages
53–65. Springer, 2002.

[16] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Internet Measurement Conference, pages 127–140. ACM, 2013.

[17] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhat-
tacharjee. Discovering bitcoin’s public topology and influential nodes. et al.,
2015.

[18] M. Moser. Anonymity of bitcoin transactions: An analysis of mixing services. In
Münster Bitcoin Conference (MBC), 2013.

[19] T. Neudecker and H. Hartenstein. Could network information facilitate address
clustering in bitcoin? In International Conference on Financial Cryptography and
Data Security, pages 155–169. Springer, 2017.

[20] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen. Automated labeling
of unknown contracts in ethereum. In Computer Communication and Networks
(ICCCN), 2017 26th International Conference on, pages 1–6. IEEE, 2017.

[21] S. Ranshous, C. A. Joslyn, S. Kreyling, K. Nowak, N. F. Samatova, C. L. West,
and S. Winters. Exchange pattern mining in the bitcoin transaction directed
hypergraph. In International Conference on Financial Cryptography and Data
Security, pages 248–263. Springer, 2017.

[22] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph.
In International Conference on Financial Cryptography and Data Security, pages
6–24. Springer, 2013.

[23] D. Siegal. Understanding the dao attack. https://www.coindesk.com/
understanding-dao-hack-journalists/.

[24] M. Vasek and T. Moore. There’s no free lunch, even using bitcoin: Tracking the
popularity and profits of virtual currency scams. In International conference on
financial cryptography and data security, pages 44–61. Springer, 2015.

[25] M. Vasek and T. Moore. Analyzing the bitcoin ponzi scheme ecosystem. In Bitcoin
Workshop, 2018.

[26] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

499

etherscan.io
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://www.coindesk.com/startup-lost-160-million-still-wants-shake-ethereum/
https://www.coindesk.com/startup-lost-160-million-still-wants-shake-ethereum/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum
	2.2 Opcodes
	2.3 Dataset

	3 How is Ethereum being used?
	4 How are contracts being used?
	4.1 Contract life cycle
	4.2 Contract interaction graph
	4.3 Contract equality
	4.4 Contract similarity
	4.5 Summary

	5 Related Work
	6 Conclusion
	References

