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Abstract—
Interaction between entities who may not trust each other

is now commonplace on the Internet. This paper focuses on
the specific problem of sharing information between distrusting
parties. Previous work in this area shows that privacy and utility
can co-exist, but often do not provide strong assurances of
one or the other. In this paper, we sketch a research agenda
with several directions for attacking these problems, considering
several alternative systems that examine the privacy vs. utility
problem from different angles. We consider new mechanisms
such as economic incentives to share data or discourage data
leakage and a hybrid of code-splitting and secure multi-party
computation to provide various assurances of secrecy. We discuss
how to incorporate these mechanisms into practical applications,
including online social networks, a recommendation system based
on users’ qualifications rather than identities, and a “personal
information broker” that monitors data leakage over time. We
hope that this paper will spark ideas and conversation at ACITA
about directions most worth pursuing.

I. INTRODUCTION

The rise of distributed information management (DIM)
applications has followed the rise of the Internet. In these
applications, users store information on a site for the purpose
of sharing it with recipients. Users have incentive to share data;
for example, users build social capital when sharing data on a
social network like LinkedIn,1 creating future opportunities
for work or collaboration. On the other hand, sharing too
much information is dangerous because the recipients of the
information, or the system itself (assuming it is not controlled
by the information owner), may have incentive to share
sensitive data with eavesdroppers that a user has not authorized
to view his data. For example, Alice could report to Bob’s
former employer that he has joined a company in violation of
his former employer’s IP agreement, having discovered this
information on LinkedIn.

Government entities such as the military are in an analogous
situation: they have incentive to share sensitive information—
about potential targets, suspicious activities, technical prob-
lems, or vulnerabilities—with partners at differing levels of
trust. Misuse of this information may result in harm. But harm
is also possible if information is not shared, as the information
could be necessary to prevent loss of life, assets, or advantage.

Our research aims to design mechanisms and protocols
toward building applications that aim to balance these com-
peting principles of need to know with responsibility to share.
We would like both sites and users to be disincentivized or
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prevented from sharing information with eavesdroppers, while
at the same time to be incentivized to share information, to add
value to their work. In this paper, we outline a research agenda
toward building more secure information management applica-
tions. We begin (§ II) by describing three styles of application
that motivate our work—online social networks, information
hubs, and sensor networks—and describe the goals and in-
centives for users and administrators of these applications.
Next we discuss ideas for employing economic models and
mechanisms for describing the incentives of participants in
these applications with the goal of developing policies that
balance the risk and reward of information sharing (§ III). In
the following two sections we consider mechanisms useful for
permitting no more sharing than necessary between mutually-
distrusting parties (§ IV), including means to quantitatively
estimate the information released during an interaction (§ V).
Finally, we sketch future plans and conclude.

II. APPLICATIONS

In this section we present three applications that serve as
motivation for the mechanisms we discuss. The first, online
social networks, have shown exponential growth in the number
of users over the past few years. The second, a collaborative
reviewing application, is a general class which encompasses
many current and future uses. The third, sensor networks, has
both scientific and military applications.

A. Online social networks

An online social network (OSN) is an application through
which users can easily share certain types of information, such
as personal expertise and interests, noteworthy professional or
personal events, photos, or messages. One popular OSN is
Facebook, which has upwards of 500 million active users,
50% of which log in at least once per day [1]. LinkedIn is
another popular social network specializing in professional
interactions, e.g., for finding employment and making business
connections. The Pentagon has recognized that OSNs are
valuable for military personnel, recently reversing a ban on
the services [2] and launching its own social media hub to
better facilitate intra-organization interactions [3].

In the terminology of distributed information management
applications that we introduced above, the site is the OSN and
users and recipients are OSN participant members. Participants
are attracted to OSNs because they make it easy to organize
information and share it among a select group, where such
information sharing would have been tedious or non-scalable
otherwise. Several OSNs serve as a platform for third-party



applications with which their users can interact, and these
interactions are often customized based on a participant’s
personal data: one popular Facebook application is a calendar
that tracks the birthdays of a user’s friends [4].

Most OSNs are free to users, adding to their appeal, and
generate revenue from advertising. Users’ personal data, all
of which is available to the site, is of particular interest, since
it can be used to display targeted ads. For example, based on a
user’s status posts and profile information the site can attempt
to select ads a certain user is more likely to be interested in;
better selection leads to more profit.

To summarize, participants have incentive to share data with
their friends and associates and with the site and third-party
apps to improve their interaction experience. Third-party appli-
cations also often rely on advertising and thus want to attract
as many users as possible to their own sites; customizing the
experience based on user data is thus useful. The site has
incentive to attract as many users as possible and to collect
as much data as possible to increase its revenue. Indeed,
researchers have observed that the terms-of-use agreement for
Facebook is quite draconian [5]; it requires that users “not
provide any false personal information on Facebook”, “keep
[their] contact information accurate and up to date”, and grant
Facebook a non-exclusive license to any content a user posts.

In the setting of OSNs, our interest is to develop techniques
that facilitate sharing without unnecessary information release.
Our approach is to design policies that permit users to make
informed decisions about what information they wish to share
and mechanisms that enforce fine-grained sharing policies.

B. Collaborative reviewing

Another class of application that must balance the pri-
vacy/utility trade-off is what we call an information hub. Pop-
ular examples of such systems are Slashdot [6] and Reddit [7].
The users of information hubs post snippets or links to articles
they think might be of interest, and recipients respond with
comments about the posting. Some sites bubble highly-favored
posts to the top, incentivizing clever and interesting content
from users. The hosting service itself has incentive to acquire
as many readers as possible, usually to increase ad revenue.

Information hubs are valuable to the defense commu-
nity. The U.S. intelligence community uses Intellipedia [8],
a classified variant of Wikipedia [9], for organizing infor-
mation of inter-agency interest. STRATCOM’s 4-star blog
aims to serve a similar purpose, encouraging contributions
outside the chain of command [10]. Here there are similar
incentives: posts/articles are rated directly or indirectly and
posters/authors can be commentators and vice versa. This
encourages posting of high-quality information in order to
improve reputation.

In addition to such existing examples of information hubs,
we also conceive of a collaborative reviewing system for
academic research, a web-based system exhibiting many in-
formation sharing issues we are studying as well as being
a useful tool for the research community. The site would
host not only academic papers but also public reviews of

these papers. Reviews include numerical scores and textual
comments and serve to inform others about the papers they
might be interested in reading. Users of the site will have
a profile that includes relevant information, such as their
name, job, papers they have authored, and their interests
coupled with their expertise; e.g., Bob might be interested
in embedded systems but not know that much about the
topic, and Alice might be interested in sensor networks and
be an expert. Subsequent consumers of these reviews can
rate them as well, either with a simple “thumbs up” as with
Reddit [7], or with more detailed information, such as whether
the commenter agrees with a review’s conclusion or if the
review is technically sound or thorough. The weight of these
ratings may depend on the rater’s credibility. Applying these
ideas, the site is ultimately useful for identifying high-quality
papers and area experts, i.e., those whose reviews or papers
are highly regarded.

Reviewers may sometimes wish to remain anonymous.
This is for the same reason the scientific community uses
anonymous peer-reviewing today—to protect a reviewer who
provides a negative opinion from backlash. At the same
time, anonymity (without further assurance) may reduce the
credibility of the review. Thus there is incentive to share some
information so that others can judge the review, but not enough
information to identify the reviewer. Another problem is
weighing a reviewer’s self-proclaimed expertise. Users would
like corroboration of these claims. Such corroboration could
come from other users who may agree to the user’s expertise,
or it may come from artifacts, such as published papers (or
program committee memberships) in the declared area of
expertise. The reviews themselves add to their own credibility
the more they stand alone in justifying their conclusions.

In short, there is incentive to share information—to increase
reputation and to improve the overall value of the system—but
some disincentive as well—due to the potential for negative
backlash. If we imagine such a system used in a military
setting, as with the STRATCOM blog, we can imagine a
similar set of issues: commanders want the best information
but may blame the bearer of bad news, thus incentivizing
anonymity but in doing so potentially reducing credibility.
Finding ways to balance these competing aims is an important
research challenge.

C. Sensor Networks

Operators of sensor neworks must also balance the trade-off
between sharing certain data (measurements and aggregates)
while protecting others (device locations). An adversary that
learns the locations of sensors can interfere with measurements
or capture the sensors [11].

Sensors networks do not exactly fit the DIM model explored
in this paper. Specifically, the users (sensors) cooperate with
the site (the operator), which determines the policies for
sharing with recipients (third-parties that wish to use sensor
data). However, they can still benefit from the techniques we
discuss. As an example, consider two operators of distinct
networks, N1 and N2, located near each other. N1 wishes



to use readings from N2 to augment its own data collection.
For sharing to be successful, each must take precautions. At
the very least, N2 must aggregate (or otherwise mask) its data
so that N1 cannot determine the location of the sensors. N2

may wish to further limit the data it shares so that N1 cannot
use it to attain a tactical or competitve advantage over N2. On
the other hand, N1 must ensure that N2 is not sharing bogus
data. It can do so by, for instance, ensuring that readings from
sensors closest to N2’s sensors are similar. It can also compare
aggregated statistics (i.e., the average temperature over the past
week is the same in both networks) for consistency.

III. DEVELOPING SHARING POLICIES

Each user of a DIM application must determine what
information he is willing to share with each potential recipient.
His choice is limited by the sorts of sharing policies the
site will enforce; we consider mechanisms for enforcing fine-
grained policies in the next section. For now, consider policies
that are specified as access controls for users acting in certain
roles. For example, Facebook policies apply to friends, friends
of friends, the public, and sometimes user-specified groups.

To determine an effective sharing policy, users must balance
the utility/privacy trade-off of sharing the information. To al-
low them to do so, we wish to determine what information can
best inform their choices. Specifically, we ask: (1) What data
can the system monitor or gather that describes the cost/benefit
trade-off? (2) How can this information be gathered reliably
and efficiently? (3) What metrics and algorithms can use this
data to effectively inform a sharing decision? We present some
exploration of these questions in the remainder of this section.

A. Valuing information: Indicators of whether to share or not

When DIM users consider whether to share information
or not, their concerns will be abstract. For example, if a
user Bob shares his religious beliefs on an OSN, he may
encourage communication from like-minded people (whom
he may not otherwise realize are like-minded) and develop
stronger relationships with them. On the other hand, he may
also tickle the prejudices of others and elicit a negative
reaction. The question Bob must answer is: will the benefit
outweigh the cost?

To answer such questions, users would like to gather evi-
dence that support a decision to share or not to share. Such
evidence could take many forms:
• Positive vs. negative: a decision to share can cause events

that are either good or bad for the user.
• Observed vs. provided: a user may be alerted to the ram-

ifications of a decision either through observed evidence
(e.g., losing friends in an OSN) or through soliciting re-
actions directly from users (e.g., a posted article received
many “thumbs-down” votes).

• In-band vs. out-of-band: the application by which the
information is shared (e.g., the OSN) can gather the
evidence, or it may be acquired via some means outside
the system.

• Trustworthy vs. untrustworthy: The reputation of the
evidence provider (whether a system, individual, or oth-
erwise) may be taken into account when using it to assess
value.

Creating policies that incorporate evidence requires evaluat-
ing various forms of evidence. A first step is to identify useful
evidence by observation of existing DIM use.2 By gathering
data of user activities over time, we can create a taxonomy of
evidence, its sources, and effects in real-world usage to help
guide user policies. We can also observe a user’s behavior
over time. If a user’s activity increases, then we can infer that
some positive value is being received from interaction. By
observing many users’ activities, we can identify events that
correlate with various levels of site usage.

As the above information arises from the DIM itself, it
can be reliably gathered. We may also wish to correlate such
data with externally-visible data, such as public Web sites. For
example, a Georgia school teacher was recently fired because
parents complained of information and photos posted on her
Facebook page [13]. Such a negative outcome is a powerful
disincentive to certain kinds of sharing and such knowledge is
useful when determining policies. One challenge is developing
means to automatically acquire such information and to assess
the credibility of the source.

B. Economics-based metrics

To encourage productive sharing and discourage illicit in-
formation release, we can apply ideas from markets. Placing
monetary value on sensitive data enables a broader range of
policies. When a user shares data with a site, they agree upon a
price for the data. The price does not have to be a fixed value—
it can represent recurring payments, for example, $1 per month
that the user allows the site to use the data. Compensating users
for their data gives them some recourse if data is leaked.

This approach is similar to the existing Internet economic
model built around advertising. Sites share their resources
(the attention of readers) with a third-party (the advertiser) by
placing an ad on their site and receive compensation in return.
The type of ad and amount of compensation varies depending
on the composition and size of the audience. Advertisers pay
the site either a fixed price for a given amount of space on a
Web page, or on a per-impression/per-click model that depends
on how often the ad is displayed or clicked on. We borrow
concepts from this model and show how they apply to users
sharing their resources (data) with a third-party (a hosting site).

Marketplaces and pricing: There are many possible meth-
ods of data valuation. We envision a “data marketplace,” much
like a stock ticker, that reports on the current “going rate” of
various pieces of information. When a user shares data with a
site, the two parties enter into an agreement on what the data
is worth and how the user will be compensated for it (possibly
only in the case of leakage).

2One problem with such a data-based study on Facebook in particular is
that user data is proprietary, and storing it, even when it is accessible, is a
violation of the Facebook license agreement. The MySpace user data [12]
archive may be useful in this regard.



Payment schemes: We present three different possible pay-
ment schemes: a one-time payment upon data transfer, a one-
time payment upon data leakage, and a recurring payment
(possibly depending on usage).
• One-time payment upon data transfer. In this scheme,

the site pays the user the current going rate for each
piece of data that is shared. Once the site has the
data, it assumes ownership and may share the data with
whomever it chooses (as it has no incentive to not share
the data). One advantage of this system is that no moni-
toring system is required to detect leakage. However, care
must be taken to ensure the user-provided information is
correct—a user could easily create many accounts and
share bogus data to collect multiple payments.

• Recurring payment. In this scheme, in addition to a
possible up-front payment, the site makes payments on a
regular basis of an amount that is a function of the data
the user shares, how often it is viewed, how much the
user interacts with the site, and other factors. With this
scheme the user must employ a method to detect leakage
but the incentive to create fake accounts is minimal, as the
payment depends on the amount of interaction with the
site, which imposes a cost on maintaining a fake profile.
However, there is no guarantee that the site will erase or
cease to use the user’s data once the contract is broken;
data transmission is irreversible. Hence this scheme is
most appropriate for short-lived data, such as preferences.

• One-time payment upon data leakage. In this scheme,
the user stores data with the site and trusts it to not share
with eavesdroppers. The site and the user enter into a
contract dictating how the site will compensate the user
if and when the site ever leaks the data, intentionally or
otherwise. This arrangement requires a monitoring system
to inform the user of when data is leaked, and a method
to prove that the site leaked the data. Here, a user has no
incentive to create a fake profile, as there is no guarantee
that the data will ever be leaked. Thus the information en-
tered is more likely to be accurate. However, monitoring
systems are expensive and often incomplete [14]. As this
scheme provides the strongest disincentive to leak data,
it is most appropriate for sensitive or unchanging data.

These policies are compatible with today’s advertising-
based sites (indeed, we expect that sites will be able to pay
users with the money their earn by using the user’s own data!).
The first two policies allow sites to earn revenue in the same
way they do today. The last still allows sites to show un-
tailored ads and, because it is appropriate for sensitive data,
allows the site to charge users for secure storage of their data.
By using (a combination of) these three policies, a user and
a site can enter into a mutually-agreeable contract that gives
incentive to users to share data and to sites to protect that data.

IV. ENFORCING POLICIES: THE PRINCIPLE OF LEAST
SHARING

One way to avoid unauthorized release of information is
not to share it in the first place. For example, rather than send

private data to OSN servers which perform ad selection, an
alternative would be for the user to run the OSN’s ad selection
algorithm on locally-stored data and provide the OSN with the
result. If the choice of ad does not identify the user, the OSN
learns less about the user but can still serve targeted ads.

Such an approach is a form of privacy-preserving compu-
tation. Abstractly, the goal of privacy-preserving computation
is as follows, simplified to client (user) and server (site). We
wish to compute some function F (x1, . . . , xn, y1, . . . , ym)
where x1, ..., xn are private data to the server and y1, ..., ym
are private data to the user. After the computation, both sides
know the output of F , but do not learn anything about the
other’s private input, other than what is implied by the result.

A. Prior work

Prior work has taken two basic approaches to solving the
privacy preserving computation problem, computation splitting
(CS) and secure multiparty computation (SMC). The first
is exemplified by Jif/Split [15], [16] and its descendant,
Swift [17], and the second by Fairplay [18], [19]. We describe
each in turn and then consider generalizations of these ideas
that we think are worth exploring.

Computation splitting We can protect x1, ..., xn and
y1, ..., ym by splitting the computation between client and
server, using static information flow analysis [15]. Essentially
both sides will declare policies about their data, including
declassifications that allow some information about the data to
be shared in particular ways to the other party. For example,
rather than releasing all of a credit card number to the remote
party, the declassification may release only its last four digits.
The static analysis ensures that any such declassifications take
place before any secret data is sent to the remote party. Code
that operates on non-secret data can be placed on either the
client or server, as the code is not considered secret (we will
consider altering this assumption shortly).

In the end, both parties learn the result of the computation
and the secret values declassified by the other side. The
declassified values may be implied by the result, or may
convey additional information. As degenerate cases: If there
are no x1, ..., xn to be protected, we can ship the entire code to
the client to perform locally; conversely, if the client is willing
to share the entirety of y1, ..., ym, then these can all be shipped
to the server, and the computation can be performed there.

Secure multiparty computation Fairplay [18] requires
no declassifications, but rather uses an interactive protocol and
cryptographic techniques to protect data as it is shipped back
and forth between client and server to compute F . It is more
flexible than Jif/Split in that it ensures less information is
released to the remote party, but also more expensive. Fairplay
was originally developed for two-party computations, but has
been generalized to n-way computations in FairplayMP [19].

B. Application to DIM applications: research problems

Return to the OSN example: suppose the server wishes to
perform a computation on the user’s data, and the user wishes
to store his data locally, releasing as little of it as possible.



There are a number of problems to solve that are not addressed
by previous work, and we sketch some of them here. First,
the server might not only care to keep certain values hidden
from the client, but to hide portions of the code as well.
Second, as parts of this algorithm may now be computed by
the client, the server must trust the client to execute them
properly. The server would like assurance that the algorithm
execution has not been tampered with. Finally, both the client
and server are concerned about what private data the other
side has learned, which depends on (in addition to the privacy-
preserving mechanism) what computation has been performed.
We need a way to track the information released to ensure it
does not exceed some threshold.

C. Keeping F hidden from the client

Suppose the server wants to hide some or all of F . For
example, suppose F is the OSN’s ad selection algorithm. If
the algorithm is very effective the OSN would prefer to keep it
hidden from competitors. Most reliably, the entire computation
would occur at the server, and as the computation proceeds,
it would send read requests to the client, asking for bits of
data it needs. However, this approach could reveal more data
than the client desires. For example, suppose the site wishes
to determine the average age of a user’s friends. We might do
this by defining F (u) for a given user u as follows:

n = 0; c = 0;
foreach f ∈ friends(u)

n = n+ 1; c = c+ age(f);
return c/n

Consider three possible ways this code could be computed
between client and server:

1) F runs entirely at the server. It must query the client for
each of u’s friends f , so that it can average the friends’
ages.

2) F runs entirely on the client. Thus the user releases far
less data—just the average age of his friends, not the
number of friends or their identities. However, running
F at the client reveals the function the server wishes to
compute—if u just provides his friends list to the server,
he does not know what about his friends the site finds
interesting, protecting the site’s algorithm.

3) As a middle ground the server could ask for the num-
ber of u’s friends and their ages. Doing so does not
reveal what the site will do with this, i.e., compute the
average—the server could be computing the median,
finding the maximum or minimum, etc.

Which division of computation is used is a matter of policy.
The programmer could label portions of F as server-private,
and the CS or SMC algorithm could ensure that none of that
code runs at the client. For example, labeling all of F as private
results in the first case, above; labeling none results in the
second; labeling only the expression c/n results in the third.

A research challenge is to reconcile the constraints on code
location imposed by privacy requirements of the client’s data
and the privacy requirements of the code. Moreover, even if

“all” the code runs at the server, the client can infer properties
of the algorithm by observing individual read requests that it
makes. We must ask: at a high level, what can the client reason
about the overall form of F based only on seeing the portion
of its computation that runs at the client? How do we describe
knowledge of a particular function, based on the computation?

While hiding the code would seem to make the splitting
problem harder, it actually can make it easier in some cases.
In particular, the static analysis performed by CS algorithms
is designed under the presumption that the client will know
when it could be receiving server-private values (or functions
of them) because it knows the code. If we assume that some
or all of the code is unknown, the client may not know the
difference between a query y1 < 5 and y1 < x1 (where x1

is a server-private value that could be 5), and thus will not
realize it is learning something about private server data.

D. Ensuring computation consistency

We might imagine that allowing a client to compute part
of F is ill-advised because the client could lie about the
result. Let F ′ be the portion of computation F that runs at the
client, and suppose F ′(y1, ..., ym) = x. When asked, instead
of reporting x, the client could report some value x′ instead.

Lying about computation results is not necessarily as bad
as we might initially think. If F ′ were computed at the server
instead, the client could provide the server with false input
values y′1, ..., y

′
m such that F ′(y′1, ..., y

′
m) = x′, yielding the

same false result. Facebook recognizes the problem of users
lying about their details, and makes such deceit a violation of
the terms of service (as mentioned in § II).

On the other hand, while the site cannot enforce user
honesty, the server can check whether client-side computations
are consistent. In particular, the server might like to ensure that
the client does not change or lie about its private value in the
middle of a computation. For example, suppose the server was
interested in the following function F :

if c1 < 5 then x = h1 else x = h3

if c1 < 10 then z = h2 else z = h3

In this code, if the first if-branch succeeds, then the second
if-branch should succeed too. If the first else-branch succeeds,
either of the subsequent two would be OK. Now suppose that
the server executes all of this code segment other than the
two comparisons c1 < 5 and c1 < 10, which run at the client.
As there is no c1 such that c1 < 5 and not(c1 < 10), the
server should be suspicious if successive computations on the
client produce contradictory answers. Ensuring consistency of
this sort within a computation might, for example, assuage
advertisers that they are getting a consistent view of user data.

To ensure client-side computations are mutually consistent
we can take the following approach. For each computation
Q1 = q1, ..., Qm = qm where Q1 is the function sent to the
client (whose free variables include y1...ym) and q1 is the
result returned, the server can ensure that

Q1 = q1 ∧ ... ∧Qm = qm



has a satisfying solution. If not, the client has lied or in-
correctly computed one or more of the requests. Notice that
inconsistency can arise even for a single request, e.g., if Q1

is y1 mod 3 and the client returns q1 = 4.
Because some data changes over time—e.g., friends and

personal likes/dislikes—the server cannot know for sure that a
client is lying if successive series of queries are inconsistent.
Models of data mutability can help distinguish between data
that should remain fixed (e.g., a user’s birthday) and data that
may change infrequently (e.g., a user’s favorite movie).

Satisfiability queries can be expensive and thus should not
be used on the critical computation path. Assuming that clients
lie infrequently, the server could take a sampling approach to
verifying consistency and perform such verification offline.

E. Brokering private information

So far we have been concerned only with single execu-
tions of a privacy-preserving computation. When parties may
interact more than once, computing different functions over
the same data, each party must track what its past partners
have learned so as to not reveal too much data over time. We
propose using a guard that monitors what information an entity
is releasing. We call this approach a private information broker
(PIB): a record of what bits of data have been released and
to whom they were released, as well as a model of how those
entities are likely to behave in terms of sharing data with other
entities. With this mechanism, users can try to understand what
might happen if this information base is extended by revealing
further information.

Each individual would run a service that maintains these
models for them. Each time a user enters their personal
information, such as when providing their qualifications for
a review in the collaborative reviewing information hub, the
information broker is informed and constructs a model of
the hub and tracks the information it has learned. Before
actually submitting the information to the site, the broker
service checks to ensure that a user-specified security policy
is respected, that is, sharing the new information does not
push the amount of information that an entity can learn or
infer over a certain threshold. The conservative assumption is
that the hub could reveal the information to the public, but the
user could refine this assumption by entering the hub’s privacy
policy as further information.

The PIB is a natural place to execute split computation. By
having direct access to the user’s secret data, it can monitor
which bits are read during function execution using static or
dynamic taint tracking. This simplifies the task of tracking
released information. One party querying another would treat
the other’s PIB as a database and send an SQL-like query
directly to the PIB to extract the relevant information. This
query is likely to be less sensitive than the entire computation,
and yet is sufficient for the user to analyze what bits of his
data are going back to the server, allowing the PIB to improve
efficiency while maintaining a record of all direct data access.
However, data may leak indirectly, through side channels; we
discuss this in detail in the next section.

V. QUANTITATIVE INFORMATION FLOW

Whether splitting the computation of F between server or
client or computing F entirely at the client, F ’s result may
reveal information about the client’s private inputs. At the
extreme, if F (y1) = y1, then the result of F unveils all the
client’s private information (y1). Even if the result of a single
computation reveals only a small amount of information, many
computations performed over time may reveal substantial
portions of y1, ..., ym.

To measure (and ultimately, control) what information is re-
leased by a computation, a first attempt might be to track what
portions of the secret values y1...ym (respectively, x1...xn) are
actually returned directly by the portion of F computed at the
client (respectively, the server). But to do so would fail to track
implicit flows. To illustrate, consider the following function F
that runs at the client:

if y1 == 10 then return 0 else return 1
In the case that F returns 0, the server knows the only

possible value of y1 is 10, despite the fact that F returns no
portion of y1 directly. Any assessment of information release
must consider such implicit flows if the secret values are to
be kept truly secret.

A. Quantitative information flow tracking

Directly learning the value of a secret variable is too sim-
plistic to usefully characterize information flow. In the implicit
flow example above, even if y1 is not equal to 10, execution
does leak information (that y1 6= 10), though not enough
information to completely learn y1. Assume y1 ∈ {1, ..., 10}
and after learning the variable is not equal to 10, the server
learns the output of the following function:

if y1 == 9 then return 0 else return 1
At this point, the server knows y1 ≤ 8, Comparing the

secret y1 to successively smaller values, the server could
eventually learn the exact value of y1. A conservative analysis
of the situation could imply that y1 is leaked upon the very
first function call due to the implicit flow, whereas a more
fine-grained perspective would not only indicate some partial
revelation of the variable but also conclude that a sequence of
function outputs described above increase this partial amount,
certainly beyond what is learned from just one function call.

One approach to quantify what is learned is to consider
how many possible values the secret can take on given some
observed output of the function. Consider a simple ad selection
algorithm that operates on two user secret variables, byear, the
user’s birth year in the range {1900, ..., 1999}, and gender,
the user’s gender as a numerical value from {0, 1}, and returns
an ad in the set {0, 1, 2}.

if 1980 ≤ byear then return 0
else if gender == 0 then return 1
else return 2

The set of possible secret states is U = {1900, ..., 1999}×
{0, 1}, containing 200 distinct possible secret pairs of values
of byear and gender. If the server (here, an advertiser) were
to learn the output of this function is 0, it would know the set



of possible secret values that could have resulted in this output
is O1 = {1980, ..., 1999} × {0, 1}, which contains 40 distinct
states. On observing an output 1, however, it would know the
secret input was in O2 = {1900, ..., 1979}×{0}, or one of 80
possible states. One way to quantify the leak of information
is in terms of the sizes of the sets of secret states [20].

In our example, observing an output of 0 reduces the set of
secret states by a greater amount than observing an output of
1. Intuitively, this corresponds to sharing a greater amount
of information. This intuition stems from the fact that, if
the server was to model the secret state and sample from it
uniformly the probability that the server could correctly guess
the exact value of the secret information is twice as high in the
first case as the second. Backes et al. [20] analyzed implicit
flows in such a scenario, assuming that each possible secret
state is equally likely. But this assumption does not hold for
our example given the non-uniform distribution of birth years.

This unrealistic situation can be remedied by considering
the probability distribution or belief of the secret states [21].
A belief δ can be thought of as a function from the set of secret
states U to [0, 1], having the usual probability distribution
property, Σσ∈U δ(σ) = 1. A more realistic belief of the secret
state in our example would assign more probability mass to
states denoting a younger user, or for example:

δ(byear, gender) =
if byear ≤ 1949 then 1/400 else 3/400

Beliefs can thus account for differing a priori probability
distributions of secret states. For example, without learning
anything from the client, the server believes that (1949, 0) has
a probability 0.0025 of being the true secret state, whereas it
believes (1950, 0) has a 0.0075 chance of being correct.

The belief signifies nothing of what the actual secret state is.
It can, however, be quantitatively compared to the true secret
state or other beliefs using relative entropy [21]. The relative
entropy D(δ → δ′) between two probability distributions δ, δ′

is defined as follows:

D(δ → δ′) =
∑
σ∈U

δ′(σ) lg
δ′(σ)
δ(σ)

If σ̇ is probability distribution that assigns 1 to the real secret
state and 0 to everything else, then D(δ → σ̇) is a quantifica-
tion of the information known about the secret state and has the
property that the probability of guessing the real state when
sampling from δ is 2−D(δ→σ̇). As such, users can compare
different quantities of information about the secret state in
terms of likelihood of guessing the secret state. If a server (or
user) has beliefs δ and δ′ with D(δ → σ̇) = D(δ′ → σ̇) + 1
then it is twice as likely to guess the secret having belief δ
than it would having belief δ′; gaining a bit as measured in
this way corresponds to a doubling of the chances of guessing
the secret state.

Evaluating the revision of a belief given some function
output lets one compare the information gain that results from
the function. The semantics of evaluation of programs over
probability distributions as described in [21] let one do exactly

that. However, this technique requires policy-enforcement
mechanisms to reason about all possible secret states. In
our ad-selection example only 200 states were possible, but
large, sensitive computations are now the norm [22], [23],
[24]. Propagating distributions of large state spaces over the
execution of a (possibly distributed) program and computing
the relative entropy over such distributions is not feasible.

Some of our present work is aimed at alleviating this
problem in a constrained setting of programs that operate on
expressions that contain only linear combinations of variables
(variables are not multiplied together) and where probability
distributions are uniform over linearly constrained regions. Our
probability distribution δ above, for example, can be described
by a set of polyhedral regions [25] within U :
P1 = U ∩ {(byear, gender) : 1900 ≤ byear ≤ 1949 , 0 ≤ gender ≤ 1}

P2 = U ∩ {(byear, gender) : 1950 ≤ byear ≤ 1999 , 0 ≤ gender ≤ 1}

Each state within P1 has equal probability according to
δ, and similarly within P2. Inspired by ideas from abstract
interpretation [26], we aim to evaluate programs on such sets
of polyhedra of states instead of individual states and thereby
make the task feasible in settings where the state space is too
large to reason about otherwise.

B. Enforcing quantitative policies

Given a strategy to quantitatively track information leaked
by executing a function F , a user can set a policy governing
the maximum leakage permitted for his secret data. For
example, it has been reported that zip code, birthday, and
gender are sufficient information to uniquely identify 63% of
Americans in the 2000 U.S. census [27], so we could imagine
a user setting a policy that will permit (guarded or partial)
access to these data assuming an attacker never has a better
than 1/n chance to guess all three, for some n. By extending
the private information broker (§ IV-E) to quantitatively track
implicit flows, policies can more flexibly express what data
can be released to different parties while maintaining rigorous
estimates of the uncertainty of attacker beliefs, to prevent
responses that would reveal too much information.

The PIB must enforce a quantitative policy in a way
that does not itself violate the policy. If the PIB executes
a function F locally and estimates how much the remote
party could learn from the result, and if this amount is too
great, it can intentionally cause the computation to fail (i.e.,
return nothing). The problem with this approach is that the
remote party might assume that failure implies that the actual
response would leak too much information, which can itself
leak information. Consider the code

if byear = 1971 then return 0 else return 1
Suppose a client whose birth year is 1971 runs this code

and discovers that returning 0 will reveal his birth year to
the server, leaking too much information. But failing, where
failure is known to be due to exceeding the allowed infor-
mation leakage budget, reveals nearly the same amount of
information, since the server knows it is likely the budget was
exceeded due to having guessed the birthday.



There are several approaches to solving this problem. First,
we could add nondeterminism into the result (e.g., by adding
noise, or by failing randomly) of every query, which improves
privacy of the data provider at a cost to the utility of the data
consumer. Second, we could attempt to estimate the potential
for a function to leak information before running it and refuse
to execute a function if it could potentially reveal too much.3

A last problem is that auxiliary information must be consid-
ered when setting quantitative policies. The de-anonymization
of the Netflix Prize dataset [24] shows how auxilliary in-
formation can be used to violate the privacy guarantees of
“anonymized” data. The problem of handling auxiliary infor-
mation has motivated a line of research now termed differential
privacy [28]. The goal of differential privacy is to avoid
presuming an a priori belief of attackers, and rather to reason
that no matter what information an attacker might already
have, a particular query will only increase that information
by a relatively small amount. These techniques have largely
been designed with the idea of aggregation queries over a
database sampling from a large population, e.g., to determine
the average age of people within a large geographic area. With
such queries, information about an individual can be intuitively
kept hidden. In the case of DIM applications operating on
individual information, there is no population within which to
hide. Thus we believe differential privacy is not universally
applicable. Nevertheless, finding situations where differential
privacy does apply would allow us to make use of, or extend,
existing techniques with provable guarantees.

VI. CONCLUSIONS

This paper has presented an overview of the problem of
securely sharing information among mutually-distrusting par-
ties in a distributed system, along with directions of research
toward solving the problems that arise. By examining online
social networks in particular and community-based review and
sensor network applications in general, we describe factors that
should be taken into consideration when crafting information
sharing policies, namely evidence of reactions to prior sharing
efforts and economic incentives to abide by policy. We also
discuss mechanisms for enforcing such policies, with a focus
on collaborative computation, beginning with the ideas of
secure multiparty computation and computation splitting. We
propose that these mechanisms be augmented with means
to keep sensitive code hidden, to ensure that collaborative
computation is consistent and efficient, and to quantitatively
track knowledge about private information that can be inferred
from the results of computations. We believe we have sketched
a rich agenda for research ahead at the cross-section of pro-
gramming languages, cryptography, economics, and systems.
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